Modelling Cryptographic Keys in Dynamic
Epistemic Logic with DEMO

Hans van Ditmarsch, Jan van Eijck, Ignacio HernandeamAJfloor Sietsma,
Sunil Simon, and Fernando Soler-Toscano

Abstract It is far from obvious to find logical counterparts to crytaghic protocol
primitives. In logic, a common assumption is that agentgaiéectly rational and
have no computational limitations. This creates a dilemifnane merely abstracts
from computational aspects, protocols become trivial dreddifference between
tractable and intractable computation, surely an esddatiture of protocols, dis-
appears. This way, the protocol gets lost. On the other hhode ‘merely’ (scare
quotes indeed) models agents with computational limiteti@r otherwise bounded
rationality), very obvious aspects of reasoning becomeélproatic. That way, the
logic gets lost. We present a novel way out of this dilemmapvépose an abstract
logical architecture wherein public and private, or syminddeys, and their roles in
crytographic protocols, all have formal counterpartstdad of having encryption
and decryption done by a principal, the agent sending oriviegemessages, we
introduce additional, virtual, agents to model that, sa timee-way-function aspects
of computation can be modelled as constraints on the cormuation between prin-
cipals and these virtual counterparts. In this modellindoies not affect essential
protocol features if agents are computationally unlimii&d have implemented the
proposal in a dynamic epistemic model checker called DEMO.

1 Introduction

The security of many protocols depends on the computatioméhtions of the
agents involved and on the intractability of inverses fatejtractable computations.
A standard example is public/private key encryption, etge,gecurity of the RSA
protocol [6] is (also) based on the complexity of integetdaization. It is easy to
multiply primes. It is hard to factorize a number into itsrpéd constituents.

H. van Ditmarsch, |. Hernandez, F. Soler, University of iB&v Spain. Email: {hvd,iha,
fsoler }@us.es. J. van Eijck, F. Sietsma, S. Simon, CWI, Amsterdam, Ne#mei$. Email:
{Jan.van.Eijck,S.E.Simon,F.Sietsma t@cwinl .

A goal in information theoretic security is to find abstractions for crypto-
graphic primitives such as keys and one-way-functionstheck have been several
proposals for logical modelling of such primitives [5, 4, I} such approaches it
is problematic that logical agents know all logical consatpes of their informa-
tion. If they know two primes, they know their product; andhiéy know a number,
they know if it is the product of primes and what these primes &here are no
one-way-functions in logic.

We present a novel proposal to tackle this problem in thangsdtf dynamic epis-
temic logic [2], where the knowledge of the agents involvegiotocol execution,
including higher-order features (what agents know aboch ether), is represented
in relational structures called multi-agent Kripke modalsd change of knowledge
is represented by various structural transformationshih getting agents are also
computationally unlimited. However, by means of introdwgvirtual coding and
virtual decoding agents we can simulate computational ds@s communicative
restrictions between the authentic agents participatiqétocols (the principals)
and these virtual agents.

Given a sendeA (Alice) and receiveB (Bob), we introduce a coding age@t
(Coder) and a decoding agebt(Decoder). The eavesdropferEve) listens in to
public communications. For the specific setting of asymimgtublic/private key
encryption, every agent can communicate in a certain waly thié coding agent,
who represents the public key, but only oie will be able to communicate with
the decoding agent, who represents the private key. We ¢ak ¢ the coding
and decoding agents as follows. We split each agent into twts pitsknowledge
base, where we will evaluate the agent’s knowledge, anddtsputational resources
(cryptographic functions). The first is considered the @pal in protocol execution
and the latter the virtual agent counterpart. Both can benasd to be computa-
tionally unlimited (this is not a requirement but the asstiorpto the contrary is
what makesogical modelling of security so hard and counterintuitive). Thdiog
is performed byC and not byA; the decoding is performed iy and not byB (and
both in a way to which no other agent is privy). What the noe}¢dding agents
get to know about the outcome of that process is determinedimynunication, not
by computation. On the other hand, the coding and decodirgtaanly perform
that virtual role. They are not privy to the standard commative aspects of the
protocol.

Next, we present the protocol, illustrated by a two-bit seauessage passing.
Then, an adaptation to symmetric key encryption, and aricgijan, RSA.

2 Public/private-key encryption with coding and decoding gents

e A: Alice (sender)

B: Bob (receiver)

C: Coding agent (Bob's public key)

D: Decoding agent (Bob’s private key)
E: Eve (eavesdropper)

We distinguish five agents. The coding and decoding ageatthacryptographic
agentsand can occur in various protocols. In public-private kegrgption the cod-
ing agentC stands for Bob’s public key and the decoding agemepresents Bob'’s
private key. The agents, B andE are theprincipals of the protocol (wher& may
not always be that passive). Principals are proactive agshtle cryptographic
agentsC andD are reactive. We model the knowledge and ignorance of adlethe
agents, represented as uncertainty between the valuafigasables (bits).

The protocol consists of an initialization phase and an etea phase. Infor-
mation is a bitstring and uncertainty about informatiorgigresented as alternative
bitstrings. A message can be amdividual message (to one agent, a.k.a. private —
but that would be confusing in our setting with private keysjroup message (to
more than one and less than five agents), apdbiic message (to all five agents,
a.k.a. a public announcement). In the initialization phHaesekground knowledge is
incorporated, e.g., that the encoding agéritnows the encryption function. The
execution phase consists of the encryption and decrygt®mterest to the reader
consists of its communicative aspects and properties. Amaimg example Alice
will communicate two bits to Bob.

Clear Encoded
Number Formula Number Formula
0 -pA-pp 1 —thA Qo
1 -pA po 3 A Qo
2 PpiA=po 0 —GhA—Go
3 A po 2 Q1A—0Go
Table 1 Correspondence between clear and encoded messages

With two bits there are four possible secrets. They are shiowable 1, and also
the encoded message that corresponds to each secret. \fletasepresentlear
messages andq; for encoded messages. We also use; atoms for clear messages.
So for example message number 2 is not st —pp but py A —po Ary A—rg. We
duplicate eaclp; with r;. This is a technical trick to make that the cryptographic
agentsC andD have different information from the other agents.

In the initialization phase of the protocol (a preprocegsifithe relational model
to represent the knowledge at the start of protocol exegytdis given a secret
value of pp and p;, say 2; and principal#, B and E will be made aware that,
for eachi € {0,1}, p andr; are equivalent (or, in general, that egghis either
equivalent ta or to —r;), but notC andD.

WhatC and D know is shown in Figure 1. Ager@ knows the encoding that
corresponds to each clear message. Adgehas the information to decode every
encoded message. The trick of using bpthandr; is that the information oC
andD is different, as required for a one-way function. Princip&| B and E will
receive agroup message that p; <> r; for i € {0,1}. But C andD don’t know the
correspondence between these two sets of atoms. We can nksvandifference
between public and private keys.

Clear (withpi) Encoded Clear (withr;)

0: =p1 A—po Ke 0: -01 A Qo Ka 0: —ry A—rg
1:=p1A po 1.1 A Qo 1:=riA 1o
2: prA—po 2. 1 Ao 2. riA-rg
3. p1A po 3 ;1A Qo 3. A ro

Fig. 1 Encryption and decryption of two bits of information

We now get to the execution phase of the protocol. AgeistBob’s public key.
Any of the principaldA, B or E can send it a private message consisting of values for
po andp;. Consequently, encoding agéhtwho is the only agent knowing the cor-
respondence of these values to valuegjfpandq;, makes a public announcement
of these values (public message). AgentD is Bob's private key. It reacts when a
public announcement has been made algw@#ndq; by way of informingonly B
(and not just anyone — this is thpeivate key part) with a private message abogit
andr;. The workflow forA to communicaté the secret 2 is shown in Figure 2.

individual m. public m. individual m.
A C D B
P1A—Po —01 A 0o riA—ro

Fig. 2 Alice communicates Bob the number 2

3 DEMO implementation

The protocol is implemented in the model checker DEMO [3]. Wdlge employed
DEMO Lightl. First, we declare a module with imported libraries (onaijteAs we
are going to encrypt two bits, there are four possible seck¥e define a general
functionatom that returns the representation of a given numbefQir8]) with

a given propositional lettei(or Q). It is the same representation as in Table 1. We
also define the logical operator of equivaleecgliv .

atom : (Num t, Num t1) => (t1 -> Prp) -> t -> Form
atom p 0 = Conj[(Neg (Prp (p 1))), (Neg (Prp (p 0)))]
atom p 1 = Conj[(Neg (Prp (p 1))), (Prp (p 0))]

atom p 2 = Conj[(Prp (p 1)), (Neg (Prp (p 0))]

atom p 3 = Conj[(Prp (p 1)), (Prp (p 0))]

equiv @ Form -> Form -> Form

equiv a b = Conj[(impl a b), (impl b a)]

e Step O: Initialization

1 Seehttp://homepages.cwi.nl/jve/software/demolight0/

We explain the codeelation _p._r contains the relation between tRs and
Rs that is given to the principals, B andE. The listsecret _pairs contains all
pairs with a secret and its encoding, as in Table 1.dddng _formula contains
the information that is given to the coding agent, dedoding _formula to the
decoding one, as in Figure 1.

relation_p_r :: Form
relation_p r =
Conj[(equiv (atom P i) (atom R i)) | i<-[0..3]]
secret_pairs :: [(Integer, Integer)]
secret_pairs = [(0,1),(1,3),(2,0),(3,2)]
coding_formula :: Form
coding_formula =
Conj[(impl (atom P (fst i)) (atom Q (snd i))) |
i<-secret_pairs]
decoding_formula :: Form
decoding_formula =
Conj[(impl (atom Q (snd i)) (atom R (fst i))) |
i<-secret_pairs]

The model of so-called blissful ignorance (common knowtedgignorance of
the values of all variables) is updated by giving each agenptoper information.

el :: EpistM Integer
el = initM [abcde] [P0, P 1, Q0 Q 1, RO, R 1]
iniM :: EpistM Integer
iniM = upds el
[- Principals are informed about pi<->ri
groupM [a,b,e] relation_p_r,
-- agent C is informed about the coding function
message ¢ coding_formula,
-- agent D is informed about the decoding function
message d decoding_formula]

Next, executing the protocol. Alice sends Bob the messagebeu 2, by en-
crypting it with Bob’s public key. As Figure 1 shows, the edot of 2 is 0. The
following formulas represent the chosen seskst , the versions with onlys and
Rs and the encrypted messapeE .

sec = Conj[secP, secR] -- secret to be communicated
secP = atom P 2 -- secret with Ps
secR = atom R 2 -- secret with Rs
secE = atom Q 0O -- encoded secret

To demonstrate the execution of the protocol, we show thatgsdn the epis-
temic model and the relevant formulas to be checked. Notewdao not announce
formulas with the knowlege operatd¢s Announcing (in a public or individual mes-
sage)Kaa gives more information than announcing jastit also authenticates the
informationa as coming from agera. Although authentication is crucial in cryp-

tography, here we just send non-authenticated messagésaaeduthentication for
future work.

e Step 1: Alice chooses the secret message

We create the1l model by sending Alice the secret information. This way we re
resent the action of choosing number 2. We check that afteattion Alice knows
the secret information.

sl :: EpistM Integer
sl upd iniM (message a sec)
cl isTrue s1 (K a sec)

e Step 2: Alice calls the coding function

Alice sends the secret message to the coding function inr eodencrypt it. We
check that the coding agent knows the encoding message.

s2 : EpistM Integer
s2 upd sl (message c secP)
c2 isTrue s2 (K ¢ secE)

e Step 3: The encoding of the message is publicly announced

The coding agent announces the encrypted message. We tiat¢ke decoding
agent knows th&-part of the secret.

s3 :: EpistM Integer
s3 upd s2 (public secE)
c3 isTrue s3 (K d secR)

e Step 4: Bob calls the decoding function to learn the secret

We represent this step with a private message to Bob witfRtpart of the secret.
We have three conditions to check:

1. Bob knows the secret.
2. The ignorance of eavesdropieis common knowledge to the principals.
3. The secret is not common knowledgedtandB.

s4 :: EpistM Integer
s4 = upd s3 (message b secR)

c4 = maybe_And[c41,c42,c43]

c4l = isTrue s4 (K b sec)

c42 = isTrue s4 (CK [a,b,e] (Neg (K e sec)))
c43 = isTrue s4 (Neg (CK [a,b] sec))

Given uncertainty about communication channels, it is bsuaryptographic
protocols that common knowledge is never obtained. For pl@mgen®A doesn’t
know thatB knows the secret, ais not sure thaB has the key and has used it to
decode the message.

4 Simplifications and an Application: RSA encryption

We have modelled public/private key encryption with a cgdimd decoding agent.
That way we simulated one-way functions. In that sort of gpiion there is an
owner of the key pairB, who has access to both keys. That means that we can
do away with agenD and giveB the information of the key, modelled as agent
C. This then also removes the need to dupliddtoms aRk atoms. We can then
just useP atoms for secrets anf@datoms for encoded messages. If we remove both
cryptographic agents and give the same ke tandB, we can model symmetric
encryption.

As an application we now sketch how to model (for a simple micatexample)
the implementation of RSA encryption in dynamic epistenoigi¢, with DEMO,
using the simplified approach with only a coding agénas above.

Choose primes 3 and 11, so the modulo of the keys 4s3-11 = 33 and
¢(n) = (3—1)(11— 1) = 20. Possible key pairs are given by palisj) of inte-
gers in[2,¢(n) — 1] such thati jmod¢ (n) = 1. We choose the pajl13,17). Then
the public key(i,n) is (13,33), and the privaté,n) is (17,33). With a public key
(i,n), the encoding of a message for 0 < m < n, is given bym'modn. It is de-
coded by(m')/modn = m. For example, with our public key13,33) we encode
the message 15 as mod33 = 9. It can be decoded with the private k7, 33):

9'mod33=15.
We now show part of the DEMO code. The |stcret _pairs contains all
possible secret messages and their encoded versions.

secret_pairs :: [(Int, Int)]
secret_pairs = [(i, i"13 ‘mod‘ 33) | i<-[0..32]]

Clear messages are representegfyatoms and encoded messagegyRy for
0 < m< n. We are not using the binary representation as in the pregection.

The ignorance moded1 contains all possible combinations of tRe andQs,
now just oneP and oneQin each state. It is updated with the same action as in the
previous section, to obtainiM .

el :: EpistM Integer

el =
let stats = -- Possible pairs of Ps and Qs
zip [0..] [@, j) | i<-[0..32], j<-[0..32]] in Mo
[0..((3372)-1)] -- States
[a,b,c,e] -- Agents

(P i | i<-[0..32]]++[Q i | i<-[0..32]]) -- Props.
[(w,[P (fromIntegral a0), Q (fromintegral al)]) |
(w, (a0, al)) <- stats] -- Content of each state

[(x,,)) | x<-[a,b,c,e], -- Accessibility relations
i<-[0..((33°2)-1)], j<-[0..((3372)-1)I]
[0..((3372)-1)] -- All states are initially pointed

iniM :: EpistM Integer
iniM = upds el
[message c coding_formula,message b decoding_formula]

We then execute and check the protocol. Alice sends Bob asageshe number
15, encrypting it with Bob’s public key. The encryption of 3. The chosen secret
sec and the encrypted versi@ecE are therefore:

sec = Prop (P 15) -- secret (with P)
secE = Prop (Q 9) -- encoded secret (with Q)

The same security conditions as in the previous sectiorharechecked.

5 Conclusions

As counterparts of a sender and a receiver we proposed ahidding and decod-
ing agent, to simulate encryption and decryption. Compaat restrictions (one-
way-functions) can be modelled as constraints on the conuation between the
principals and these virtual counterparts. This agenétaschitecture allows us
to verify not only knowledge properties of the principalst khlso their ignorance.
These are surprising but highly desirable results in a klgietting, where all agents
are computationally unlimited.

When using our approach to check protocols with large keysvillehave to
face the problem of representing epistemic models withwitheed of creating one
state for each possible pair of coding/decoding functisma DEMO implemen-
tation (which uses Kripke models) requires. It will increake efficiency of our
approactt.

References

1. Dechesne, F., Wang, Y.: To know or not to know: epistemjaragches to security protocol
verification. Synthes&77, 51-76 (2010)

2. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Episic Logic,Synthese Library,
vol. 337. Springer (2007)

3. van Eijck, J.. DEMO — a demo of epistemic modelling. In: an\Benthem, D. Gabbay,
B. Lowe (eds.) Interactive Logic — Proceedings of the 7tlyAstus de Morgan Workshop, pp.
305-363. Amsterdam University Press (2007). Texts in Lagid Games 1

4. Pucella, R., Halpern, J.: Modeling adversaries in a lé@isecurity protocol analysis (2002).
In Formal Aspects of Security, 2002 (FASec '02).

5. Ramanujam, R., Suresh, S.P.: Information based regg@tiout security protocols. Electr.
Notes Theor. Comput. S&5(1) (2001)

6. Rivest, R.L., Shamir, A., Adleman, L.: A method for obiagpdigital signatures and public-key
cryptosystems. Commun. ACRIL(2), 120-126 (1978)

2 \We thank the PAAMS reviewers for their comments.

