Skip to main content

Using an Improved Differential Evolution Algorithm for Parameter Estimation to Simulate Glycolysis Pathway

  • Conference paper
Book cover Distributed Computing and Artificial Intelligence

Abstract

This paper presents an improved Differential Evolution algorithm (IDE). It is aimed at improving its performance in estimating the relevant parameters for metabolic pathway data to simulate glycolysis pathway for yeast. Metabolic pathway data are expected to be of significant help in the development of efficient tools in kinetic modeling and parameter estimation platforms. Nonetheless, due to the noisy data and difficulty of the system in estimating myriad of parameters, many computation algorithms face obstacles and require longer computational time to estimate the relevant parameters. The IDE proposed in this paper is a hybrid of a Differential Evolution algorithm (DE) and a Kalman Filter (KF). The outcome of IDE is proven to be superior than a Genetic Algorithm (GA) and DE. The results of IDE from this experiment show estimated optimal kinetic parameters values, shorter computation time and better accuracy of simulated results compared to the other estimation algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lillacci, G., Khammash, M.: Parameter Estimation and Model Selection in Computational Biology. PLoS Computational Biology 6(3), 1–17 (2010), doi:10.1371/journal.pcbi .1000696

    Google Scholar 

  2. Chou, I.C., Voit, E.O.: Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Mathematical Biosciences 219, 57–83 (2009), doi:10.1016/j.mbs.2009.03.002

    Article  MathSciNet  MATH  Google Scholar 

  3. Wang, F.S., Chiou, J.P.: Differential evolution for dynamic optimization of differential-algebraic systems. In: IEEE International Conference on Evolutionary Computation, April 13-16, pp. 531–536 (1997), doi:10.1109/ICEC.1997.592367

    Google Scholar 

  4. Chassagnole, C., Doncescu, A., Manyri, L., Yang, L.T.: Parameters Estimation by Differential Evolutionary Algorithms for Simulation of metabolic pathways in Escherichia coli. In: International Conference on AINA 2006, April 18-20, pp. 593–598. IEEE Computer Science (2006), doi:10.1109/AINA.2006.258

    Google Scholar 

  5. Moonchai, S., Madlhoo, W., Jariyachavalit, K., Shimizu, H., Shioya, S., Chauvatcharin, S.: Application of a mathematical model and Differential Evolution algorithm approach to optimization of bacteriocin production by Lactococcus lactis C7. Bioprocess Biosyst. Eng. 28, 1–17 (2005), doi:10.1007/s00449-005-0004-5

    Article  Google Scholar 

  6. Storn, R., Price, K.: Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization 11(4), 341–359 (1997), doi:10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  7. Cetto, J.A.: The Kalman Filter. Institut de Robotica i Informatica Industrial, UPC-CSIC. Llorens i Artigas 4-6, Edifici U, 2a pl. Barcelona 08028, Spain (2002), http://digital.csic.es/bitstream/10261/30069/1/doc1.pdf (accessed January 22, 2011)

  8. Nielson, K., Sorensen, P.G., Hynne, F., Busse, H.G.: Sustained oscillations in glycolysis: an experimental and theoretical study of chaotic and complex periodic behavior and of quenching of simple oscillations. Biophysical Chemistry 72, 49–62 (1998), doi:10.1016/S0301-4622(98)00122-7

    Article  Google Scholar 

  9. Ijaz, U.Z., Khambampati, A.K., Lee, J.S., Kim, S., Kim, K.Y.: Nonstationary phase boundary estimation in electrical impedance tomography using unscented Kalman filter. Journal of Computational Physics 227(15), 7089–7112 (2008), doi:10.1016/j.jcp.2007.12.025

    Article  MathSciNet  MATH  Google Scholar 

  10. Feng, L., Yang, Y.F., Wang, Y.X.: A New Approach to Adapting Control Parameters in Differential Evolution Algorithm. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski, V., Abbass, H.A., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 21–30. Springer, Heidelberg (2008), doi:10.1007/978-3-540-89694-4_3

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuii Khim Chong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chong, C.K. et al. (2012). Using an Improved Differential Evolution Algorithm for Parameter Estimation to Simulate Glycolysis Pathway. In: Omatu, S., De Paz Santana, J., González, S., Molina, J., Bernardos, A., Rodríguez, J. (eds) Distributed Computing and Artificial Intelligence. Advances in Intelligent and Soft Computing, vol 151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28765-7_85

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28765-7_85

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28764-0

  • Online ISBN: 978-3-642-28765-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics