Skip to main content

Enhancement of Multi-user Teleoperation Systems by Prediction of Dyadic Haptic Interaction

  • Chapter

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 79))

Abstract

By integrating a model of the remote environment or the human operator into a haptic bilateral teleoperation control architecture, their behavior can be predicted to compensate time delay introduced by a non-ideal communication channel. This results in increased robustness and fidelity of the closed-loop system. In literature, models of the remote environment, the teleoperator dynamics or task-specific operator models are integrated into single-user teleoperation systems. The present paper is the first that explicitly considers dyadic haptic interaction between two operators in the prediction algorithms applied to a multi-user teleoperation system. Our comparative experimental results obtained in a 3 degree-of-freedom teleoperation system show an increased robustness and fidelity of this approach compared to a classic bilateral force-force architecture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lawrence, D.: Stability and transparency in bilateral teleoperation. In: Proceedings of the 31st IEEE Conference on Decision and Control 1992, vol. 3, pp. 2649–2655 (1993)

    Google Scholar 

  2. Passenberg, C., Peer, A., Buss, M.: A survey of environment-, operator-, and task-adapted controllers for teleoperation systems. Journal of Mechatronics (2010), doi: 10.1016/j.mechatronics.2010.04.005

    Google Scholar 

  3. Clarke, S., Schillhuber, G., Zaeh, M.F., Ulbrich, H.: Prediction-based methods for teleoperation across delayed networks. Multimedia Systems 13, 253–261 (2008)

    Article  Google Scholar 

  4. Kheddar, A.: Teleoperation based on the hidden robot concept. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 31, 1–13 (2001)

    Article  Google Scholar 

  5. Mitra, P., Niemeyer, G.: Model-mediated Telemanipulation. The International Journal of Robotics Research 27(2), 253–262 (2008)

    Article  Google Scholar 

  6. Weber, C., Nitsch, V., Unterhinninghofen, U., Färber, B., Buss, M.: Position and force augmentation in a telepresence system and their effects on perceived realism. In: Third Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (2009)

    Google Scholar 

  7. Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M., Sastry, S.: Kalman filtering with intermittent observations. IEEE Transactions on Automatic Control 49, 1453–1464 (2004)

    Article  MathSciNet  Google Scholar 

  8. Tang, P., de Silva, C.: Ethernet-based predictive control of an industrial hydraulic machine. In: Proceedings, 42nd IEEE Conference on Decision and Control 2003, vol. 1, pp. 695–700 (December 2003)

    Google Scholar 

  9. Smith, C., Christensen, H.I.: A minimum jerk predictor for teleoperation with variable time delay. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, Saint Louis, USA, pp. 5621–5627. IEEE/RSJ (October 2009)

    Google Scholar 

  10. Smith, C., Jensfelt, P.: A predictor for operator input for time-delayed teleoperation. Mechatronics (2010), doi: 10.1016/j.mechatronics.2010.03.002

    Google Scholar 

  11. Buss, M., Lee, K.-K., Nitzsche, N., Peer, A., Stanczyk, B., Unterhinninghofen, U.: Advanced Telerobotics: Dual-Handed and Mobile Remote Manipulaton. In: Advances in telerobotics, pp. 471–497. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Sallnäs, E.-L.: Improved precision in mediated collaborative manipulation of objects by haptic force feedback. In: Proceedings of the First International Workshop on Haptic Human-Computer Interaction, London, UK, pp. 69–75. Springer (2001)

    Google Scholar 

  13. Reed, K.B., Peshkin, M.A.: Physical collaboration of human-human and human-robot teams. IEEE Trans. Haptics 1(2), 108–120 (2008)

    Article  Google Scholar 

  14. Wang, Z., Peer, A., Buss, M.: An HMM approach to realistic haptic human-robot interaction. In: Proceedings of The Third Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, WorldHaptics (2009)

    Google Scholar 

  15. Hölldampf, J., Peer, A., Buss, M.: Virtual Partner for a Haptic Interaction Task. In: Human-Centered Robot Systems, pp. 183–191. Springer (2009)

    Google Scholar 

  16. Feth, D., Groten, R., Peer, A., Buss, M.: Control-theoretic model of haptic human-human interaction in a pursuit tracking task. In: Proceedings of the 18th IEEE International Symposium on Robot and Human Interactive Communication, Ro-Man (2009)

    Google Scholar 

  17. Groten, R., Feth, D., Goshy, H., Peer, A., Kenny, D., Buss, M.: Experimental analysis of dominance in haptic collaboration. In: Proceedings of the 18th International Symposium on Robot and Human Interactive Communication, Ro-Man (2009)

    Google Scholar 

  18. Hashtrudi-Zaad, K., Salcudean, S.E.: Analysis of control architectures for teleoperation systems with impedance/admittance master and slave manipulators. The International Journal of Robotics Research 20, 419–445 (2001)

    Article  Google Scholar 

  19. Sakr, N., Georganas, N., Zhao, J., Shen, X.: Motion and force prediction in haptic media. In: IEEE International Conference on Multimedia and Expo, pp. 2242–2245 (July 2007)

    Google Scholar 

  20. Uchiyama, M., Iwasawa, N., Hakomori, K.: Hybrid position/force control for coordination of a two-arm robot. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 4, pp. 1242–1247 (1987)

    Google Scholar 

  21. Williams, D., Khatib, O.: The virtual linkage: a model for internal forces in multi-grasp manipulation, vol. 1, pp. 1025–1030 (May 1993)

    Google Scholar 

  22. Buss, M., Peer, A., Schauß, T., Stefanov, N., Unterhinninghofen, U., Behrendt, S., Leupold, J., Durkovic, M., Sarkis, M.: Development of a multi-modal multi-user telepresence and teleaction system. The International Journal of Robotics Research (2009)

    Google Scholar 

  23. Ganesh, G., Albu-Schäffer, A., Haruno, M., Kawato, M., Burdet, E.: Biomimetic motor behavior for simultaneous adaptation of force, impedance and trajectory in interaction tasks. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2705–2711 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Feth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Feth, D., Peer, A., Buss, M. (2014). Enhancement of Multi-user Teleoperation Systems by Prediction of Dyadic Haptic Interaction. In: Khatib, O., Kumar, V., Sukhatme, G. (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28572-1_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28572-1_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28571-4

  • Online ISBN: 978-3-642-28572-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics