Document downloaded from:

http://hdl.handle.net/10251/35896

This paper must be cited as:

Castillo, C.; Valero Llinares, H.; Guadalupe Ramos, J.; Silva Galiana, JF. (2012).
Information extraction from Webpages based on DOM distances. En Computational
Linguistics and Intelligent Text Processing. Springer Verlag (Germany). 181-193.
doi:10.1007/978-3-642-28601-8 16.

The final publication is available at

http://link.springer.com/chapter/10.1007%2F978-3-642-28601-8_16

Copyright
Pyng Springer Verlag (Germany)

Information Extraction from Webpages
Based on DOM Distances

Abstract. Retrieving information from Internet is a difficult task as it
is demonstrated by the lack of real-time tools able to extract information
from webpages. The main cause is that most webpages in Internet are im-
plemented using plain (X)HTML which is a language that lacks structured
semantic information. For this reason much of the efforts in this area have
been directed to the development of techniques for URLs extraction. This
field has produced good results implemented by modern search engines. But,
contrarily, extracting information from a single webpage has produced poor
results or very limited tools. In this work we define a novel technique for in-
formation extraction from single webpages or collections of interconnected
webpages. This technique is based on DOM distances to retrieve informa-
tion. This allows the technique to work with any webpage and, thus, to
retrieve information online. Our implementation and experiments demon-
strate the usefulness of the technique.

1 Introduction

Information Extraction (IE) is one of the major areas of interest in both the web and
the semantic web. The lack of real-time online applications able to automatically
extract information from the web shows the difficulty of the problem. Current
techniques for IE from Internet are mainly based on the recovering of webpages
that are related to a specified query (see [7] for a survey). In this area, search
engines such as Google or Bing implement very efficient and precise algorithms for
the recovering of related webpages. However, for many purposes, the granularity
level of the produced information is too big: a whole webpage.

In this work we try to reduce the granularity level of the information obtained.
In particular we introduce a technique that given a collection of webpages, it extract
from them all the information relevant for a given query and shows to the user in
a new recomposed webpage. In the case that we are only filtering one webpage,
the technique behaves as a filter as it is shown in Figure 1, where the IEEE’s main
webpage has been filtering so that it only shows the information related to members
of IEEE (this includes text, images, links, (sub)menues, etc.).

In the semantic web setting, it is often possible to produce similar results com-
posed of texts that answer a given question. However, these techniques often need
to pre-process the webpages that are going to be queried. An ontological model
is constructed and the knowledge is modeled and queried using languages such as
RDF [8] or OWL [9]. This imposes important restrictions on the webpages that can
be processed, and thus the implemented tools are usually offline tools. One reason
is that most Internet pages have been implemented with plain (X)HTML. A similar
problem is faced by the related techniques and tools that use microformats [10-12]
to represent knowledge.

Homa | Shop | Join | myIEEE | Contact | Siamap | 1E2E Xplore

IE E E ‘The world's
4 for the adva

Membership

Advancing Techno

H ‘Sign in to view your IEEE Membar information Sign in to view your IEEE Member information
for Humani bt rougn e

00 0000000000000

iohts AT / _—
Publications M 3

Fig. 1. Filtering the IEEE’s main webpage

In this work we introduce a novel technique for IE that is based on DOM dis-
tances. Roughly speaking the technique looks for a term specified by the user, and
it extracts from the initial webpage and some linked webpages those elements that
are close to this term in the DOM trees of the webpages. Therefore, the technique
relies on the idea that syntactically close means semantically related. This idea is
also extended to distances between pages and domains using hyperlink distances.
Several experiments with our implementation and extensive use by thousands of
users reveal that this simple idea is very powerful in practice. The main advantages
of the technique are that it does not need to use proxies (as in [13]), it can work
online (with any webpage) without any pre-compilation or pre-parsing phases (as
in [14]); and that it can retrieve information at a very low level of granularity: a
single word.

We are not aware of any tool that performs the kind of filtering that our system
does. Other related approaches and tools [5] for web content filtering focus on the
detection of one particular kind of content (such as porn or violence) in order to
filter the whole webpage from a list of webpage results. Therefore, they do not
decompose a webpage and filter a part of it as we do. Similar approaches are based
on the use of neural networks [4] and application ontologies [6].

There are some works specialized for a particular content (such as tables) that
are somehow related to our work. They do not focus on filtering but in content
extraction from tables [1], or in wrappers induction [2, 3]. In general, they detect a
particular content in tables and extract it to be used as a database.

The main contributions of this work can be summarized as follows:

1. The definition and formalization of hyperDOM distance.

2. New algorithms for information extraction from multiple webpages.

3. Two models for the reconstruction and presentation of the retrieved informa-
tion.

4. Our implementation of the technique that has been integrated into Firefox.

5. An empirical study to measure the performance of the algorithms presented.

2 Information Extraction based on DOM Distances

In this section we formalize our technique for IE and visualization. It is based on the
Document Object Model (DOM) [15] which is an API that provides programmers
with a standard set of objects for the representation of HTML and XML documents.
Our technique is based on the use of DOM as the model for representing webpages.
For the sake of concreteness, in the following we will assume that a DOM tree is a
data structure that represents each single element of a webpage with a node labelled
with a text. This simplification assumes that all nodes have a single attribute, and
it allows us to avoid in our formalization and algorithms low-level details such as the
distinction between different kinds of HTML elements’ attributes. For instance, in
our implementation we have to distinguish and query different properties depending
on the element that we are analyzing, e.g., image nodes are queried by using their
alt, longdesc and src attributes.

Definition 1 (DOM Tree). A DOM tree t = (V, E) is a tree whose vertices V
are nodes labelled with HTML elements connected by a set of edges E.

We often refer to the label of a DOM node n with [(n); and we refer to the
root of a DOM tree ¢ with root(t). We also use the notation n — n’ to denote that
there exists a path of size less or equal to x between nodes n and n'. If the path
is of size x, then we say that the DOM distance between n and n’ is x. Edges are
represented as (n — n’) with n,n’ € V. We use —* to denote the reflexive and
transitive closure of —.

Definition 2 (Webpage). A webpage is a pair (u,t) where u is an URL and t is
a DOM tree.

Queries of the user can often contain multiple words and metadata such as “” for
exact search, and boolean operators (and, or, not) to produce complex combinations
of texts that force a particular order of words, or force the existence or inexistence of
a particular (sub)text. However, for simplicity, in our formalization we will assume
that queries are composed of a single word. The extension of the technique for
multiple words is trivial and it only requires the iteration of the method over the
words of the query. This has been already done in our implementation, and thus, the
interested reader is referred to its (open) source code for implementation details.

Definition 3 (Query). A query is a pair (w,d) where w is a word that is asso-
ciated with the information which is relevant for the user; and d is an integer that
represents the tolerance required in the search.

In our setting, the tolerance represents the maximum DOM distance allowed.
The tolerance is used to decide what elements of the DOM tree are related to the
user specified word. With tolerance=0, only elements that contain the specified
word should be retrieved. With tolerance=1, only elements that contain the word
and those that are in a distance of 1 to them should be retrieved, and so on.

Algorithm 1 implements our method for information extraction of single web-
pages. Clearly, this algorithm has a cost linear with the size of the DOM tree. In
essence, it finds the key_nodes that are those whose label contains the searching

word!. From these nodes, the relevant_.nodes are computed which are those whose
DOM distance to the key nodes is equal or lower than the tolerance specified by the
user. This idea is an important contribution of this technique because it is a novel
method to retrieve semantically related information. Our experiments and imple-
mentation together with massive use of anonymous users demonstrate the practical
utility of this DOM distance. All the ancestors and successors of the relevant nodes
form the final nodes of the filtered DOM tree. The final edges are those induced
by the final set of nodes. Therefore, the final webpage (that we will call in the
following slice) is always a portion of the original webpage, and this portion keeps
the original structure of information because the paths between retrieved elements
are maintained.

Algorithm 1 Information extraction from single webpages

Input: A webpage P = (u,t) and a query ¢ = (w, d)
Output: A webpage P’ = (L,t)
Initialization: t = (v,¢),t’ = (0,0)

(1) key-nodes = {n € v | l(n) contains w}

(2) relevant_nodes = {n € v | n =% n’ An' € key_nodes}

(3) ancestors = {n € v | ng =" n =" n1 Ang = root(t) Ani € relevant_nodes}
(4) successors = {n € v | ng =" n Ang € relevant_nodes}

(5) edges = {(n,n') € e | n,n' € (successors U ancestors)}

return P’ = (L, (successors U ancestors, edges))

In order to extend our algorithm for information extraction of interconnected
webpages, in the following we will assume that the user has loaded a webpage (that
we call initial webpage) and she specifies a query to extract information from this
webpage, the webpages that are linked to it (either as incoming or outgoing links),
the webpages included in it (e.g., as frames or iframes) and the webpages to which
it belongs (e.g., as a frame or an iframe). We call all these pages the interconnected
webpages; and observe that they are not necessarily in the same domain.

Frames and iframes can be modeled by considering that their DOM trees are
subtrees of the webpage that contains them. Therefore, Algorithm 1 is able to
extract relevant information from composite webpages structured with frames. For
hyperlinks, we can assume that the label of some nodes in a DOM tree is a link
pointing to a webpage. This is enough to define the notions of reachable webpages
and search hyperspace used in our information extraction algorithm.

Definition 4 (Reachability). Given a webpage Py we say that webpage P, is
reachable from Py if and only if 3 Py, P1,...,P, |V P, = (u,(V,E)),0 < i <
n—1,3v eV .1l(v) contains u' A Piy1 = (v,).

! The restriction of containing the searching word is taken for simplicity of presentation.
In the implementation, a lexicon (we use WordNet by default in our last version) could
be activated to also consider synonyms or semantically related words.

Roughly speaking, a webpage is reachable from another webpage if it is possible
to follow a sequence of hyperlinks that connect both pages from the later to the
former.

Definition 5 (Search Hyperspace). Given a webpage P = (u,t) the search
hyperspace of P is the set of webpages that either are reachable following hyperlinks
from nodes of P, or that can reach P from their hyperlinks.

The search hyperspace is the collection of webpages that are related to the
initial webpage, and that should (ideally) be inspected by our information extrac-
tion algorithm. However, the search hyperspace of a webpage is potentially infinite
(specially when we surf dynamic webpages [16]), and it is often huge. Therefore we
need to reduce it by discarding some of the hyperlinks. In addition, we want our
technique to be online. This implies that time response is a critical factor, but the
analysis of a webpage implies loading it, which is a time-consuming task. There-
fore, reducing the number of webpages that are analyzed is a major objective of
the technique.

With this aim, we define an hyperDOM distance between nodes of the search
hyperspace. This distance is used to decide what hyperlink nodes are more related
to the query specified by the user and should be explored. The others are discarded.
Using syntax distances to approximate semantic relations is an idea that is sup-
ported by experimental evaluation of different works. For instance, Micarelli and
Gasparetti [17] obtained empirical results demonstrating that webpages pointed by
closer hyperlinks are more related semantically than webpages pointed by hyper-
links that are syntactically separated. In order to define an hyperDOM distance,
we use the following concepts:

— DOM distance (dT): It is the length of the path between two nodes of a
DOM tree.

— Page distance (dP): It is the lower number of hyperlinks that must be
traversed to reach one webpage from another webpage.

— Domain distance (dD): It is the lower number of domains that must be
traversed to reach one webpage from another webpage following a path of hy-
perlinks.

We use the initial webpage and the key nodes as the reference to compute
distances. Therefore, for a given node, its DOM distance is the length of the path
between this node and the closest key node in its DOM tree; and the page and
domain distances are taken with respect to the initial webpage.

Definition 6 (HyperDOM Distance). Given a DOM node n, the hyperDOM
distance of n is D = dr + Kp - dp + Kp - dp where Kp and Kp are numeric
constants used to weight the equation. The significance S of a DOM node is the
inverse of its hyperDOM distance S =1/D.

Constants Kp and Kp determine the importance that we give to the fact that
the word specified by the user is in another page, or in another domain.

Ezxample 1. Consider the following search hyperspace:

where two nodes contain the word specified by the user (those in black); the first
node is in the initial webpage (P1), and the second node is in webpage P2 and
thus it has a page distance of 1. Now, observe that nodes nl and n2 are hyperlinks
to other webpages. The question is: which hyperlink is more related to the query
of the user and should be explored first by the algorithm? The answer is clear: the
most relevant node and thus with a smaller hyperDOM distance. According to
Definition 6, significance strongly depends on the values of the constants Kp and
Kp. Assuming that all the webpages are in the same domain and if Kp = 1, then
D(nl)=3 and D(n2)=2, thus n2 is more significant. In contrast, if Kp = 10, then
D(nl)=3 and D(n2)=11, thus nl is more significant.

After several experiments and intensive testing we took the following design
decisions:

1 Those hyperlinks that are in the initial webpage are more important than those
in another webpage. And the same happens as the page distance is increased.
Hence, the DOM distance is more important than the page distance.

2 Those hyperlinks that are in the same domain as the initial webpage are more
important than those in another domain. And the same happens as the domain
distance is increased. Hence, the page distance is more important than the
domain distance.

3 The algorithm should never analyze a webpage with a page distance greater
than 5. This is also supported by previous studies (see, e.g., Baeza and Castillo’s
discussion in [16]) that demonstrate that, in general, three to five levels of
navigation are enough to get 90% of the information which is contextually
related with the webpage selected by the user for the web search.

Therefore, considering the amount of nodes in a webpage, we take the following
values: Kp = 10% and Kp = 10°. The amount of DOM nodes in a webpage is
usually lower than 103, thus, 10° ensures that the distance of two different pages
is always greater than the distance of two nodes in the same webpage. Similarly,
the amount of webpages analyzed in our method is usually lower than 102, thus,
10° ensures that the distance of two different pages analyzed in different domains
is always greater than the distance of two different pages analyzed in the same
domain. Hence, D = dr + 10° - dp + 10° - dp

FEzample 2. Consider an initial webpage P1 and its search hyperspace shown in
Fig. 1. Assume that Algorithm 1 has analyzed the three webpages and thus, dark
nodes are relevant (key nodes are black) and white nodes are discarded. In order to
determine what hyperlinks are more relevant, we compute the significance of their
DOM nodes (see the table). This information is used to decide what hyperlinks
must be analyzed first. Observe in the example that the hyperDOM distance of
node k4 is 0 + 1 % 10% + 1 % 10°. This node has a lower significance because it is in

T Y 0y
3 \
/-l HYPERLINK 2 >‘@ | i'-."l\
Jh0 Cen. 0%
[0 I 2)
- _.-"@- _l L- ~_\
- s 1 nveeruNks T T m e
[R T | TR HYPERLINK 1 [| | *q
‘sd’ \|.l' . .
’
@ 0. o ¢ ||
.). _
HYPERLINK 4 _ o
i I
PAGE 1 o PAGE 2 B PAGE 3
! DOMAIN B

KEYNODE " 1 RELEVANT NODE

Hyperlink ldT ldp ld;_lD l S ‘

1 ojoflo]o]| o
2 2 [oflo]2]05
3 2 oflo]2]05
4 0joflo0]0]| o
5 0 | 1] 0 [105]1\10°

Fig. 2. Relevant information hyperlinked through different pages and domains

another domain. Note also that the significance of hyperlinks is computed from the
source node (even though a hyperlink relates two DOM nodes, the HTML element
that represents the hyperlink is in the source).

In a DOM tree we can distinguish between hyperlinks that belong to the slice
and hyperlinks that do not belong to the slice. Those hyperlinks that do not belong
to the slice are often related to webpages of none interest for the user. Therefore,
to ensure the quality of the retrieved information we take a fourth design decision:

4 Hyperlinks that do not belong to the slice are discarded.

One important problem of extracting information from webpages happens in
presence of dynamic webpages: A dynamic webpage could generate another dy-
namic webpage that contains the word specified by the user. This new dynamic
webpage could do the same, and so on infinitely. This situation is known as black
hole because robots searching in these webpages have an infinite search space where
they always find what they are looking for. Therefore they are trapped forever if
no limit is specified in the search [16]. Observe that the combination of design de-
cisions 3 and 4 avoids this problem because the search is stopped when a webpage
does not contain key nodes, or when its page distance is greater than 5. In addi-
tion, there is a fifth design decision related to the time response of the technique.
Usability rules [18] establish that 10 seconds is (as an average) the time limit that
users spend waiting for a webpage to be loaded. Therefore,

5 The maximum time spent to retrieve and show the information is 10 seconds.

The time used to show the retrieved information is constant, but the time
used to load a webpage is variable. Therefore, the technique uses a mechanism to

iteratively load webpages in significance order and extract information from them.
When the time spent is close to the limit, the technique must stop the analysis.

Algorithm 2 summarizes the technique for information extraction of intercon-
nected webpages. It uses the following functions that implement the ideas and
equations explained in this section: timeout() controls that the algorithm never
runs more than 10 seconds?. When the time is over, it returns True. getSlice()
computes a slice of a webpage with Algorithm 1. show() shows in the browser a
collection of DOM nodes. It should be implemented in a way that visualization
is incremental. getLinks() extracts the link nodes of a set of nodes. getMostRele-
vantLink() computes the hyperDOM distance of a set of nodes to determine what
is the most relevant node. load() loads a webpage.

Algorithm 2 Information extraction from multiple webpages
Input: A set of interconnected webpages with an initial webpage P, and a query ¢
Output: A webpage P’
Initialization: currentPage = P, pendingLinks = ()

while not(timeout())

(1) relevantNodes = getSlice(currentPage, q)

(2) show(relevantNodes)

(3) pendingLinks = pendingLinks U get Links(relevantN odes)
(4) link = getMostRelevantLink(pendingLinks)

(5) pendingLinks = pendingLinks/link

(6) currentPage = load(link)

return P’ (it is incrementally shown by the show function)

2.1 Visualization of the Relevant Information

Algorithm 2 is able to collect all the relevant DOM nodes of a set of webpages.
Moreover, for each page, we know that the slice extracted is a valid webpage accord-
ing to Algorithm 1. In addition, the information extracted is semantically related
via hyperlinks and the semantic relation is weighted with the computed signif-
icance for each DOM node. Therefore, it is possible to use standard techniques
for hierarchical visualization of the retrieved information. In our implementation
reconstructing DOM trees is possible thanks to the DOM API’s command:

documentNew.appendChildNode(documentOld.getElement Byld(‘myID’))

The command documentOld.getElementByld allows us to extract from a DOM
tree a specific element with a particular identifier myID. Then, the properties of
this node can be queried, and if necessary, it can be inserted into another DOM
tree with the command documentNew.appendChildNode. According to Algorithm

210 seconds is the default time used in our implementation, but it can be set to any
value (e.g., hours). In this case, constants Kp and Kp are redefined to ensure that
pages in different domains are farther (with the hyperDOM distance) than pages in the
same domain.

2, the visualization of the final webpage is done incrementally. For each analyzed
webpage, we extract the slice with Algorithm 1, and then, this slice is inserted
into the current webpage. Next, the webpage is refreshed, and thus, the technique
produces results from the very beginning and, while the user inspects them, new
results are added to the results webpage.

We have implemented two different algorithms to show the reconstructed web-
page. The first one presents the information tabularly, the second one uses a hierar-
chical representation. Both algorithms retrieve information from different webpages
and show it incrementally while it is being recovered. The main difference between
them is the way in which the information is visualized in the browser.

Tabular Visualization. The lowest granularity level in this representation is a
page. Basically, the final webpage is a linear succession of the filtered webpages.
Each filtered webpage is considered as a whole, and thus, all the information that
appeared together in the filtered webpage, is also together in the final webpage.
The filtered webpages are ordered according to their navigational structure using
a depth-first order.

Hierarchical Visualization. The lowest granularity level in this representation
is a word. In this representation, the final webpage is a tree where the filtered web-
pages are organized. In contrast to the tabular representation, the filtered webpages
can be mixed because each filtered webpage is placed next to the hyperlink that
references it.

Ezample 3. Fig. 7 (left) shows a set of linked webpages where the dark part rep-
resents the relevant information, and its tabular representation of this relevant
information. Fig, 7 (right) shows the hierarchical representation of the same set of
webpages.

= — =i

Fig. 3. Tabular visualization (left) and hierarchical visualization (right)

In Example 4 we show the complete process of information extraction.

Ezample 4. Consider again the initial webpage P1 and its search hyperspace of Fig.
1. Initially, Algorithm 2 extracts the slice of webpage P1. This slice is constructed
from two key nodes (K1 and K2). Then, this information is shown to the user in
a new webpage. Next, the algorithm tries to find the most relevant link to retrieve
information from related webpages. In the table we see that the most relevant
hyperlinks are H1 and H4. But H4 is discarded because it points to the initial
webpage that has been already processed. Therefore, hyperlink 1 is selected and
webpage P2 is loaded, processed and its slice shown to the user.

Domain [Query [Pages[Retrieved[Correct[Missing[Recall [Precision[F1]

www.ieee.org student 10 4615 | 4594 68 | 98.54 % 99.54 % | 99.03 %
WWW.UpvV.es student 19 8618 | 8616 232 | 97.37 % 99.97 % | 98.65 %
WWwW.un.org/en Haiti 8 6344 6344 2191 | 74.32 % 100 % | 85.26 %
www.esa.int launch 14 4860 4860 417 | 92.09 % 100 % | 95.88 %
WWW.nasa.gov space 16 12043 |12008 730 | 94.26 % 99.70 % | 96.90 %
www.mityc.es turismo 14 12521 |12381 124 99 % 98.88 % | 98.93 %
www.mozilla.org firefox 7 6791 6791 14 | 99.79 % 100 % | 99.89 %
www.edu.gva.es universitat| 28 10881 |10856 995 | 91.60 % 99.79 % | 95.51 %
www.unicef.es Pakistan 9 5415 5415 260 | 95.41 % 100 % | 97.65 %
www.ilo.org projects 14 1269 | 1269 544 | 69.99 % 100 % | 82.34 %
WWW.mec.es beca 24 5527 | 5513 286 | 95.06 % 99.74 % | 97.34 %
www.who.int medicines | 14 8605 | 8605 276 | 96.89 % 100 % | 98.42 %
www.si.edu asian 18 26301 |26269 144 | 99.45 % 99.87 % | 99.65 %
www.sigmaxi.org scientist 8 26482 |26359 241 | 99.08 % 99.54 % | 99.30 %
www.scientificamerican.com|sun 7 5795 | 5737 97 | 98.33 % 98.99 % | 98.65 %
ecir2011l.dcu.ie news 8 1659 1503 18 | 98.81 % 90.59 % | 94.52 %
dsc.discovery.com arctic 9 29097 [29043 114 | 99.60 % 99.81 % | 99.70 %
www.nationalgeographic.com|energy 12 41624 |33830 428 | 98.75 % 81.27 % | 89.16 %
physicsworld.com nuclear 15 10249 (10240 151 | 98.54 % 99.91 % | 99.22 %

Table 1. Benchmark results

The information of webpage P2 is shown immediately after the information of
K1, because, when this information is added to the webpage, it is placed close
to the nodes that pointed to it. Hyperlink 2 is then discarded because it points
to a webpage that has been already processed (P2). Because hyperlink 3 is more
relevant than hyperlink 5, hyperlink 3 is selected first and webpage P3 is loaded,
processed and shown to the user. Finally, hyperlink 5 is discarded because webpage
P3 has been already processed. Hence, in the final webpage the slices are shown in
order K1 K3 K4 K2.

Other models of visualization are possible and should be investigated. The pre-
sented models are designed to work in real-time because they work well when the
amount of information shown is not too much (e.g., less than 20 slices). However,
if the tool is used in batch mode (e.g., without time limitation), many webpages
are filtered and the amount of information to be shown can be too much as to be
shown in a single webpage; thus, it should be organized and probably indexed. For
this, other models based on tiles [20] or clusters [19] would be more appropriate.
Regarding the visualization of many slices, we are currently working on a third
visualization model called site map. Roughly, it produces an initial webpage with
a site map with links that point to all the slices retrieved with the tool, and these
slices are organized according to their original navigational map.

2.2 Implementation and Experiments

We have implemented the technique presented in this paper and submitted it to
the Firefox’s browser. After several rounds of revision, it has been accepted as an
official plugin integrated in Firefox. The implementation allows the programmer to
parameterize the technique in order to adjust the amount of information retrieved,
the number of webpages explored, the visualization model and other functionali-
ties. In order to determine the default configuration, it was initially tested with
a collection of real webpages producing good results that allowed us to tune the

parameters. Then, we conducted several experiments with real (online) webpages.
Concretely, we selected domains with different layouts and page structures in order
to study the performance of the technique in different contexts (e.g., company’s
websites, news articles, forums, etc.).

For each domain, we performed two independent experiments. The first exper-
iment provides a measure of the average performance of the technique regarding
recall, precision and the F1 measure (see, e.g., [21] for a discussion on these met-
rics). The goal of this experiment was to identify the information in a given domain
that is related to a particular query of the user. Firstly, for each domain, we deter-
mined the actual relevant content of each webpage by downloading it and manually
selecting the relevant content (both text and multimedia objects). This task was
performed by three different people without any help of the tool. The selected
relevant content included all the information that each user thought was relevant
for her. The DOM tree of the selected text was then built for each webpage. In a
second stage, we used the tool to explore the webpages using Algorithm 2 and it
extracted from them the relevant parts (according to the tool). Finally, we com-
pared the DOM trees produced manually with those produced automatically by
the tool. Table 1 summarizes the results obtained in this experiment.

For each domain, the first column contains the URL of the initial webpage.
Column Pages shows the number of pages explored by the tool in each experiment
(the analysis time was limited to 10 seconds). Column Query shows the query
used as the slicing criterion. Column Retrieved shows the number of DOM nodes
retrieved by the tool; in the DOM model, the amount of words contained in a
DOM node depends on the HTML source code of the webpage. It usually contains
between one sentence and one paragraph. Column Correct shows the number of
retrieved nodes that were relevant. Column Missing shows the number of relevant
nodes not retrieved by the tool. Column Recall shows the number of relevant
nodes retrieved divided by the total number of relevant nodes (in all the analyzed
webpages of each domain). Column Precision shows the number of relevant nodes
retrieved divided by the total number of retrieved nodes. Finally, column F1 shows
the F1 metric that is computed as (2 P x R)/(P + R) being P the precision and
R the recall.

The first important conclusion of the experiments is that, in 10 seconds, the
tool is able to analyze 13,3 pages as an average for each domain. Therefore, because
the visualization algorithms are incremental, the first result is shown to the user
in less than 1 second (10/13,3 seconds).

Results show that the tool produces a very high recall and precision. We were
not surprised by the high precision of the tool because the syntactic matches with
the DOM nodes ensures that the information retrieved is often very related to the
user’s query. But we were very excited with the recall being so high. Only in a few
cases the recall was bellow 75%. The cause was the occurrence of synonyms that
the tool is currently ignoring. Our next release will include a lexicon to solve this
problem. In ten seconds results are very good because the tool explores webpages
that are close to the initial webpage, and, in this search space, it is able to accurately
detect semantic relations between pages.

After these good results, we were wondering whether this tool could be also used
to retrieve information in a batch process (i.e., without a time limit, analyzing as

many pages as possible). In this context, we wanted to know what is the page
coverage of the tool. For this, we conducted a second experiment in which we
retrieved information from the domains allowing the tool to explore as much as
possible (i.e., restrictions 3 and 5 were ignored). Then, we collected the amount
of webpages analyzed by the tool and compared it with the amount of (reachable)
webpages in the whole domain. The later was computed with the Apache crawler
Nutch [22]: the whole domain was indexed starting from the initial webpage and the
amount of indexed documents was counted. The result was that the tool explored,
as an average, 30% of the webpages in the search space of all the domains in
Table 1. The cause is that the technique automatically discards many hyperlinks
and concentrates on the most relevant search space; this is due to restriction 4, that
prevents the tool to explore those webpages pointed by other webpages without
relevant nodes. Relaxing restriction 4 would allow the tool to explore the whole
search space, but precision would (probably) decrease significantly, because it would
retrieve information from different contexts.

All the information related to the experiments, including the (open) source code
of the tool and other material can be found at:

<HIDDEN (for the double-blind policy)>3

The official webpage of the tool at Firefox where the last stable release can
be downloaded and where several comments and feedback from real users can be
found at:

<HIDDEN (for the double-blind policy)>

3 Conclusions

This work introduces a novel information extraction technique based on syntax dis-
tances. The technique is able to work online and extract information from websites
without any pre-compilation, labeling, or indexing of the webpages to be analyzed.
Our experiments produced an F1 measure of 96%, demonstrating the usefulness
of the technique. The analysis of the experimental results revealed that synonyms
can cause a loss of recall. We are currently analyzing the impact of a lexicon.
Using synonyms and semantic relations will allow us to increase the precision of
our algorithms, but the efficiency of the technique will be affected. Empirical ex-
perimentation is needed to decide whether it is better to analyze many webpages
without the use of a lexicon or few webpages with a lexicon. A balance between
amount of information retrieved and the quality of this information must be stud-
ied. Our current implementation has been integrated in version 1.5 of the Firefox
<HIDDEN (for the double-blind policy)>. This tool is an official extension of the
Firefox web browser that has been tested and approved by Firefox developers ex-

3 Note for the reviewers: Due to the double-blind policy, we cannot provide the URL
of our system. In order to facilitate the reviewing process and the replicability of the
experiments, together with this submission we have included a version of our system.

perts area, and that has more than 11.000 downloads at the time of writing these
lines.

References

1. B. Dalvi, W. W. Cohen, and J. Callan. Websets: Extracting sets of entities from the web
using unsupervised information extraction. Technical report, Carnegie Mellon School of
computer Science, 2011.

2. N. Kushmerick, D. S. Weld, and R. Doorenbos. Wrapper induction for informa- tion
extraction. In Proceedings of the Fifteenth International Joint Conference on Artificial
Intelligence (IJCAI9T), 1997.

3. W. W. Cohen, M. Hurst, and L. S. Jensen. A flexible learning system for wrapping
tables and lists in html documents. In In Proceedings of the international World Wide
Web conference (WWWO02), pages 232241, 2002.

4. Pui Y. Lee, Siu Cheung Hui, and Alvis Cheuk M. Fong. Neural networks for web
content filtering. IEEE Intelligent Systems, 17(5):4857, 2002.

5. Anti-Porn Parental Controls Software. Porn Filtering. http://www.tueagles.com/anti-
porn/, March 2010.

6. Bo-Yeong Kang and Hong-Gee Kim. Web page filtering for domain ontology with the
context of concept. IEICE - Trans. Inf. Syst., E90-D:859862, May 2007.

7. M. Henzinger. The Past, Present and Future of Web Information Retrieval. Proceedings
of the 23th ACM Symposium on Principles of Database Systems, 2004.

8. W3C Consortium. Resource Description Framework (RDF). www.w3.org/RDF

9. W3C Consortium. Web Ontology Language (OWL). www.w3.org/2004/OWL

10. Microformats.org. The Official Microformats Site. http://microformats.org, 2009.

11. R. Khare and T. Celik. Microformats: a Pragmatic Path to the Semantic Web. Pro-
ceedings of the 15h International Conference on World Wide Web. Pages 865-866, 2006.

12. R. Khare. Microformats: The Next (Small) Thing on the Semantic Web? IEEE In-
ternet Computing, 10(1):68-75, 2006.

13. S. Gupta et al. Automating Content Extraction of HTML Documents. World Wide
Archive, vol.8, issue 2, pages 179-224, 2005.

14. P. Li, M. Liu, Y. Lin and Y. Lai. Accelerating Web Content Filtering by the Early
Decision Algorithm. IEICE Transactions on Information and Systems, vol. E91-D, pages
251-257, 2008.

15. W3C Consortium, Document Object Model (DOM). www.w3.org/DOM

16. R. Baeza-Yates and C. Castillo. Crawling the Infinite Web: Five levels are enough.
Lecture Notes in Computer Science, vol.3243, pages 156-167. Ed. Springer 2004.

17. A. Micarelli and F. Gasparetti. Adaptative Focused Crawling. The Adaptative Web,
pages 231-262, 2007.

18. Jakob Nielsen. Designing Web Usability: The Practice of Simplicity. New Riders Pub-
lishing, Indianapolis, ISBN 1-56205-810-X; 2010.

19. J. Zhang. Visualization for Information Retrieval. Springer, The Information Retrieval
Series. ISBN 3-54075-1475. December, 2007.

20. M.A.Hearst. TileBars: Visualization of Term Distribution Information. Proceedings
of the ACM SIGCHI Conference on Human Factors in Computing Systems, pages 59-66,
Denver, CO, May 1995.

21. T. Gottron. Evaluating Content Extraction on HTML Documents. Proceedings of the
2nd International Conference on Internet Technologies and Applications, pages 123-132,
2007.

22. Apache Foundation. The Apache crawler Nutch. http://nutch.apache.org, 2010.

