
Chapter 18
The COSMO Solution to the SWS Challenge
Mediation Problem Scenarios: An Evaluation

Camlon H. Asuncion, Marten van Sinderen, and Dick Quartel

Abstract During the course of our participation in the Semantic Web Services
(SWS) Challenge, we have shown how the concepts defined in the COnceptual
Services MOdeling (COSMO) framework for the modeling, reasoning and analysis
of services can be used to solve the Mediation Problem Scenarios of the Challenge.
Along with the service-oriented refinement and composition paradigm of COSMO,
our approach is also based on model-driven and goal-oriented principles where the
semantic integration of applications is designed at a layer of abstraction higher than
technology specifications. The objective of this paper is to evaluate our previous and
current research efforts towards advancing our solution to the semantic integration
of service-oriented applications, particularly, using the mediation problem scenarios
of the Challenge. We do this by presenting the state of the art of our solution
while reporting our experience with applying our solution to the scenarios including
lessons learned and identified research challenges.

18.1 Introduction

In today’s times, enterprises must adapt to a constant change in business demand
in order to survive and stay competitive. A collaboration with other enterprises in
order to add value to their products and/or services is therefore vital. Enterprise
collaboration is now possible with current advances in information technology.
However, achieving such collaboration effectively and efficiently is never an

C.H. Asuncion (�) � M. van Sinderen
Center for Telematics and Information Technology (CTIT), University of Twente,
P.O. Box 217, 7500, AE, Enschede, The Netherlands
e-mail: c.h.asuncion@utwente.nl; m.j.vansinderen@utwente.nl

D. Quartel
Novay, P.O. Box 589, 7500, AN, Enschede, The Netherlands
e-mail: dick.quartel@novay.nl

M.B. Blake et al. (eds.), Semantic Web Services, DOI 10.1007/978-3-642-28735-0 18,
© Springer-Verlag Berlin Heidelberg 2012

279



280 C.H. Asuncion et al.

easy task. For one, enterprises are faced with system interoperability problems as a
result of using legacy systems, oversupply (or the lack) of standards, heterogeneous
hardware and software platforms, etc. Integration solutions also need to be flexible
so that enterprises can continuously adapt to current and future changes and
demands from within and outside their business environment [27].

Our work with the SWS Challenge testifies to our continued interest in designing
a reusable and flexible interoperability solution. Our approach over the years has
evolved into combining goal-oriented, model-driven and service-oriented design
principles in designing interoperability solutions in the context of service medi-
ation. A goal-oriented approach keeps the solution problem-oriented rather than
technology-oriented: A change in the business requirements should not adversely
affect the underlying technology implementation. Model-driven techniques raise
the problem and solution analysis spaces to a level of abstraction that is technology
independent and more suited for business-level analysis. Service-oriented principles
allow integration solutions to be specified by means of service interactions; i.e.,
technical details can be hidden during integration design thus providing a high
degree of flexibility.

This chapter presents a reflection about our experience in solving the three
mediation problem scenarios of the SWS Challenge; namely, the Purchase Order
Mediation Scenarios (first and second), and the Payment Problem Scenario.1 The
scenarios require the design of a Mediator service that acts as an intermediary
software in reconciling message protocol and semantic data mismatches. Service
mediation is ideal when systems need to interoperate but have existing and often
difficult-to-change services. In particular, this paper reviews how our solution was
evaluated with respect to the requirements of the SWS Challenge. We also provide
an analysis of our solution in terms of its advantages and disadvantages, and the
future research work resulting from this evaluation.

The rest of the chapter is structured as follows: Sect. 18.2 provides an overview
the COSMO framework and its relation to the modeling, refinement and com-
position of services in the context of service mediation. Section 18.3 discusses
our solution’s the state of the art. Section 18.4 provides an account of lessons
learned through an evaluation of the solution and future research challenges. Finally,
Sect. 18.5 provides a summary of this chapter.

18.2 Approach: Service Mediation and the COSMO
Framework

Service mediation. We define service mediation as “to act as an intermediary
agent in reconciling mismatches between the services of two or more systems”[18].
We distinguish two types of mismatches: data mismatches which occur when

1http://swschallenge.org/wiki/index.php/Scenarios

http://swschallenge.org/wiki/index.php/Scenarios


18 The COSMO Solution to the SWS Challenge Mediation Problem Scenarios 281

Fig. 18.1 Service mediation
as service composition [20]

systems use different information models (vocabularies) to describe the messages
that are exchanged by their services; process mismatches which occur when systems
use services that define different messages or different orderings of message
exchanges. Service mediation aims at resolving these mismatches [13, 20].

The need for an intermediary, hereafter denoted as Mediator, is imposed by the
assumption that the mediated services can not be changed. The definition abstracts,
however, who will perform the Mediator role, e.g., some of the existing systems or
a ‘third’ system. We approach the design of the Mediator as a composition problem:
each service that is requested by some system has to be composed from one or
more services that are provided by the other systems and, possibly, by the same
system. Figure 18.1 illustrates this for the case of two systems. Mediator M offers
a mediation service that matches requested service S1 of system A by composing
services S3 and S4 that are offered by system B. The Mediator should provide such
a mediation service for each service that is requested by systems A and B [19].

We have developed an integration framework [19] that supports the design,
implementation and validation of mediation services. Our framework consists of the
following elements: the COSMO conceptual framework for modeling and reasoning
about services, languages to express service models using COSMO, techniques to
analyze the interoperability and conformance of service models, transformations
from service design to service implementation level, tools supporting the editing,
analysis and transformation of service models and a methodology for developing
mediation services.

The COSMO framework. COSMO defines concepts to support the modeling,
reasoning and analysis of services. In COSMO, we define a service as “the
establishment of some effect (or value) through the interaction between two or more
systems”. Figure 18.2 provides a graphical description of the COSMO framework.

We distinguish four service aspects, i.e., information, behavior, structure, and
quality, representing categories of service properties that need to be modeled.
The structure aspect is concerned with modeling the systems that provide or
use services, and their interconnection structure. The interconnection structure
comprises (amongst others) the interfaces at which services are offered. The
behavioral aspect is concerned with the activities that are performed by systems
as well as the relations among these activities. The information aspect is concerned
with modeling the information that is managed and exchanged by systems. The
quality aspect is concerned with modeling the non-functional characteristics of



282 C.H. Asuncion et al.

Fig. 18.2 The COSMO framework

services. These qualities often play an important role in the selection of services.
Examples of quality aspects are the “cost” associated with a service or the “response
time” of a service.

Besides service aspects, we distinguish three global abstraction levels at which
a service can be modeled; namely, goal, choreography and orchestration level.
A model at a goal level describes a service as a single interaction, where the
interaction result represents the effect of the service as a whole. A model at
choreography level refines the model at goal level by describing the service as a
set of multiple related, more concrete interactions. A model at orchestration level
describes the implementation of the service using a central coordinator that invokes
and adds value to one or more other services.

Finally, we distinguish different roles of the systems involved in a service: the
user, provider and integrated roles. The integrated role abstracts from the distinction
between a user and provider by considering interactions as joint actions, thereby
focusing on what the user and provider have in common.

Currently, our mediation solution mainly considers choreographies and orches-
trations from the behavior and information aspect, and by distinguishing between a
user and provider role. Furthermore, services are modeled close to the level at which
they are described using WSDL, while abstracting from technology details [18,23].

18.3 Solution: Applying the COSMO Framework

As previously mentioned, we have developed an integration framework that con-
sists of, among others, a methodology for developing mediation services. We
discuss in this section a brief overview of the previous and current methodologies,
hereafter termed version 1 and version 2, respectively. Separating the solutions



18 The COSMO Solution to the SWS Challenge Mediation Problem Scenarios 283

1 Abstract service PSMs to
service PIMs

2 Semantic enrichment of
the services PIMs

3

4

5

Design of the mediator
PIM

Validation of the mediator
PIM

Transformation to
mediator PSM

PIM

System A System BMediator

PIM

PSM

PIM

PSM PSM

1 15

2 2

3 3

4

Steps

Fig. 18.3 The COSMO methodology for service integration [12]

into versions permits a more focused and targeted evaluation. Version 1 of the
methodology largely draws from the service modeling, refinement, reasoning and
analysis concepts of COSMO combined with Model Driven Architecture (MDA)
principles. Version 2 seeks to extend the previous through a combination of goal-
oriented requirements engineering and business rules approach to specification of
the integration requirements. Version 1 of the methodology is used to solve the two
Purchase Order Mediation Scenarios (cf. [12, 16, 19, 20, 22]), and version 2 of the
methodology is used to solve the Payment Problem Scenario (cf. [1–3]).

18.3.1 Version 1

We have shown in [12, 16, 19, 20, 22] that in version 1 of the methodology (shown
in Fig. 18.3), we start by “lifting” service description described in the WSDLs
to a platform independent level which means, in MDA, transforming Platform
Specific Models (PSM) to Platform Independent Models (PIM). Doing so avoids
unnecessarily complicating the design space and thus provides more opportunity
for business domain experts to be involved in the design. Business domain experts
do not need to understand WSDLs to design the integration solution.

The second step involves semantically enriching PIM information which cannot
be automatically derived from the WSDL. This is done because WSDLs do not
inherently provide interaction protocols (i.e. how the sequence of message execution
is specified), therefore, this information is supplemented through some text docu-
mentation in natural language, stakeholder interviews, or even code inspection. This
enrichment is done so that the PIM is designed completely and precisely allowing
better reasoning and generation of the mediation solution later on.

The third step involves the actual design of the Mediator at the PIM level.
This usually involves splitting the integration solution in two areas which may be
done in parallel: generating the behavior and information models. The information
model unifies the differences in the data representations and interpretations between
systems. The behavior model composes requested and provided mismatching
service by relating their operations (i.e. matching the input of an operation call to
the output of another and their constraints). The Mediator PIM is currently specified
and designed using the Interaction System Design Language (ISDL) [17].



284 C.H. Asuncion et al.

1 Abstract service PSMs to 
service PIMs

2 Semantic enrichment of 
the services PIMs

3 Modelling goals and 
business rules as CIMs

4

5 Design of the mediator 
PIM

6 Validation of the mediator 
PIM

7 Transformation to 
mediator PSM

Transformation of 
business rules

PIM

System A System BMediator

PIM

CIM

PSM

PIM

PSM PSM

1 17

2 2

4

6

5 5

3

5

Steps

Fig. 18.4 The extended service mediation methodology [2]

The fourth step involves validation of the composed service Mediator using
techniques such as interoperability assessment and simulation of generated behavior
and information models [14, 15].

The fifth and sixth steps include transforming the designed PIM models of
Mediator to PSM by mapping the integration solution to a specific service com-
puting platform [5]. This is done by transforming the Mediator PIM in ISDL to the
Mediator PSM using Business Process Execution Language (BPEL).2

18.3.2 Version 2

As version 1 of the methodology is only limited to the PIM level, we have looked
into extending the methodology to the CIM (Computation-Independent Model)
level. This is done so that we can abstract further in separating the business
requirements from their technical implementation (i.e. essentially separating the
“why” from the “how”). We argue that doing so gives business domain experts
the opportunity to better understand, specify, and validate integration requirements
without having to deal with their technical implementations. To do this, we treat
requirements as goals and specifying them in some goal modeling language at the
CIM layer. In turn, these goals are refined into rules which are encapsulated as
services and incorporated into the Mediator service [1–3]. Figure 18.4 describes the
extended methodology.

This required changes to the third step of version 1 where goal models are used
to specify the requirements of the integration solution at the CIM layer. As Fig. 18.4
shows, the goal model depicts only the motivations of the integration (represented by
the single rounded square under the Mediator column). Although the collaborating
enterprises may have their own goals, we are only concerned with the goal of

2http://docs.oasisopen.org./wsbpel/2.0/wsbpel-v2.0.pdf

http://docs.oasisopen.org./wsbpel/2.0/wsbpel-v2.0.pdf


18 The COSMO Solution to the SWS Challenge Mediation Problem Scenarios 285

the integration. Currently, we model the goals using Architectural Modelling of
Requirements (ARMOR) [21] an extension of ArchiMate [10] that seeks to add
a goal-oriented requirements engineering aspect to architectural modeling.

The higher-level goals are then refined into lower-level goals which are then
mapped to existing services identified in Step 1. Furthermore, business rules that
constrain some aspect of the integration may also be derived from the lower-level
goals. If no existing service can realize or satisfy these business rules, they may have
to be transformed into an executable form, exposed as a service (as described in the
fourth step) and integrated into the behavior model of the Mediator.

The fourth step transforms the business rules derived from the goal model into
their equivalent rule specifications at the different layers of the MDA stack. At the
CIM layer, we use Attempto Controlled English (ACE) [7] to specify the business
rules in a near-natural controlled English language. These rules are then transformed
into an XML-based rule specification for added rule interoperability at the PIM
layer using Rule Markup Language (RuleML).3 Finally, at the PSM layer, we
transform these business rules into an executable form and expose them as a service
to constrain the behavior of the Mediator using Java Expert System Shell (Jess) [6].
The generated Jess rules are then wrapped into one batch file and deployed as a
Web service. This approach essentially separates the business rules of the Mediator
from the business logic they constrain [8]. The next step involves the design of the
integration specification at the PIM layer as described in Step 3 of version 1 (now,
Step 5). The rest of the steps as outlined in version 1 follows as usual thereafter.

18.4 Lessons Learned

This section discusses the results of our solution as evaluated against the require-
ments of the SWS Challenge. The SWS Challenge evaluation criteria mostly
focus on how the solution can cope with changes when new requirements are
introduced. This section describes how our solutions respond to such changes. We
also compare of COSMO with other approaches. Finally, we discuss the advantages
and disadvantages of the solution.

18.4.1 Evaluation Results

18.4.1.1 Solving the Purchase Order Scenarios with Version 1

This section describes the required changes to version 1 of the solution when
additional requirements are introduced from the second Purchase Order Scenario.

3http://ruleml.org/

http://ruleml.org/


286 C.H. Asuncion et al.

The second Purchase Order Scenario is essentially an extension of the first. In
particular, it requires the addition of Moon’s Product Management System (PMS)
to manage production capabilities requiring additional new services to be modeled
in the Mediator PIM. Further details can be found in [16] as to how the changes
to the solution have been carried out. Essentially, when changes are introduced at a
higher abstraction level, model reuse can be done. Already existing abstract models
need not be entirely redesigned or replaced. Furthermore, the PSM can simply
be regenerated based on the existing abstract PIM model (and in fact, to another
technology implementation of choice).

To illustrate, when the checkProductionCapability and confirm-
Order services from Moon’s PMS are added according to the requirements of the
second Purchase Order Scenario, the steps outlined in Sect. 18.3.1 can be repeated
minimally to accommodate such requirements: Step 1 requires the same abstraction
of WSDL data and behavior information to UML and ISDL, respectively. The other
PIMs of the first Purchase Order Scenario are simply reused. Step 2 requires no
further behavior enrichment is necessary since the new services can be invoked
independently of each other. However, new information mapping relations will have
to be defined. Step 3 requires an update on the behavior and information models
to reflect the changes in the requirements. This means that the new services will
also need to be represented as complementary operation calls. The services of the
first scenario are also reused. This only requires adding new relations between the
services of the first and second scenarios. Step 4 requires that the same techniques be
used to validate (e.g. simulation or conformance assessment) and analyze whether
the integration solution still allows the systems to interoperate. Furthermore, we can
also reuse the already existing information mappings of the first scenario to add
new mappings between the Mediator PIM and Moon’s PMS. Finally, Step 5 simply
requires the reuse of the transformations between the Mediator PIM in ISDL to its
an executable PMS in BPEL. This step is done automatically requiring only the
addition of the endpoints of the newly added services.

18.4.1.2 Solving the Payment Problem Scenario with Version 2

This section describes how version 2 of the solution complies when changes are
made in the authorization requirements of the Payment Problem Scenario. When
changes are required in the Mediator PIM in ISDL, the same adjustments to the
solution must be made as described previously in Sect. 18.4.1.1. However, version 2
is much more flexible when changes are confined within the requirements related
to payment authorization since such requirements are separated, encapsulated and
specified as business rules.

Version 2 of the solution was evaluated during the workshop against the different
requirements that the authorize operation of Blue’s Management Department
System may have which included the following: Deny any request for authorization
outright. Change the amounts that can be authorized by an authority. Return an
authority that does not follow the original sequence of authorities. For example,



18 The COSMO Solution to the SWS Challenge Mediation Problem Scenarios 287

the rule engine expects that Arnold Black is the next subsequent authority, but
when the authorize operation returns Peter Petrelli, the response is still
denied.

These changes in requirements did not trigger any change to the solution’s code
or data since they do not affect the interface constraints. However, the following
change in requirements can introduce a change in the solution artifacts as they affect
the logic behind the rules. The solution, however, is still flexible as the changes
are confined only within the rule specifications. This was not evaluated during the
workshop itself but through our own evaluation efforts: Adding other authorization
response codes. Deleting an authorization response code. Adding or removing an
authority from the list. Changing the original sequence of authorizations.

18.4.2 Comparison with Other Approaches

This section provides a comparison between other approaches that have solved the
mediation problems and COSMO. In particular, we compare COSMO with Web
Services Modelling Ontology (WSMO) [24], SWE-ET/WebML [4], and jABC [25].
This comparison is taken from a more detailed version in [11]. As a comparison
criteria, we make use of DESMET [9] – a comprehensive methodology for planning
and executing unbiased and reliable evaluation exercises. DESMET is a qualitative
form of evaluation allowing the comparison to be described using a set of features.
Feature analysis involves identifying requirements and mapping them to features
that a method (or tool) must have to support such requirements.

We focus on the qualitative aspect of the comparison by using four features: data
mediation, process mediation, correctness and suitability of design concepts. Data
mediation refers to how an exchange data is mapped and transformed from a source
schema into a target schema to solve the data mismatch. Process mediation refers
to how the interaction behavior is expressed to solve the behavior mismatch. Data
and process mismatches are evaluated against design and runtime aspects, as well.
Correctness refers to how correct and reliable the Mediator is with respect to the
requirements. Finally, suitability of design concepts mean how adequate the design
concepts are in characterizing the system being modeled. Figure 18.5 shows the
summary of the comparison between WSMO, WebML, jABC and COSMO.

WSMO uses the notion of goals, mediators, services and ontologies. The
Mediator, a core concept, performs an ontology-to-ontology mediation through
the use of adapters that provide mapping rules between ontologies. Goals specify
requested capability and requested interfaces. The goal-oriented paradigm allows
service discovery, selection of appropriate services, invocation of services, and
composition of services for a common task.

WebML uses Business Process Modelling Notation (BPMN) to first specify a
workflow at a high level of abstraction which is then transformed into hypertext
diagrams that represent a service invocation order – a design concept that is adapted
to model the mediation solution. Furthermore, in WebML, Adapter units that
transform XML messages into WebML’s internal ontology perform data mediation.



288 C.H. Asuncion et al.

Fig. 18.5 A comparison between COSMO, WSMO, WebML, and jABC (Taken from [11])

jABC uses basic service types, called SIBs (Service-Independent Building
Blocks), from WSDL service descriptions which are then used to design behavior
models, called SLGs (Service Logic Graphs), by composing the reusable SIBs into
(flow-)graph structures. The behavior models can then be analyzed early on for



18 The COSMO Solution to the SWS Challenge Mediation Problem Scenarios 289

correctness. Formal verification of the models allows simplification of debugging
complex processes, reducing development time, and increasing robustness. Data
mediation is achieved by mapping the messages structures from the WSDL into
hierarchical SIB parameters. Finally, the Mediator can be made executable through
model-to-code transformations.

COSMO uses ontologies as the underlying information model allowing analysis
as to whether the relations defined between classes and properties are violated at
the instance level or if a common interaction result can be established by matching
input and output services parameters. Based on the selected match, the signature
for the required data transformation can be obtained automatically. In particular,
the approach focuses in applying reasoning techniques to automate parts of the
mediator design process. The Mediator behavior is specified as a workflow explicitly
modeling interactions between services, operation calls and causality relations
between then.

18.4.3 Advantages and Disadvantages

Some of the salient advantages of the solution include the following:

Use of abstract models. In version 1, the use of model-driven and goal-oriented
techniques to design the integration solution at varying abstraction levels provides
flexibility to the solution. Here, the integration problem is solved at a higher level
of abstraction bringing the solution closer to the problem domain and less on
the solution technologies. Abstraction captures the semantics of the integration
problem and the proposed solution without having to deal with technology-specific
implementations yet, allowing decision makers to choose their own implementation
technology later. Abstraction also captures changes in the requirements; i.e., the
abstract solution specification is updated and a new solution implementation is
generated without adversely affecting the implementation. Should the underlying
implementation technology changes, the abstract requirements can still be reused.

Separation of business rules. In version 2, the solution allows the separation of
business rules from the business process they constrain. The more dynamic aspects
of the requirements are specified as business rules while keeping the more stable
parts in the business process. Flexibility is again achieved since the dynamic parts
of the business process are separated from the more stable ones so that a change
between the either of them does not affect the other adversely. Furthermore, this
separation allows business rules to be identified, changed, and managed better.
Combined with model-driven techniques, we specify rules at various abstraction
layers which again brings the integration solution closer to the problem domain.
For example, low-level goals when operationalized as a controlled language can
be validated better by business domain experts. Separating the business rules also
allows their migration. For example, should there be some activities in the business



290 C.H. Asuncion et al.

process that change often, these activities can be migrated and specified as rules.
Conversely, should there be rules that turn out not to change too often, they can then
be migrated as an activity in a business process.

Better involvement of non-technical business domain experts. As a result of the
abstracted view on the various specifications of the solution, non-technical business
domain experts can participate better in integration solution by describing the goals
of the integration, specifying and validating the business logic of the Mediator PIM,
deriving the semantic mapping between the information models, and verifying the
order of service invocations. This involvement is important in arriving at a more
complete, accurate, and reliable integration solution.

Better requirements specification. With the use of goal-oriented requirements
engineering, the solution provides better opportunity to specify the requirements
of the integration solution. This can lead to a more precise, accurate, and complete
specification of the requirements. Specifying the requirements in terms of goals also
allows early verification without waiting for the implementation. With goals and
business rules specifying the requirements at a higher abstraction, business domain
experts have a better way of validating the requirements in a more structured manner
as the models are intuitively understandable.
Some of the salient disadvantages of the solution include the following:

Manual modeling of integration solution. Although our solution uses informa-
tion models to specify entities and their mappings, we still require designers to
discover and represent these mappings from documentation, stakeholder interviews,
or code inspection. This is a manual and error-prone process which requires
understanding the meaning of all information models to be integrated. A large part
work in the manual design of the Mediator is currently done during the design of the
Mediator PIM in ISDL, data- and process-wise. Data-wise, matching the semantic
equivalence between message elements is done by drawing on domain knowledge
to determine the correct mapping which is then manually specified in a domain
specific language. Data elements belonging to different vocabularies are seman-
tically equivalent if they have similar meanings. Process-wise, the composition
and refinement of the Mediator service is also done manually by determining the
causal dependencies, including the mapping the sequence of invocations, between
interaction contributions. Automating the data and process matching remains a
challenging task since the knowledge to do this depends highly on the stakeholder
requirements and domain knowledge.

Rule transformations. Version 2 of the methodology is limited in terms of the
transformations between ACE, to RuleML and to Jess. Our prototype for trans-
forming RuleML to Jess is rather specific only to the Payment Problem Scenario.
Although we strive to create just one XSLT stylesheet to transform all the four
RuleML Authority rules, we have not explored the possibility of applying our
transformation to other possible rule structures. While doing the scenario, our
experience has been that once a different Discourse Representation Structure (DRS)



18 The COSMO Solution to the SWS Challenge Mediation Problem Scenarios 291

is generated by the ACE Parser Editor (APE)4 for a given rule stated in ACE,
necessary (and in fact time-consuming) changes need to be done to the XSLT
stylesheet as well. Research related to rule transformation is lacking.

Limited goal-modeling methodology. ARMOR does not currently provide a
standard “way of working” in the modeling of goals. More mature goal modeling
approaches (e.g. KAOS [26]), propose a set of heuristic steps which include among
others some best practice development techniques, and an extensive collection
of formally-driven goal refinement techniques. Furthermore, ARMOR should be
improved to allow translation of modeled business rules into a controlled language
such as ACE. At the moment, although ARMOR supports business rules as one of
its constructs, automatic translation is currently not supported. We have to manually
specify the business rules in ACE.

Limited tooling support. Although there is an available tool support in terms
of designing the goal models in ARMOR, specifying a valid ACE sentence using
APE, transforming from ACE to RuleML and Jess (albeit prototypical), and from
ISDL to BPEL, designing and simulating the Mediator PIM using Grizzle and
Sizzle, deploying services in BPEL, and finally specifying information model
mappings using Tizzle, an integrated environment where one can perform all the
design, implementation and validation activities in one place is still absent. Such an
integrated environment is important to reduce errors, development time, and provide
debugging and deployment facilities.

18.4.4 Conclusions and Future Work

Aside from addressing the disadvantages described earlier; i.e., providing a more
automated support for the integration design and implementation, improving the
semantic equivalence between rule transformations, and developing an integrated
tooling environment. Some future work include:

Support for non-functional properties. Our current work focuses solely on
functional properties of integration requirements. Non-functional properties play an
important role in the design and implementation of the integration solution. These
non-functional properties can include, for example, security, response time, and
economic value of provided and requested services.

Validation between CIM and PIM goal models. In version 2 of the methodology,
we still have to explore the validation between the designed goal models at the CIM
layer and their implementations in the PIM and PSM layers; i.e., we still need formal
ways to verify if whether the overall effect of the Mediator service, when executed,
does indeed satisfy the integration goal.

4http://attempto.ifi.uzh.ch/site/tools/

http://attempto.ifi.uzh.ch/site/tools/


292 C.H. Asuncion et al.

Use of other rule-based technologies. We shall be investigating the potential use
of other rule-based specification such as the Semantics of Business Vocabulary and
Business Rules (SBVR) as the controlled language to specify rules at the CIM layer.
Unlike ACE, SBVR is more expressive: rules can be specified in other languages
through a speech community. It also allows sharing of business vocabulary through
a semantic community. It also supports some formalisms such as modalities which
may add flexibility to specifying business rules. Other potential rule-based specifi-
cations include the W3C’s Rule Interchange Format (RIF) and OMG’s Production
Rule Representation (PRR).

18.5 Summary

This chapter reviews the state of the art and evaluation of the COSMO framework
in solving the Service Mediation Problems Scenarios of the SWS Challenge.
We have demonstrated the use of goal-oriented requirements specification, cou-
pled with model-driven techniques in the service-oriented design of integration
solutions.

Several advantages can be drawn: Using model-driven techniques allows require-
ments to be specified at varying levels of abstraction bringing the solution closer
to the problem domain. Separating business rules from the business process they
constrain permits flexibility as those parts of the solution that change more often are
isolated from those that do not. Several disadvantages also need to be addressed:
the design largely remains manually performed, albeit the availability of tools.
There is a need to develop better selection and transformations between rule-based
technologies. Finally, there is still a need to develop an integrated development
environment where technically and/or non-technically oriented designers can share
participate better in the integration design.

Our participation in the SWS Challenge has been beneficial in improving,
designing and validating the concepts behind the COSMO framework. Indeed,
the Challenge has been an appropriate venue for exchanging and appreciating
different solutions from other participants. Furthermore, this evaluation has allowed
us to do a self reflection especially in terms of dealing with the limitations of
our approaches and the future solutions at hand. Finally, a possible improve-
ment that can be to the evaluation process is towards generalizing the results
between various approaches. This could be possible since all approaches try to
solve the same problems; therefore, a criteria for generalization may well be
achievable.

Acknowledgements The authors are grateful to Rodrigo Mantovaneli Pessoa, Teduh Dirgahayu,
and Stanislav Pokraev whose earlier works have been used in this book chapter.



18 The COSMO Solution to the SWS Challenge Mediation Problem Scenarios 293

References

1. C.H. Asuncion, Goal-driven service mediation solution, Master’s thesis, University of Twente,
2009

2. C.H. Asuncion, M.E. Iacob, M.J. van Sinderen, Towards a flexible service integration through
separation of business rules, in 14th IEEE International Enterprise Computing Conference,
Vitoria, IEEE Computer Society, 2010

3. C.H. Asuncion, D.A.C. Quartel, S.V. Pokraev, M.E. Iacob, M.J. van Sinderen, Combining goal-
oriented and model-driven approaches to solve the payment problem scenario, in 8th Semantic
Web Service (SWS) Challenge Workshop, Eindhoven, 2010

4. M. Brambilla, I. Celino, S. Ceri, D. Cerizza, E. Della Valle, F. Facca, A software engineering
approach to design and development of semantic web service applications, in The Semantic
Web – ISWC 2006. LNCS, vol. 4273 (Springer, Berlin/Heidelberg, 2006), pp. 172–186

5. T. Dirgahayu, D.A.C. Quartel, M.J. van Sinderen, Development of transformations from
business process models to implementations by Reuse, Technical report, CTIT, University of
Twente, Enschede, 2007

6. E. Friedman, Jess in Action: Rule-Based Systems in Java (Manning Publications Co.,
Greenwich, 2003)

7. N.E. Fuchs, U. Schwertel, R. Schwitter, Attempto controlled english – not just another logic
specification language, in 8th International Workshop on Logic Programming Synthesis and
Transformation (Springer London, 1990), pp. 1–20

8. M.E. Iacob, D. Rothengatter, J. van Hillegersberg, A health-care application of goal-driven
software design. Appl. Med. Inform. 24(1–2), 12–33 (2009)

9. B. Kitchenham, S. Linkman, D. Law, DESMET: a methodology for evaluating software
engineering methods and tools. J. Comput. Control Eng. 8(3), 120–126 (1997)

10. M. Lankhorst, Enterprise Architecture at Work: Modelling, Communication and Analysis
(Springer, Berlin, 2009)

11. R. Mantovaneli Pessoa, D.A.C. Quartel, M.J. van Sinderen, A comparison of data and process
mediation approaches, in 2nd Workshop on Enterprise Systems and Technology, I-WEST, vol.
1, ed. by J. Cordeiro, M.J. Sinderen van, B.B. Shishkov (INSTICC Press, Portugal, 2008), pp.
48–63

12. S.V. Pokraev, Model-driven semantic integration of service-oriented applications, PhD thesis,
University of Twente, Enschede, 2009

13. S. Pokraev, M. Reichert, M.W.A. Steen, R.J. Wieringa, Semantic and pragmatic interoper-
ability: a model for understanding, in Open Interop Workshop on Enterprise Modelling and
Ontologies for Interoperability, CEUR-WS, vol. 160, Porto, 2005, pp. 1–5

14. S.V. Pokraev et al., A method for formal verification of service interoperability, in IEEE
International Conference on Web Services, Chicago, Sep 2006, IEEE Computer Society, 2006,
pp. 895–900

15. S.V. Pokraev, D.A.C. Quartel, M.W.A. Steen, M.U. Reichert, Requirements and method for
assessment of service interoperability, in 4th International Conference on Service Oriented
Computing, Chicago. LNCS, Springer, 2006, pp. 1–14

16. D.A.C. Quartel, M.J. Van Sinderen, Modelling and analysing interoperability in service
compositions using COSMO. Enterp. Inf. Syst. 2(4), 347–366 (2008)

17. D. Quartel, L.F. Pires, M. van Sinderen, On architectural support for behaviour refinement in
distributed systems design. J. Integr. Des. Process Sci. 6(1), 1–30 (2002)

18. D.A.C. Quartel, M.W.A. Steen, S.V. Pokraev, M.J. van Sinderen, COSMO: a conceptual
framework for service modelling and refinement, Inf. Syst. Front. 9(2–3), 225–244 (2007)

19. D.A.C. Quartel, S.V. Pokraev, R. Mantovaneli Pessoa, M.J. van Sinderen, Model-driven
development of a mediation service, in 12th International IEEE Enterprise Computing
Conference, Munich, IEEE Computer Society, 2008, pp. 117–126

20. D. Quartel, S. Pokraev, T. Dirgahayu, R.M. Pessoa, M. van Sinderen, Model-driven service
integration using the COSMO framework, in 7th Workshops Semantic Web Services Challenge,
Stanford Logic Group Technical Reports, Karlsruhe, 2008, pp. 77–88



294 C.H. Asuncion et al.

21. D.A.C. Quartel, W. Engelsman, H. Jonkers, M.J. van Sinderen, A goal-oriented requirements
modelling language for enterprise architecture, in 13th IEEE International Enterprise Comput-
ing Conference, Auckland, IEEE Computer Society, 2009, pp. 3–13

22. D.A.C. Quartel et al., Model-driven development of mediation for business services using
COSMO. Enterp. Inf. Syst. 3(3), 319–345 (2009)

23. D. Quartel, T. Dirgahayu, M. Van Sinderen, Model-driven design, simulation and implemen-
tation of service compositions in COSMO. Int. J. Bus. Process Integr. Manag. 4(1), 18–34
(2009)

24. D. Roman et al., Web service modeling ontology. Appl. Ontol. 1, 77–106 (2005)
25. B. Steffen, T. Margaria, R. Nagel, S. Jörges, C. Kubczak, Model-driven development with

the jABC, in Hardware and Software, Verification and Testing. LNCS, vol. 4383 (Springer,
Berlin/Heidelberg, 2007), pp. 92–108

26. A. van Lamsweerde, Goal-oriented requirements engineering: a guided tour, in 5th IEEE
International Symposium on Requirements Engineering, Toronto, 2001, pp. 249–262

27. M.J. van Sinderen, Challenges and solutions in enterprise computing. Enterp. Inf. Syst. 2(4),
341–346 (2008)


	Chapter 18: The COSMO Solution to the SWS Challenge Mediation Problem Scenarios: An Evaluation
	18.1 Introduction
	18.2 Approach: Service Mediation and the COSMO Framework
	18.3 Solution: Applying the COSMO Framework
	18.3.1 Version 1
	18.3.2 Version 2

	18.4 Lessons Learned
	18.4.1 Evaluation Results
	18.4.1.1 Solving the Purchase Order Scenarios with Version 1
	18.4.1.2 Solving the Payment Problem Scenario with Version 2

	18.4.2 Comparison with Other Approaches
	18.4.3 Advantages and Disadvantages
	18.4.4 Conclusions and Future Work

	18.5 Summary
	References


