Skip to main content

Cost-Effective Mapping Using Unmanned Aerial Vehicles in Ecology Monitoring Applications

  • Chapter
Experimental Robotics

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 79))

Abstract

Ecology monitoring of large areas of farmland, rangelands and wilderness relies on routine map building and picture compilation, traditionally performed using high-flying surveys with manned-aircraft or through satellite remote sensing. Unmanned Aerial Vehicles (UAVs) are a promising alternative as a data collection platform due to the small-size, longer endurance and thus cost-effectiveness of these systems. Additionally UAVs can fly lower to the ground, collecting higher-resolution imagery than with manned aircraft or satellites. This paper discusses the development and experimental evaluation of systems and algorithms for airborne environment mapping, object detection and vegetation classification using low-cost sensor data including monocular vision collected from a UAV. Experimental results of the system are presented in multiple flights of our UAV system in three different environments and two different ecology monitoring applications, operating in remote locations in outback Australia.

This work is supported by Meat and Livestock Australia (MLA) under project code B.NBP.0474, “UAV Surveillance Systems for the Management of Woody Weeds”, the Australian Weeds Research Council (AWRC) under project code AWRC08-04, “Using UAVs and Innovative Classification Algorithms in the Detection of Cacti” and the ARC Centre of Excellence programme, funded by the Australian Research Council (ARC) and the New South Wales State Government.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.T.: The Quickhull algorithm for convex hulls. ACM Trans. on Mathematical Software 22(4), 469–483 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bouguet, J.: Camera Calibration Toolbox for MATLAB, http://www.vision.caltech.edu/bouguetj/calib_doc/ (retrieved September 7, 2010)

  3. Bryson, M., Reid, A., Ramos, F., Sukkarieh, S.: Airborne Vision-Based Mapping and Classification of Large Farmland Environments. Journal of Field Robotics 27(5), 632–655 (2010)

    Article  Google Scholar 

  4. Bryson, M., Sukkarieh, S.: A Comparison of Feature and Pose-Based Airborne Mapping using Monocular Vision and Inertial Sensors. IEEE/RSJ International Conference on Intelligent Robots and Systems (2011)

    Google Scholar 

  5. Clark, R.R., Lin, M.H., Taylor, C.J.: 3D Environment Capture from Monocular Video and Inertial Data. In: SPIE on Three-Dimensional Image Capture and Applications (2006)

    Google Scholar 

  6. Davis, T.: Direct Methods for Sparse Linear Systems. Fundamentals of Algorithms. SIAM, Philadelphia (2006)

    Book  MATH  Google Scholar 

  7. Eustice, R., Singh, H., Leonard, J., Walter, M., Ballard, R.: Visually Navigating the RMS Titanic with SLAM Information Filters. In: Robotics: Science and Systems (2005)

    Google Scholar 

  8. Fan, R.E., Chen, P.H., Lin, C.J.: Working set selection using the second order information for training SVM. Journal of Machine Learning Research 6, 1889–1918 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Annals of Statistics 28(2), 337–407 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Heeger, D., Bergen, J.: Pyramid-based texture analysis/synthesis. In: Proceedings of the 22nd International Conference on Computer Graphics and Interactive Techniques (1995)

    Google Scholar 

  11. Hsieh, P., Lee, L., Chen, N.: Effect of spatial resolution on classification errors of pure and mixed pixels in remote sensing. IEEE Transactions on Geoscience and Remote Sensing 39(12), 2657–2663 (2001)

    Article  Google Scholar 

  12. Hung, C., Bryson, M., Sukkarieh, S.: Multi-class Predictive Template for Tree Crown Detection. ISPRS Journal of Photogrammetry and Remote Sensing 68, 170–183 (2012)

    Article  Google Scholar 

  13. Kaess, M., Ranganathan, A., Dallaert, F.: iSAM: Fast Incremental Smoothing and Mapping with Efficient Data Association. In: IEEE International Conference on Robotics and Automation (2007)

    Google Scholar 

  14. Klinken, R., Shepherd, D., Parr, R., Robinson, T., Anderson, L.: Mapping mesquite (prosopis) distribution and density using visual aerial surveys. Rangeland Ecology Management 60, 408–416 (2007)

    Article  Google Scholar 

  15. van Klinken, R.D., Shepherd, D., Parr, R., Robinson, T.P., Anderson, L.: Mapping Mesquite (Prosopis) Distribution and Density Using Visual Aerial Surveys. Rangeland Ecology Management 60, 408–416 (2007)

    Article  Google Scholar 

  16. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  17. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Imaging Understanding Workshop (1981)

    Google Scholar 

  18. Maybeck, P.S.: Stochastic Models, Estimation and Control, vol. 1. Academic Press (1979)

    Google Scholar 

  19. Medlin, C.R., Shaw, D.R., Gerard, P.D., LaMastus, F.E.: Using remote sensing to detect weed infestations in Glycine max. Weed Science 48(3), 393–398 (2000)

    Article  Google Scholar 

  20. Mostafa, M., Schwarz, K.: A Multi-Sensor System for Airborne Image Capture and Georeferencing. Photogrammetric Engineering and Remote Sensing 66(12), 1417–1423 (2000)

    Google Scholar 

  21. Shi, J., Tomasi, C.: Good Features to Track. In: IEEE Conference on Computer Vision and Pattern Recognition (1994)

    Google Scholar 

  22. Torr, P.H.S., Murray, D.W.: The Development and Comparison of Robust Methods for Estimating the Fundamental Matrix. International Journal of Computer Vision 24(3), 271–300 (1997)

    Article  Google Scholar 

  23. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle Adjustment – A Modern Synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitch Bryson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Bryson, M., Reid, A., Hung, C., Ramos, F.T., Sukkarieh, S. (2014). Cost-Effective Mapping Using Unmanned Aerial Vehicles in Ecology Monitoring Applications. In: Khatib, O., Kumar, V., Sukhatme, G. (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28572-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28572-1_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28571-4

  • Online ISBN: 978-3-642-28572-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics