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Variability Compensation using NAP for
Unconstrained Face Recognition

Pedro Tome, Ruben Vera-Rodriguez, Julian Fierrez and Javier Ortega-García

Abstract The variability presented in unconstrained environments represents one
of the open challenges in automated face recognition systems. Several techniques
have been proposed in the literature to cope with this problem, most of them tai-
lored to compensate one specific source of variability, e.g., illumination or pose. In
this paper we present a general variability compensation scheme based on the Nui-
sance Attribute Projection (NAP) that can be applied to compensate for any kind
of variability factors that affects the face recognition performance. Our technique
reduces the intra-class variability by finding a low dimensional variability subspace.
This approach is assessed on a database from the NIST still face recognition chal-
lenge "The Good, the Bad, and the Ugly" (GBU). The results achieved using our
implementation of a state-of-the-art system based on sparse representation are im-
proved significantly by incorporating our variability compensation technique. These
results are also compared to the GBU challenge results, highlighting the benefits of
adequate variability compensation schemes in these kind of uncontrolled environ-
ments.

1 Introduction

Most biometric technologies are able to provide satisfactory matching performance
in controlled situations where the user is cooperative and data acquisition conditions
and environment can be controlled. However, in many applications, biometric data
is acquired in less than ideal conditions, such as uncontrolled and unconstrained
face recognition scenarios [5]. The low performance of biometrics technologies in
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2 Pedro Tome et al.

these relatively uncontrolled situations has limited their deployment, therefore, a
significant improvement in recognition performance in less controlled situations is
one of the main challenge facing biometric technologies.

In the particular case of face recognition in uncontrolled scenarios there are nu-
merous sources of variation, which can be known or unknown, affecting the perfor-
mance. Hence, there is a need for developing methods capable of identifying and
compensating/removing these variability sources in order to guarantee the robust-
ness of the system in unconstrained and uncontrolled real environments.

In the present paper, a variability compensation approach based on Nuisance
Attribute Projection (NAP) is presented for face recognition. In this field, to our
knowledge only V. Štruc et al. in [13] have analysed such a normalization technique
for illumination invariant face recognition based on NAP, which removes the illumi-
nation induced artifacts in two controlled scenarios. In our case, the proposed NAP
compensation approach is used not only to compensate illumination variations, but
also other variability factors. In particular, we study the uncontrolled scenario pro-
vided by the NIST - GBU still face recognition challenge, which consists of three
partitions called the Good, the Bad, and the Ugly [6].

The performance of the proposed variability compensation scheme is evaluated
on a state-of-the-art system based on sparse representation [14]. Results achieved
show that variability compensation using NAP in combination with this system is a
very interesting approach in uncontrolled face recognition environments.

The paper is structured as follows. Sect. 2 briefly describes the variability fac-
tors found in the GBU challenge. Sect. 3 describes the variability compensation
approach using NAP. Sect. 3 describes the recognition system based on sparse repre-
sentation. Sect. 5 presents the experimental protocol followed and the performance
evaluation. Sect. 6 presents the experimental results obtained, and finally conclu-
sions are drawn in Sect. 7.

2 Variability in Unconstrained Environments

Face recognition in unconstrained environments is a very challenging problem
which has attracted increasing attention from the research community.

Some the recent studies in this field are the Multiple Biometric Grand Challenge
(MBGC 2009) [7] and the Face Recognition Vendor Test (FRVT 2006) [8], whose
focus of research is shifting to recognizing faces taken under less constrained condi-
tions. As a result of the evolution of this NIST challenges a new competition called
GBU has been defined, which consists of three partitions called the Good, the Bad,
and the Ugly. The Good partition consists of pairs of face images of the same person
that are easy to match (based on FRVT 2006 top performers); the Bad partition con-
tains pairs of face images of a person that have average matching difficulty; and the
Ugly partition concentrates on difficult to match face pairs. Fig. 1 shows an exam-
ple of these three partitions and their respective histograms of match and non-match
scores.
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a) b) c)

Fig. 1 GBU image samples and histograms of match and non-match distributions for the a) Good,
b) the Bad, and c) the Ugly partitions with the relative frequency of similarity scores in horizontal
axes. Extracted from [6].

Various techniques have been presented in the literature to compensate the vari-
ability present in these kind of scenarios [11, 12, 4, 15]. However, most of these
techniques are focused on an isolated variability source, e.g., illumination, pose
compensation, etc.

In the present paper, a variability compensation approach is presented, using the
Nuisance Attribute Projection (NAP) to remove the variability induced in uncon-
trolled face recognition systems.
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3 NAP for Variability Compensation

3.1 Nuisance Attribute Projection (NAP)

Nuisance Attribute Projection (NAP) is a powerful technique traditionally used in
the field of speaker recognition for compensation of channel effects regardless of its
source [10, 9], which are assumed to lie in a low dimensional variability subspace.
In others fields like biometrics at a distance and unconstrained environments, the
variability sources are mostly unknown and mixed, hence, we seek to understand to
what extent variability compensation techniques as NAP are useful.

Consider a dataset X of n image vectors of size N pixels, where X ∈ ℜn×N . The
NAP technique tries to remove any unwanted distortion in the images as follows:

X ′ = P(X −M), (1)

where X ′ denotes the new data whose component in the variability subspace is re-
moved, M denotes a matrix containing in each of its columns the global mean of the
images in X and P stands for the n×n projection matrix:

P = I −VV T = I −
d

∑
i=1

vivT
i . (2)

Here, I denotes the n× n identity matrix, vi represents the ith direction of the vari-
ability subspace base V of size d defined by NAP.

Suppose a data matrix X has nC j sample images from the jth class, whose labels
of the classes are C1,C2, ...,Cr, then, for each of these images we can write:

xC j,k = x′C j,k
+ ek, (3)

where C j represents the class label of the image, k denotes the index of the image in
the jth class, x′C j,k

stands the variability-free part of xC j,k , and ek represents the vector

encoding the variability effects for the kth image of the jth class. Fig. 2a), describes
graphically the procedure.

Assuming the unwanted variability effects inside each class coincide and they
can be modelled by a Gaussian distribution, then, the base of the variability sub-
space defined by the matrix V , can be estimated from the first d eigenvectors (NAP
directions vi(i = 1,2, ...,d)) of the matrix Σt :

Σt =
r

∑
j=1

nCj

∑
k=1

(XC j,k −µC j)(XC j,k −µC j)
T , (4)

where the mean value of each of the r classes µC j ( j = 1,2, ...,r) represents a
variability-free estimate of an image from the j class. This is typically done by
using Principal Component Analysis (PCA). Fig. 2b) shows the eigenvalues of the
associated eigenvectors for NAP estimated variability subspace.
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Fig. 2 a) Schematic illustration of the NAP technique in a 2-dimensional space. Firstly, every
distribution is centred in the origin by removing the global mean of each class µC j . The input data-
and variability-dependent sample vector (x) is pair up into two components (x′) and (e). (e) stands
for the component in the variability subspace, and (x′) is the resulting compensated sample vector.
The vector v represents the first eigenvector of the estimated variability subspace. b) Eigenvalues
of three target datasets: Good, Bad, Ugly.

3.2 Removing Variability Effects

In the case considered in this paper, we have separated the channels YCbCr of the
images and the NAP compensation scheme has been applied over the luminance (Y)
component of images.

Consider an input data set in X from which we estimate the NAP directions cor-
responding to the unknown variability in the unconstrained scenarios. In the GBU
database considered only four factors are controlled: subject aging, pose, change
in camera, and variations among faces. Other factors, such as: illumination, in-
door/outdoor, distance, ... are considered as unwanted variability factors. These fac-
tors do not always affect in the same level, making the problem of their compensa-
tion even more challenging. Any input image x is compensated with respect to the
estimated variability effects by projecting away a number of directions in the NAP
subspace. Fig. 2a) illustrates graphically the procedure. The compensation proce-
dure is described by:

x′ = P(x−µ) = (I −VV T )(x−µ), (5)

where µ represents the global mean of the images in X , I denotes the identity matrix
and V stands for the NAP compensation matrix. To effectively remove the effects
of annoying variability, the data matrix X must be constructed in such a way as
to include the highest available number of images captured in different variability
conditions.
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4 Face Verification System - SRC

A system based on recent works in sparse representation for classification purposes
(SRC) [2, 14] has been adopted as face verification core.

Essentially, this kind of systems span a face subspace using all known train-
ing face images, and for an unknown face image they try to reconstruct the image
sparsely.

The motivation of this model is that given sufficient training samples of each
person, any new test sample for this same person will approximately lie in the linear
span of the training samples associated with the person.

Once a new test image y is acquired, it can be represented using samples from the
database by the linear equation y = Ax0, where matrix A defines our training data
and x0 represents the sparse solution.

According to the assumption that images from a given subject are sufficient to
represent themselves, the solution x0 in the linear equation y = Ax0 should be very
sparse. This can be approximately recovered by solving the following noise-aware
l1-minimization problem:

x̂1 = argminx‖x‖1 sub ject to ‖Ax− y‖2 ≤ ε. (6)

To recognize a probe test image, the SRC algorithm identifies the class by com-
puting the minimum among the residuals reconstructed per class. The robust perfor-
mance of the SRC algorithm has been proved experimentally on face datasets with
noises and occlusions.

The solution of equation (6), was approximated, in an efficient way, via basis
pursuit using linear programming by considering L1-norm instead of L0-norm. To
this end, the available package provided in [1] was used.

5 Experimental Protocol

The experiments are carried out on the The Good, the Bad, and the Ugly (GBU)
database [6] included in the last still face recognition challenge from NIST - Na-
tional Institute of Standard and Technology. The GBU challenge problem consists
of three partitions with are called the Good (face pairs easy to match), the Bad (face
pairs with average matching difficult), and the Ugly (face pairs difficult to match).
Each partition consists of two sets of images, a target set and a query set, each of
which contains 1,085 images from 437 distinct subjects. The distribution of image
counts per person in the target and query sets are 117 subjects with 1 image; 122
subjects with 2 images; 68 subjects with 3 images; and 130 subjects with 4 images.

For the experiments in this paper, we use the segmented datasets provided by
MBGC - Multiple Biometric Grand Challenge [7] compressed to 20KB with 120
pixels between the centers of the eyes. The faces were normalized following the
ISO norm described in [3], from a size of 408×528 to size 168×192 pixels.
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The baseline system consists on the application of the SRC algorithm with a sin-
gle preprocessing stage to normalize the face illumination by histogram equalization
(HQ) over the band of luminance (Y) from YCbCr color space. In the experiments
described here, we have used as features the downsampled images, whose good
performance combined with SRC is demonstrated in [14]. In our case the down-
sampling ratio is 1/8 obtaining feature vectors of 504 dimensions.

The performance of the evaluated system is computed not using the same ex-
perimental protocol described by the GBU challenge. We also use a one-to-one
matching, but using prior information of the target sets in order to compensate the
variability.

In the experimental protocol we consider two experiments. In the first experi-
ment, a NAP compensation matrix is generated for each partition of the database
using only the target images. In the second experiment, a global NAP compensa-
tion matrix NAPgbu is generated for the three partitions together using all the target
images. In both cases we evaluate the performance of our recognition system using
two different NAP dimensions of variability (d), low compensation d = 5 and high
compensation, d = 125.

6 Results

The experiments have two different goals, namely: i) study the benefits of vari-
ability compensation schemes in uncontrolled environments, and ii) show the effi-
ciency of NAP-based variability compensation when considering multiple uncon-
trolled sources of variability.

Our baseline algorithm based on sparse representation achieved better results
than those obtained from the LRPCA-face GBU baseline algorithm [6] at a false
accept rate (FAR = 0.001). On the Good partition, the base verification rate (VR)
is 0.88, for the Bad partition, the VR in 0.29, and the VR in Ugly is 0.06. Table 1
shows the comparative results.

6.1 Experiment 1: NAP over each partition

The performance of the NAP compensation scheme is first analysed scenario by
scenario. Results achieved for the Good partition are represented in Fig. 3a. In this
case the compensation of few dimensions (d = 5) is much better than using many
dimensions (d = 125). This is due to the fact that data are more or less clear of
unwanted variability so the compensation of many dimensions leads to a discrim-
inative information loss. As can be seen in Fig. 2b), the eigenvalues of the Good
partition decrease faster than for the other partitions, meaning that the variability is
concentrated in the first dimensions.
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a) Good b) Bad
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Fig. 3 ROC curves obtained for the three partitions: a) Good partition, b) Bad partition and c)
Ugly partition. The verification rate for the LRPCA-face GBU baseline [6], our baseline system
and the best NAP solution are highlighted at a FAR = 0.001.

Results achieved for the Bad partition are shown in Fig. 3b. In this case the vari-
ability increases, implying that there are more corrupted dimensions with variability.
Therefore, in this case better results are obtained for the case of compensating more
dimensions (d = 125) with NAP working at a FAR = 0.001. On the other hand, the
EER of the system is better for the case of compensating less dimensions (d = 5),
but in this case working at a much more permissive application FAR.

Results achieved for the Ugly scenario are shown in Fig. 3c. In this case, as in the
Bad one, better results are obtained when (d = 125) dimensions are compensated.
Here, the verification rate (VR) of the baseline system versus the compensated sys-
tem with d = 125 improves from 0.06 to 0.14 at a FAR = 0.001. Table 1 summarises
all the results achieved for this experiment.
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LRPCA Best Relative
Partition face [6] Baseline NAP Comp. Improvement (%)

Good 0.64 0.88 0.94 6.8
Bad 0.24 0.29 0.51 91.6
Ugly 0.07 0.06 0.14 133.3

Table 1 Results achieved in Experiment 1. Performance of the LRPCA-face [6] baseline system
versus our baseline and best NAP compensation results, being respectively d = 5,125,125 for
Good, Bad and Ugly partitions. Also, relative improvement in the verification rate reached by NAP
compensation are highlighted at a FAR = 0.001.

6.2 Experiment 2: NAP over the whole partitions

As mentioned before, in this experiment we generate a global NAP compensation
matrix (NAPgbu) combining the three target datasets (Good, Bad, and Ugly) in or-
der to demonstrate the potential of the proposed NAP approach on unconstrained
environments. The main results are summarized in Table 2.

The difference between low and high compensation (d = 5 and d = 125 ) respec-
tively, have the same behaviour than experiment 1 over the three datasets, as we can
see in Fig. 3.

NAP compensation removes the intra-class variability by projecting away mul-
tiple dimensions of a low variability subspace. For this reason a subspace calcu-
lated using all possible target data is likely to improve the effect of the variability
compensation. This is proved by observing who the NAPgbu compensation scheme
achieves the best results over all scenarios (see Figs. 3 and 4). Note that in the Good
partition both proposed schemes produce the same results due to the low influence
of the variability source in this case.

As can be seen in Fig. 4 the Bad partition achieves the highest absolute improve-
ment of VR going from 0.29 to 0.55 (at FAR = 0.001). This is possibly due to the
fact that images contain a large amount of variability but still is possible to achieve
reasonably good results with compensation.

LRPCA Best Relative
Partition face [6] Baseline NAPgbu Comp. Improvement (%)

Good 0.64 0.88 0.95 7.9
Bad 0.24 0.29 0.55 89.6
Ugly 0.07 0.06 0.18 200

Table 2 Results achieved in Experiment 2. Performance of the LRPCA-face [6] baseline system
versus our baseline and best NAPgbu compensation results, being respectively d = 5,125,125
for Good, Bad and Ugly partitions. Also, relative improvement in the verification rate reached by
NAPgbu compensation are highlighted at a FAR = 0.001.
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Fig. 4 ROC for the best NAP solutions vs. baseline systems on the three GBU partitions: Good,
Bad and ugly. LRPCA-face GBU baseline [6] is also highlighted at a FAR = 0.001.

Finally, in the Ugly partition, the balance of discriminative information against
noise is very low. Fig. 4 shows how the VR improves from 0.06 to 0.18 at FAR
= 0.001, reaching better results than those presented in [6]. As can be seen in Ta-
ble 2, the relative improvement of the verification rate in the Ugly partition in this
experiment is higher (200%) than in others partitions.

7 Conclusions

In the present work, a variability compensation approach based on Nuisance At-
tribute Projection has been presented and used to improve a state-of-the-art face
recognition system based on sparse representation. The efficiency of this approach
has been studied considering the three different challenge partitions designed by
NIST for the still face recognition challenge “The Good, the Bad, and the Ugly”
(GBU). In all cases, the baseline system performance is higher than the one achieved
in the baseline algorithms from GBU challenge [6]. Furthermore, when the pro-
posed compensation variability approach based on NAP is applied, the system per-
formance improves significantly.
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The application of NAP compensation using the whole partitions in a combined
form is also analysed, highlighting the benefits of adequate variability compensation
schemes in these kind of uncontrolled environments.
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