
S. Omatu et al. (Eds.): Distributed Computing and Artificial Intelligence, AISC 151, pp. 229–239.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

PANGEA – Platform for Automatic
coNstruction of orGanizations of intElligent
Agents

Carolina Zato, Gabriel Villarrubia, Alejandro Sánchez, Ignasi Barri,
Edgar Rubión, Alicia Fernández, Carlos Rebate, José A. Cabo, Téresa Álamos,
Jesús Sanz, Joaquín Seco, Javier Bajo, and Juan M. Corchado*

Abstract. This article presents PANGEA, an agent platform to develop open
multiagent systems, specifically those including organizational aspects such as virtual
agent organizations. The platform allows the integral management of organizations
and offers tools to the end user. Additionally, it includes a communication protocol
based on the IRC standard, which facilitates implementation and remains robust even
with a large number of connections. The introduction of a CommunicationAgent and
a Sniffer make it possible to offer web services for the distributed control of
interaction.

Keywords: multiagent platform, Web services, virtual organizations, IRC
protocol.

*Carolina Zato ⋅ Gabriel Villarrubia ⋅ Juan M. Corchado
Departamento Informática y Automática, Universidad de Salamanca, Salamanca, Spain
e-mail: {carol_zato,gvg,corchado}@usal.es

Alejandro Sánchez ⋅ Javier Bajo
Universidad Pontificia de Salamanca, Salamanca, Spain
e-mail: {asanchezyu,jbajope}@usal.es

Ignasi Barri ⋅ Edgar Rubión ⋅ Alicia Fernández ⋅ Carlos Rebate
Indra, Spain
e-mail: {ibarriv,erubion,afernandezde,crebate}@indra.es

José A. Cabo ⋅ Téresa Álamos
Wellness Telecom, Spain
e-mail: {talamos,jacabo}@wtelecom.es

Jesús Sanz ⋅ Joaquín Seco
CSA, Spain
e-mail: {jesus.sanz,joaquin.seco}@csa.es

230 C. Zato et al.

1 Introduction

One of the current lines of investigation for multiagent systems aims to create an
increasingly open and dynamic system. This involves adding new capabilities
such as adaption, reorganization, learning, coordination, etc. Virtual agent
Organizations (VOs) [1][2] emerged in response to this idea; they include a set of
agents with roles and norms that determine their behavior, and represent a place
where these new capabilities will assume a critical role. Possible organizational
topologies and aspects such as communication and coordination mechanisms
determine in large part the flexibility, openness and dynamic nature that a
multiagent system can offer.

There are many different platforms available for creating multiagent systems
that facilitate the work of the agent; however those that allow for the creation of
VOs number much fewer, and it is difficult to find one single platform containing
all of the requirements for a VO.

The remainder of the paper is structured as follows: the next section introduces
some existing platforms. Section 3 presents an overview of the main
characteristics of the platform. Finally, section 4 explains a case study and
presents some results.

2 Related Works

All platforms for creating multiagent systems existing to date should be studied
according to two principal categories: those that simply support the creation and
interaction of agents, and those that permit the creation of virtual organizations
with such key concepts as norms and roles. We will first present those platforms
that do not incorporate organizational aspects. The FIPA-OS [4] agent platform
was created as a direct derivative of the FIPA [3] standard. Another agent platform
is the April Agent Platform (AAP) [5] which, unlike the majority of platforms
using Java, implements the April language [6]; its development and technological
support has been discontinued. One of the strong points of this platform is that it
provides services to facilitate the development and deployment of agents on the
Internet and is also compliant with Web Services and Semantic Web standards.

One of the most recent platforms still in development is JASON [7][8]. Its
greatest contribution is the easy implementation of BDI agents [10]. The Java-
developed platform contains AgentSpeak in its nucleus, an interpreter agent that
acts as a language extension [9]. The platform offers two operation modes: one
that runs all agents in the same machine, and another which allows distribution
using SACI (Simple Agent Communication Infrastructure) [11], which in turn
uses KQML [24] language instead of RIPA-ACL [23]. In practice, the most used
platform for developing multiagent systems in real case studies is JADF (Java
Agent Development Framework) [12]. The JADE platform focuses on
implementing the FIPA reference model, providing the required communication
infrastructure and platform services such as agent management, and a set of
development and debugging tools. Jadex [13] is a software framework for the

PANGEA 231

creation of goal-oriented agents following the belief-desire-intention (BDI) model.
The Jadex project facilitates a smooth transition from developing conventional
JADE agents to employing the mentalistic concepts of Jadex agents.

With the exception of JASON, these platforms follow the FIPA standard, can
create agents (some with different models), and manage communication among
agents and services. With VOs, however, it is necessary to consider the normative
and organizational aspects that the platform itself must provide. MadKit [20] was
one of the first platforms to consider basic organizational aspects. The platform
architecture is rooted in the AGR (agent-group-role) model [14]; however, while it
can handle the concept of role, it does not consider a role a class entity, and the
behavior associated with the role is directly implemented in the agent who
assumes it. Roles are strongly linked to agent architectures. This approach harms
the reusability and modularity of organizations [15].

Another pioneering platform with regards to structural aspects was Jack Teams
[16]. JACK Teams is an extension of JACK Intelligent Agents [17], which
provides a team-oriented modelling framework. Both are extensions of the Java
programming language; the implemented source code is first compiled into regular
Java code before being executed.

S-MOISE+ is an organizational middleware that follows the MOISE+ model
[18]. It is an extension of SACI [11] where the agents have an organizational
aware architecture. Our research found systems developed in conjunction with
JASON and using S-Moise+ as middleware to achieve a more complete model
[19]. The result was J-Moise+ [20], which is very similar to S-Moise+ regarding
overall system concepts. The main difference is how the agents are programmed:
in S-Moise+ agents are programmed in Java (using a very simple agent
architecture), while in J -Moise+ they are programmed in AgentSpeak.

One of the main disadvantages of VO oriented platforms is the slight loss in the
concept of service and, consequently, the management of these services and the
Directory Facilitator (DF) described in the FIPA standard. THOMAS was
developed in response to this twofold need. THOMAS is based on the idea that no
internal agents exist and architectural services are offered as web services. As a
result, the final product is wholly independent of any internal agent platform and
fully addressed for open multiagent systems [21].

Finally, one of the most complete and recent platforms that we found is Janus
[22]. Janus is the next step towards platform organizations known as TinyMAS
(no longer under development.). This platform was specifically designed to deal
with the implementation and deployment of holonic and multiagent systems. Its
primary focus is to support the implementation of the concepts of role and
organization as first-class entities (a class in the object-oriented sense). This
consideration has a significant impact on agent implementation and allows an
agent to easily and dynamically change its behaviour [15].

In conclusion, it could be said that when dealing with all aspects of complex
multiagent systems such as VOs, it is also necessary to deal with multiple levels of
abstractions and openness, which is not the case for most solutions.

232 C. Zato et al.

3 Architecture Overview

As we have mentioned, we are looking for a platform that can integrally create,
manage and control VOs. In general terms, the proposed platform includes the
following characteristics:

• Different models of agents, including a BDI and CBR-BDL architecture.
• Control the life cycle of agents with graphic tools.
• A communication protocol that allows broadcast communication,

multicast according to the roles or suborganizations, or agent to agent.
• A debugging tool.
• Module for interacting with FIPA-ACL agents.
• Service management and tools for discovering services.
• Web services.
• Allow organizations with any topology.
• Organization management.
• Services for dynamically reorganizing the organization.
• Services for distributing tasks and balancing the workload.
• A business rules engine to ensure compliance with the standards

established for the proper operation of the organization.
• Programmed in Java and easily extensible.
• Possibility of having agents in various platforms (Windows, Linux,

MaccOS, Android and IOS)
• Interface to oversee the organizations.

Figure 1 displays the principal entities of the system, and illustrates how the roles,
norms and the organizations themselves are classes that facilitate the inclusion of
organizational aspects. The services are also included as entities completely
separate from the agent, facilitating their flexibility and adaption.

Fig. 1 Principal classes of the system

PANGEA 233

When launching the main container of execution, the communication system is
initiated; the agent platform then automatically provides the following agents to
facilitate the control of the organization:

OrganizationManager: the agent responsible for the actual management of
organizations and suborganizations. It is responsible for verifying the entry and
exit of agents, and for assigning roles. To carry out these tasks, it works with the
OrganizationAgent, which is a specialized version of this agent.

InformationAgent: the agent responsible for accessing the database containing
all pertinent system information.

ServiceAgent: the agent responsible for recording and controlling the operation
of services offered by the agents.

NormAgent: the agent that ensures compliance with all the refined norms in the
organization.

CommunicationAgent: the agent responsible for controlling communication
among agents, and for recording the interaction between agents and organizations.

Sniffer: manages the message history and filters information by controlling
communication initiated by queries.

Fig. 2 Architecture

The platform examines two modes of operation. In the first mode, the agents
reside in the machine itself, while in the second mode the platform allows for the
possibility of initiating all agents in different machines. The latter case has the
disadvantage of allowing only minimal human intervention since it is necessary to
previously specify the address of the machine where each of the agents are to
reside; however it has the advantage of greater system distribution.

234 C. Zato et al.

We hope to create a service oriented platform that can take maximum
advantage of the distribution of resources. To this end, all services are
implemented web services. This makes it possible for the platform to include both
a service provider agent and a consumer agent, thus emulating a client-server
architecture. The provider agent knows how to contact the web service; once the
client agent’s request has been received, the provider agent extracts the required
parameters and establishes the contact. Once received, the results are sent to the
client agent.

Each suborganization or work unit is automatically provided with an
OrganizationAgent by the platform during the creation of the suborganization.
This OrganizationAgent is similar to the OrganizationManager, but is only
responsible for controlling the suborganizationn, and can communicate with the
OrganizationManager if needed. If another suborganization is created hierarchically
within the previous suborganization, it will include a separate OrganizationAgent
that communicates with the OrganizationAgent from the parent organization. These
agents are distributed hierarchically in order to free the OrganizationManager of
tasks. This allows each OrganizationAgent to be responsible for a suborganization
although, to a certain extent, the OrganizationManager can always access
information from all of the organizations. Each agent belongs to one suborganization
and can only communicate with the OrganizationAgent from its own organization;
this makes it possible to include large suborganizational structures without
overloading the AgentManager. All of the OrganizationAgents from the same level
can communicate with each other, unless a specific standard is created to prevent
this.

Fig. 3 OrganizationManager and OrganizationAgents
3.1 Communication Platform

This section will focus on describing the communication platform and protocol.
As observed in Figure x, the communication platform includes two main agents:
the CommunciationAgent and the Sniffer. The first is in charge of checking the

PANGEA 235

connections to confirm that the agents are online and see which ones have
disconnected. It is also in continual communication with the NormAgent to ensure
that the agents respect the lines of communication and comply with the standards.
The Sniffer is in charge of recording all communication, offers services so that
other agents can obtain history information, and facilitates the control of
information flow for programmers and users.

The IRC protocol was used to implement communication. Internet Relay Chat
(IRC) is a real time internet protocol for simultaneous text messaging or
conferencing. This protocol is regulated by 5 standards: RFC1459 [25], RFC2810
[29], RFC2811 [28], RFC2812 [26] y RFC2813 [27]. It is designed primarily for
group conversations in discussion forums and channel calls, but also allows
private messaging for one on one communications, and data transfers, including
file exchanges [25]. The protocol in the OSI model is located on the application
layer and uses TCP or alternatively TLS [29]. An IRC server can connect with
other IRC servers to expand the user network. Users access the IRC networks by
connecting a client to a server. There have been many implementations of clients,
including mIRC or XChat. The original protocol is based on flat text (although it
was subsequently expanded), and used TCP port 6667 as its primary port, or other
nearby ports (for example TCP ports 6660-6669, 7000) [26]. The standard
structure for an IRC server network is a tree configuration. The messages are
routed only through those nodes that are strictly necessary; however, the network
status is sent to all servers. When a message must be sent to multiple recipients, it
is sent similar to a multidiffusion; that is, each message is sent to a network link
only once [29]. This is a strong point in its favor compared to the no-multicast
protocols such as SimpleMail Transfer Protocol (SMTP) or the Extensible
Messaging and Presence Protocol (XMPP).

One of the most important features that characterize the platform is the use of
the IRC protocol for communication among agents. This allows for the use of a
protocol that is easy to implement, flexible and robust. The open standard protocol
enables its continuous evolution. There are also IRC clients for all operating
systems, including mobile devices.

All messages include the following format: prefix command command-
parameters\r\n. The prefix may be optional in some messages, and required only
for entering messages; the command is one of the originals from the IRC standard.

The following diagram illustrates the message flow required for an agent to
enter an organization. These messages use the command PRIVMSG followed by
the parameters indicated by the arrows in the diagram.

236 C. Zato et al.

Fig. 4 Sequence of steps for an agent to enter an organization

4 Case Study and Results

The platform we have developed can create a general type of organization, and
includes the possibility of creating open and highly dynamic systems. In order to
test the architecture, a case study was prepared to simulate a working environment.
Four organizations were created to simulate four different departments within a
company: accounting (composed of 4 accounting agents, one manager and 2
secretaries); quality control (composed of 2 evaluating agents and two training
specialist agents); technical services (composed of 6 technical agents); and
customer service (composed of 8 telephonist agents). According to the role of each
agent, there are specific services offered that allow them to resolve the queries they
receive. In one possible case, the client agent contacts the telephonist agent, which
simply receives the requests and redirects it to the agent qualified to resolve the
request. The telephonist agent extracts the key words from the message sent by the
client and contacts the Services Agent to determine which agent can address
the required service. If the message contains the keyword “invoice”, the query will
be handled by the Accounting agent; if the keyword is “switch on” it will be handled
by the Technical agent. Once the client is in contact with the appropriate agent, the
agent can communicate with other agents in its organization to carry out the task.

Four 30-minute simulations were performed with 20 different types of requests
randomly provided. Studying the Evaluation and Sniffer agents it was possible to
study how both the simulation and message flow unfolded. Focusing specifically
on the Sniffer, it is possible obtain summary charts and diagrams, and specific
numbers. Once the query is made, the Sniffer consults the database, filters the data
and returns a URL that displays the desired data.

PANGEA 237

It is possible to obtain the number of each type of message that a specific agent
has received. Each message includes a tag that identifies the type of message,
which makes it possible to filter information.

Fig. 5 Diagramas of messages.

It is also possible to obtain a diagram of messages according to organization
instead of agents. Using the message identifier, it is also possible to see which
agents processed a given request; using the Evaluation agents we can determine
the number of requests processed by each agent.

We can conclude that the architecture we are developing has great potential to
create open systems, and more specifically, virtual agent organizations. This
architecture includes various tools that make it easy for the end user to create,
manage and control these systems. One of the greatest advantages of this system is
the communication platform that, by using the IRC standard, offers a robust and
widely tested system that can handle a large number of connections, and that
additionally facilitates the implementation for other potential extensions.
Furthermore, the use of the Communication and Sniffer agents, offers services that
can be easily invoked to study and extract message information.

Acknowledgements. This project has been supported by the Spanish CDTI. Proyecto de
Cooperación Interempresas. IDI-20110343, IDI-20110344, IDI-20110345, and the MICINN
TIN 2009-13839-C03-03 project. Project supported by FEDER funds.

References

1. Ferber, J., Gutknecht, O., Michel, F.: From Agents to Organizations: An
Organizational View of Multi-Agent Systems. In: Giorgini, P., Müller, J.P., Odell, J.J.
(eds.) AOSE 2003. LNCS, vol. 2935, pp. 214–230. Springer, Heidelberg (2004)

2. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable
virtual organizations. Int. J. High Perform. Comput. Appl. 15(3), 200–222 (2001)

3. O’Brien, P.D., Nicol, R.C.: FIPA, Towards a Standard for Software Agents. BT
Technology Journal 13(3), 51–59 (1998)

4. Emorphia, FIPA-OS, http://fipa-os.sourceforge.net/

238 C. Zato et al.

5. Dale, J., Knottenbelt, J., Labo, F.: April Agent Platform (2011),
http://designstudio.lookin.at/research/relate%20survey/
Survey%20Agent%20Platform/April%20Agent%20Platform.htm
(accessed November 29, 2011)

6. McCabe, F.G., Clark, K.L.: APRIL—Agent PRocess Interaction Language. In:
Wooldridge, M.J., Jennings, N.R. (eds.) Proceedings of the Workshop on Agent
Theories, Architectures, and Languages on Intelligent Agents (ECAI 1994), pp. 324–
340. Springer, New York (1995)

7. Bordini, R.H., Hübner, J.F., Vieira, R.: Jason and the Golden Fleece of agent-oriented
programming. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.)
Multi-Agent Programming: Languages, Platforms and Applications, ch. 1, pp. 3–37.
Springer (2005)

8. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in
Agent Speak Using Jason. John Wiley & Sons, Ltd. (2007)

9. Rao, A.S.: Agent Speak(L): BDI agents speak out in a logical computable language.
In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp. 42–
55. Springer, Heidelberg (1996)

10. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-Architecture. In:
Allen, J., Fikes, R., Sandewall, E. (eds.) Proceedings of the 2nd International
Conference on Principles of Knowledge Representation and Reasoning (KR 1991), pp.
473–484. Morgan Kaufmann publishers, Inc., San Francisco (1991)

11. SACI – Simple Agent Communication Infrastructure,
http://www.lti.pcs.usp.br/saci/

12. Bellifemine, F., Poggi, A., Rimassa, G.: JADE – A FIPA-compliant agent framework.
In: Proceedings of the Practical Applications of Intelligent Agents (1999)

13. Braubach, L., Pokahr, A., Lamersdorf, W.: Jadex: A Short Overview. Procceding Main
Conference Net. Object Days, 195–207 (2004)

14. Gutknecht, O., Ferber, J.: MadKit: Organizing heterogeneity with groups in a platform
for multiple multi-agent systems. Technical Report R.R.LIRMM 9718, LIRM
(December 1997)

15. Gaud, N., Galland, S., Hilaire, V., Koukam, A.: An Organisational Platform for
Holonic and Multiagent Systems. In: Hindriks, K.V., Pokahr, A., Sardina, S. (eds.)
ProMAS 2008. LNCS, vol. 5442, pp. 104–119. Springer, Heidelberg (2009)

16. Agent Oriented Software Pty Ltd. JACKTM Intelligent Agents Teams Manual. s.l. :
Agent Oriented Software Pty Ltd. (2005)

17. Busetta, P., Rönnquist, R., Hodgson, A., Lucas, A.: JACK Intelligent Agents -
Components for Intelligent Agents in Java. Technical report. Agent Oriented Software
Pty. Ltd., Melbourne, Australia (1998)

18. Hubner, J.F., Sichman, J.S., Boissier, O.: A Model for the Structural, Functional, and
Deontic Specification of Organizations in Multiagent Systems. In: Bittencourt, G.,
Ramalho, G.L. (eds.) SBIA 2002. LNCS (LNAI), vol. 2507, pp. 118–128. Springer,
Heidelberg (2002)

19. Hübner, J.F., Bordini, R.H., Picard, G.: Using Jason and MOISE+ to Develop a Team
of Cowboys. In: Hindriks, K.V., Pokahr, A., Sardina, S. (eds.) ProMAS 2008. LNCS,
vol. 5442, pp. 238–242. Springer, Heidelberg (2009)

20. Hübner, J.F.: J -Moise+ Programming organisational agents with Moise+ & Jason.
Technical Fora Group at EUMAS 2007 (2007)

PANGEA 239

21. Giret, A., Julián, V., Rebollo, M., Argente, E., Carrascosa, C., Botti, V.: An Open
Architecture for Service-Oriented Virtual Organizations. In: Braubach, L., Briot, J.-P.,
Thangarajah, J. (eds.) ProMAS 2009. LNCS, vol. 5919, pp. 118–132. Springer,
Heidelberg (2010)

22. Galland, S.: JANUS: Another Yet General-Purpose Multiagent Platform. Seventh
AOSE Technical Forum, Paris (2010)

23. The Foundation for Intelligent Physical Agents. FIPA Standar Status Specification
(2011),
http://www.fipa.org/repository/standardspecs.html
(accessed November 11, 2011)

24. Finin, T., Labrou, Y.: KQML as an agent communication language. In: Bradshaw, J.M.
(ed.) Software Agents, Cambridge, MA, pp. 291–316 (1997)

25. Oikarinen, J., Reed, D.: Internet Relay Chat Protocol. RFC 1459 (May 1993)
26. Kalt, C.: Internet Relay Chat: Client Protocol. RFC 2812 (April 2000)
27. Kalt, C.: Internet Relay Chat: Server Protocol. RFC 2813 (April 2000)
28. Kalt, C.: Internet Relay Chat: Channel Management. RFC 2811 (April 2000)
29. Kalt, C.: Internet Relay Chat: Architecture. RFC 2811 (April 2000)

	PANGEA – Platform for Automatic coNstruction of orGanizations of intElligent Agents
	Introduction
	Related Works
	Architecture Overview
	Communication Platform

	Case Study and Results
	References

