
Modelling Cryptographic Keys in Dynamic
Epistemic Logic with DEMO

Hans van Ditmarsch, Jan van Eijck, Ignacio Hernández-Ant´on, Floor Sietsma,
Sunil Simon, and Fernando Soler-Toscano

Abstract It is far from obvious to find logical counterparts to crytographic protocol
primitives. In logic, a common assumption is that agents areperfectly rational and
have no computational limitations. This creates a dilemma.If one merely abstracts
from computational aspects, protocols become trivial and the difference between
tractable and intractable computation, surely an essential feature of protocols, dis-
appears. This way, the protocol gets lost. On the other hand,if one ‘merely’ (scare
quotes indeed) models agents with computational limitations (or otherwise bounded
rationality), very obvious aspects of reasoning become problematic. That way, the
logic gets lost. We present a novel way out of this dilemma. Wepropose an abstract
logical architecture wherein public and private, or symmetric keys, and their roles in
crytographic protocols, all have formal counterparts. Instead of having encryption
and decryption done by a principal, the agent sending or receiving messages, we
introduce additional, virtual, agents to model that, so that one-way-function aspects
of computation can be modelled as constraints on the communication between prin-
cipals and these virtual counterparts. In this modelling itdoes not affect essential
protocol features if agents are computationally unlimited. We have implemented the
proposal in a dynamic epistemic model checker called DEMO.

1 Introduction

The security of many protocols depends on the computationallimitations of the
agents involved and on the intractability of inverses for quite tractable computations.
A standard example is public/private key encryption, e.g., the security of the RSA
protocol [6] is (also) based on the complexity of integer factorization. It is easy to
multiply primes. It is hard to factorize a number into its prime constituents.

H. van Ditmarsch, I. Hernández, F. Soler, University of Sevilla, Spain. Email:{hvd,iha,
fsoler }@us.es . J. van Eijck, F. Sietsma, S. Simon, CWI, Amsterdam, Netherlands. Email:
{Jan.van.Eijck,S.E.Simon,F.Sietsma }@cwi.nl .

A goal in information theoretic security is to find abstract notions for crypto-
graphic primitives such as keys and one-way-functions, andthere have been several
proposals for logical modelling of such primitives [5, 4, 1]. In such approaches it
is problematic that logical agents know all logical consequences of their informa-
tion. If they know two primes, they know their product; and ifthey know a number,
they know if it is the product of primes and what these primes are. There are no
one-way-functions in logic.

We present a novel proposal to tackle this problem in the setting of dynamic epis-
temic logic [2], where the knowledge of the agents involved in protocol execution,
including higher-order features (what agents know about each other), is represented
in relational structures called multi-agent Kripke models, and change of knowledge
is represented by various structural transformations. In this setting agents are also
computationally unlimited. However, by means of introducing virtual coding and
virtual decoding agents we can simulate computational bounds as communicative
restrictions between the authentic agents participating in protocols (the principals)
and these virtual agents.

Given a senderA (Alice) and receiverB (Bob), we introduce a coding agentC
(Coder) and a decoding agentD (Decoder). The eavesdropperE (Eve) listens in to
public communications. For the specific setting of asymmetric public/private key
encryption, every agent can communicate in a certain way with the coding agent,
who represents the public key, but only one,B, will be able to communicate with
the decoding agent, who represents the private key. We can think of the coding
and decoding agents as follows. We split each agent into two parts, itsknowledge
base, where we will evaluate the agent’s knowledge, and itscomputational resources
(cryptographic functions). The first is considered the principal in protocol execution
and the latter the virtual agent counterpart. Both can be assumed to be computa-
tionally unlimited (this is not a requirement but the assumption to the contrary is
what makeslogical modelling of security so hard and counterintuitive). The coding
is performed byC and not byA; the decoding is performed byD and not byB (and
both in a way to which no other agent is privy). What the non-(de)coding agents
get to know about the outcome of that process is determined bycommunication, not
by computation. On the other hand, the coding and decoding agent only perform
that virtual role. They are not privy to the standard communicative aspects of the
protocol.

Next, we present the protocol, illustrated by a two-bit secure message passing.
Then, an adaptation to symmetric key encryption, and an application, RSA.

2 Public/private-key encryption with coding and decoding agents

• A: Alice (sender)
• B: Bob (receiver)
• C: Coding agent (Bob’s public key)
• D: Decoding agent (Bob’s private key)
• E: Eve (eavesdropper)

We distinguish five agents. The coding and decoding agents are thecryptographic
agents and can occur in various protocols. In public-private key encryption the cod-
ing agentC stands for Bob’s public key and the decoding agentD represents Bob’s
private key. The agentsA, B andE are theprincipals of the protocol (whereE may
not always be that passive). Principals are proactive agents while cryptographic
agentsC andD are reactive. We model the knowledge and ignorance of all these
agents, represented as uncertainty between the valuationsof variables (bits).

The protocol consists of an initialization phase and an execution phase. Infor-
mation is a bitstring and uncertainty about information is represented as alternative
bitstrings. A message can be anindividual message (to one agent, a.k.a. private –
but that would be confusing in our setting with private keys), a group message (to
more than one and less than five agents), and apublic message (to all five agents,
a.k.a. a public announcement). In the initialization phasebackground knowledge is
incorporated, e.g., that the encoding agentC knows the encryption function. The
execution phase consists of the encryption and decryption;its interest to the reader
consists of its communicative aspects and properties. As a running example Alice
will communicate two bits to Bob.

Clear Encoded
Number Formula Number Formula

0 ¬p1∧¬p0 1 ¬q1∧ q0
1 ¬p1∧ p0 3 q1∧ q0
2 p1∧¬p0 0 ¬q1∧¬q0
3 p1∧ p0 2 q1∧¬q0

Table 1 Correspondence between clear and encoded messages

With two bits there are four possible secrets. They are shownin Table 1, and also
the encoded message that corresponds to each secret. We usepi to representclear
messages andqi for encoded messages. We also useri atoms for clear messages.
So for example message number 2 is not justp1∧¬p0 but p1∧¬p0∧ r1∧¬r0. We
duplicate eachpi with ri. This is a technical trick to make that the cryptographic
agentsC andD have different information from the other agents.

In the initialization phase of the protocol (a preprocessing of the relational model
to represent the knowledge at the start of protocol execution), A is given a secret
value of p0 and p1, say 2; and principalsA, B and E will be made aware that,
for eachi ∈ {0,1}, pi and ri are equivalent (or, in general, that eachpi is either
equivalent tori or to¬ri), but notC andD.

What C andD know is shown in Figure 1. AgentC knows the encoding that
corresponds to each clear message. AgentD has the information to decode every
encoded message. The trick of using bothpi and ri is that the information ofC
andD is different, as required for a one-way function. Principals A, B andE will
receive agroup message that pi ↔ ri for i ∈ {0,1}. But C andD don’t know the
correspondence between these two sets of atoms. We can now make a difference
between public and private keys.

0: ¬p1∧¬p0

1: ¬p1∧ p0

2: p1∧¬p0

3: p1∧ p0

0:¬q1∧¬q0

1:¬q1∧ q0

2: q1∧¬q0

3: q1∧ q0

0:¬r1∧¬r0

1:¬r1∧ r0

2: r1∧¬r0

3: r1∧ r0

Clear (withpi) Encoded Clear (withri)
Kc Kd

Fig. 1 Encryption and decryption of two bits of information

We now get to the execution phase of the protocol. AgentC is Bob’s public key.
Any of the principalsA, B or E can send it a private message consisting of values for
p0 andp1. Consequently, encoding agentC, who is the only agent knowing the cor-
respondence of these values to values forq0 andq1, makes a public announcement
of these values (apublic message). AgentD is Bob’s private key. It reacts when a
public announcement has been made aboutq0 andq1 by way of informingonly B
(and not just anyone — this is theprivate key part) with a private message aboutr0

andr1. The workflow forA to communicateB the secret 2 is shown in Figure 2.

A C D B
individual m. public m. individual m.

p1∧¬p0 ¬q1∧¬q0 r1∧¬r0

Fig. 2 Alice communicates Bob the number 2

3 DEMO implementation

The protocol is implemented in the model checker DEMO [3]. Wehave employed
DEMO Light1. First, we declare a module with imported libraries (omitted). As we
are going to encrypt two bits, there are four possible secrets. We define a general
functionatom that returns the representation of a given number (in[0..3]) with
a given propositional letter (P, or Q). It is the same representation as in Table 1. We
also define the logical operator of equivalenceequiv .

atom :: (Num t, Num t1) => (t1 -> Prp) -> t -> Form
atom p 0 = Conj[(Neg (Prp (p 1))), (Neg (Prp (p 0)))]
atom p 1 = Conj[(Neg (Prp (p 1))), (Prp (p 0))]
atom p 2 = Conj[(Prp (p 1)), (Neg (Prp (p 0)))]
atom p 3 = Conj[(Prp (p 1)), (Prp (p 0))]
equiv :: Form -> Form -> Form
equiv a b = Conj[(impl a b), (impl b a)]

• Step 0: Initialization

1 Seehttp://homepages.cwi.nl/˜jve/software/demolight0/

We explain the code:relation p r contains the relation between thePs and
Rs that is given to the principalsA, B andE. The listsecret pairs contains all
pairs with a secret and its encoding, as in Table 1. Thecoding formula contains
the information that is given to the coding agent, anddecoding formula to the
decoding one, as in Figure 1.

relation_p_r :: Form
relation_p_r =

Conj[(equiv (atom P i) (atom R i)) | i<-[0..3]]
secret_pairs :: [(Integer, Integer)]
secret_pairs = [(0,1),(1,3),(2,0),(3,2)]
coding_formula :: Form
coding_formula =

Conj[(impl (atom P (fst i)) (atom Q (snd i))) |
i<-secret_pairs]

decoding_formula :: Form
decoding_formula =

Conj[(impl (atom Q (snd i)) (atom R (fst i))) |
i<-secret_pairs]

The model of so-called blissful ignorance (common knowledge of ignorance of
the values of all variables) is updated by giving each agent the proper information.

e1 :: EpistM Integer
e1 = initM [a,b,c,d,e] [P 0, P 1, Q 0, Q 1, R 0, R 1]
iniM :: EpistM Integer
iniM = upds e1

[-- Principals are informed about pi<->ri
groupM [a,b,e] relation_p_r,
-- agent C is informed about the coding function
message c coding_formula,
-- agent D is informed about the decoding function
message d decoding_formula]

Next, executing the protocol. Alice sends Bob the message number 2, by en-
crypting it with Bob’s public key. As Figure 1 shows, the encoding of 2 is 0. The
following formulas represent the chosen secretsec , the versions with onlyPs and
Rs and the encrypted messagesecE .

sec = Conj[secP, secR] -- secret to be communicated
secP = atom P 2 -- secret with Ps
secR = atom R 2 -- secret with Rs
secE = atom Q 0 -- encoded secret

To demonstrate the execution of the protocol, we show the updates in the epis-
temic model and the relevant formulas to be checked. Note that we do not announce
formulas with the knowlege operatorsK. Announcing (in a public or individual mes-
sage)Kaα gives more information than announcing justα, it also authenticates the
informationα as coming from agenta. Although authentication is crucial in cryp-
tography, here we just send non-authenticated messages andleave authentication for
future work.

• Step 1: Alice chooses the secret message

We create thes1 model by sending Alice the secret information. This way we rep-
resent the action of choosing number 2. We check that after this action Alice knows
the secret information.

s1 :: EpistM Integer
s1 = upd iniM (message a sec)
c1 = isTrue s1 (K a sec)

• Step 2: Alice calls the coding function

Alice sends the secret message to the coding function in order to encrypt it. We
check that the coding agent knows the encoding message.

s2 :: EpistM Integer
s2 = upd s1 (message c secP)
c2 = isTrue s2 (K c secE)

• Step 3: The encoding of the message is publicly announced

The coding agent announces the encrypted message. We check that the decoding
agent knows theR-part of the secret.

s3 :: EpistM Integer
s3 = upd s2 (public secE)
c3 = isTrue s3 (K d secR)

• Step 4: Bob calls the decoding function to learn the secret

We represent this step with a private message to Bob with theR-part of the secret.
We have three conditions to check:

1. Bob knows the secret.
2. The ignorance of eavesdropperE is common knowledge to the principals.
3. The secret is not common knowledge toA andB.

s4 :: EpistM Integer
s4 = upd s3 (message b secR)
c4 = maybe_And[c41,c42,c43]
c41 = isTrue s4 (K b sec)
c42 = isTrue s4 (CK [a,b,e] (Neg (K e sec)))
c43 = isTrue s4 (Neg (CK [a,b] sec))

Given uncertainty about communication channels, it is usual in cryptographic
protocols that common knowledge is never obtained. For example, agentA doesn’t
know thatB knows the secret, asA is not sure thatB has the key and has used it to
decode the message.

4 Simplifications and an Application: RSA encryption

We have modelled public/private key encryption with a coding and decoding agent.
That way we simulated one-way functions. In that sort of encryption there is an
owner of the key pair,B, who has access to both keys. That means that we can
do away with agentD and giveB the information of the key, modelled as agent
C. This then also removes the need to duplicateP atoms asR atoms. We can then
just useP atoms for secrets andQatoms for encoded messages. If we remove both
cryptographic agents and give the same key toA andB, we can model symmetric
encryption.

As an application we now sketch how to model (for a simple numerical example)
the implementation of RSA encryption in dynamic epistemic logic, with DEMO,
using the simplified approach with only a coding agentC, as above.

Choose primes 3 and 11, so the modulo of the keys isn = 3 · 11 = 33 and
ϕ(n) = (3− 1)(11− 1) = 20. Possible key pairs are given by pairs(i, j) of inte-
gers in[2,ϕ(n)− 1] such thati jmodϕ(n) = 1. We choose the pair(13,17). Then
the public key(i,n) is (13,33), and the private(j,n) is (17,33). With a public key
(i,n), the encoding of a messagem, for 0≤ m < n, is given bymi

modn. It is de-
coded by(mi) j

modn = m. For example, with our public key(13,33) we encode
the message 15 as 1513

mod33= 9. It can be decoded with the private key(17,33):
917

mod33= 15.
We now show part of the DEMO code. The listsecret pairs contains all

possible secret messages and their encoded versions.

secret_pairs :: [(Int, Int)]
secret_pairs = [(i, iˆ13 ‘mod‘ 33) | i<-[0..32]]

Clear messages are represented bypm atoms and encoded messages byqm, for
0≤ m < n. We are not using the binary representation as in the previous section.

The ignorance modele1 contains all possible combinations of thePs andQs,
now just oneP and oneQ in each state. It is updated with the same action as in the
previous section, to obtaininiM .

e1 :: EpistM Integer
e1 =

let stats = -- Possible pairs of Ps and Qs
zip [0..] [(i, j) | i<-[0..32], j<-[0..32]] in Mo

[0..((33ˆ2)-1)] -- States
[a,b,c,e] -- Agents
([P i | i<-[0..32]]++[Q i | i<-[0..32]]) -- Props.
[(w,[P (fromIntegral a0), Q (fromIntegral a1)]) |

(w, (a0, a1)) <- stats] -- Content of each state
[(x,i,j) | x<-[a,b,c,e], -- Accessibility relations

i<-[0..((33ˆ2)-1)], j<-[0..((33ˆ2)-1)]]
[0..((33ˆ2)-1)] -- All states are initially pointed

iniM :: EpistM Integer
iniM = upds e1

[message c coding_formula,message b decoding_formula]

We then execute and check the protocol. Alice sends Bob as message the number
15, encrypting it with Bob’s public key. The encryption of 15is 9. The chosen secret
sec and the encrypted versionsecE are therefore:

sec = Prop (P 15) -- secret (with P)
secE = Prop (Q 9) -- encoded secret (with Q)

The same security conditions as in the previous section are then checked.

5 Conclusions

As counterparts of a sender and a receiver we proposed a virtual coding and decod-
ing agent, to simulate encryption and decryption. Computational restrictions (one-
way-functions) can be modelled as constraints on the communication between the
principals and these virtual counterparts. This agent-based architecture allows us
to verify not only knowledge properties of the principals, but also their ignorance.
These are surprising but highly desirable results in a logical setting, where all agents
are computationally unlimited.

When using our approach to check protocols with large keys wewill have to
face the problem of representing epistemic models without the need of creating one
state for each possible pair of coding/decoding function, as our DEMO implemen-
tation (which uses Kripke models) requires. It will increase the efficiency of our
approach.2

References

1. Dechesne, F., Wang, Y.: To know or not to know: epistemic approaches to security protocol
verification. Synthese177, 51–76 (2010)

2. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic,Synthese Library,
vol. 337. Springer (2007)

3. van Eijck, J.: DEMO — a demo of epistemic modelling. In: J. van Benthem, D. Gabbay,
B. Löwe (eds.) Interactive Logic — Proceedings of the 7th Augustus de Morgan Workshop, pp.
305–363. Amsterdam University Press (2007). Texts in Logicand Games 1

4. Pucella, R., Halpern, J.: Modeling adversaries in a logicfor security protocol analysis (2002).
In Formal Aspects of Security, 2002 (FASec ’02).

5. Ramanujam, R., Suresh, S.P.: Information based reasoning about security protocols. Electr.
Notes Theor. Comput. Sci.55(1)(2001)

6. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key
cryptosystems. Commun. ACM21(2), 120–126 (1978)

2 We thank the PAAMS reviewers for their comments.

