Skip to main content

The Vasopressin System – Asynchronous Burst Firing as a Signal Encoding Mechanism

  • Conference paper
  • 972 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7223))

Abstract

The task of the vasopressin system is homeostasis, a type of process which is fundamental to the brain’s regulation of the body, exists in many different systems, and is vital to health and survival. Many illnesses are related to the dysfunction of homeostatic systems, including high blood pressure, obesity and diabetes. Beyond the vasopressin system’s own importance, in regulating osmotic pressure, it presents an accessible model where we can learn how the features of homeostatic systems generally relate to their function, and potentially develop treatments. The vasopressin system is an important model system in neuroscience because it presents an accessible system in which to investigate the function and importance of, for example, dendritic release and burst firing, both of which are found in many systems of the brain. We have only recently begun to understand the contribution of dendritic release to neuronal function and information processing. Burst firing has most commonly been associated with rhythm generation; in this system it clearly plays a different role, still to be understood fully.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, W.E.: The Neurophysiology of Neurosecretory Cells. J. Physiol. 585, 645–647 (2007)

    Article  Google Scholar 

  2. Bicknell, R.J.: Optimizing Release from Peptide Hormone Secretory Nerve Terminals. J. Exp. Biol. 139, 51–65 (1988)

    Google Scholar 

  3. Bie, P.: Blood Volume, Blood Pressure and Total Body Sodium: Internal Signalling and Output Control. Acta Physiol. (Oxf) 195, 187–196 (2009)

    Article  Google Scholar 

  4. Bourque, C.W.: Central Mechanisms of Osmosensation and Systemic Osmoregulation. Nat. Rev. Neurosci. 9, 519–531 (2008)

    Article  Google Scholar 

  5. Brown, C.H., Bourque, C.W.: Mechanisms of Rhythmogenesis: Insights from Hypothalamic Vasopressin Neurons. Trends Neurosci. 29, 108–115 (2006)

    Article  Google Scholar 

  6. Buzsaki, G., Draguhn, A.: Neuronal Oscillations in Cortical Networks. Science 304, 1926–1929 (2004)

    Article  Google Scholar 

  7. Clayton, T.F., Murray, A.F., Leng, G.: Modelling the In Vivo Spike Activity of Phasically-Firing Vasopressin Cells. J. Neuroendocrinol. 22, 1290–1300 (2010)

    Article  Google Scholar 

  8. Del Negro, C.A., Morgado-Valle, C., Feldman, J.L.: Respiratory Rhythm: An Emergent Network Property? Neuron 34, 821–830 (2002)

    Article  Google Scholar 

  9. Di, S., Boudaba, C., Popescu, I.R., Weng, F.J., Harris, C., Marcheselli, V.L., Bazan, N.G., Tasker, J.G.: Activity-dependent Release and Actions of Endocannabinoids in the Rat Hypothalamic Supraoptic Nucleus. J. Physiol. 569, 751–760 (2005)

    Article  Google Scholar 

  10. Dunn, F.L., Brennan, T.J., Nelson, A.E., Robertson, G.L.: The Role of Blood Osmolality and Volume in Regulating Vasopressin Secretion in the Rat. J. Clin. Invest. 52, 3212–3219 (1973)

    Article  Google Scholar 

  11. Fitzsimmons, M.D., Roberts, M.M., Robinson, A.G.: Control of Posterior Pituitary Vasopressin Content: Implications for the Regulation of the Vasopressin Gene. Endocrinology 134, 1874–1878 (1994)

    Article  Google Scholar 

  12. Gouzenes, L., Desarmenien, M.G., Hussy, N., Richard, P., Moos, F.C.: Vasopressin Regularizes the Phasic Firing Pattern of Rat Hypothalamic Magnocellular Vasopressin Neurons. J. Neurosci. 18, 1879–1885 (1998)

    Google Scholar 

  13. Higuchi, T., Bicknell, R.J., Leng, G.: ] Reduced Oxytocin Release from the Neural Lobe of Lactating Rats is Associated with Reduced Pituitary Content and Does Not Reflect Reduced Excitability of Oxytocin Neurons. J. Neuroendocrinol. 3, 297–302 (1991)

    Article  Google Scholar 

  14. Hirasawa, M., Schwab, Y., Natah, S., Hillard, C.J., Mackie, K., Sharkey, K.A., Pittman, Q.J.: Dendritically Released Transmitters Cooperate via Autocrine and Retrograde Actions to Inhibit Afferent Excitation in Rat Brain. J. Physiol. 559, 611–624 (2004)

    Article  Google Scholar 

  15. Jolivet, R., Lewis, T.J., Gerstner, W.: Generalized Integrate-and-fire Models of Neuronal Activity Approximate Spike Trains of a Detailed Model to a High Degree of Accuracy. J. Neurophysiol. 92, 959–976 (2004)

    Article  Google Scholar 

  16. Komendantov, A.O., Trayanova, N.A., Tasker, J.G.: Somato-dendritic Mechanisms Underlying the Electrophysiological Properties of Hypothalamic Magnocellular Neuroendocrine Cells: A Multicompartmental Model Study. J. Comput. Neurosci. 23, 143–168 (2007)

    Article  MathSciNet  Google Scholar 

  17. Kondo, N., Arima, H., Banno, R., Kuwahara, S., Sato, I., Oiso, Y.: Osmoregulation of Vasopressin Release and Gene Transcription Under Acute and Chronic Hypovolemia in Rats. Am. J. Physiol. Endocrinol. Metab. 286, E337–E346 (2004)

    Article  Google Scholar 

  18. Kozoriz, M.G., Kuzmiski, J.B., Hirasawa, M., Pittman, Q.J.: Galanin Modulates Neuronal and Synaptic Properties in the Rat Supraoptic Nucleus in a Use and State Dependent Manner. J. Neurophysiol. 96, 154–164 (2006)

    Article  Google Scholar 

  19. Leng, G., Brown, C., Sabatier, N., Scott, V.: Population Dynamics in Vasopressin Cells. Neuroendocrinology 88, 160–172 (2008)

    Article  Google Scholar 

  20. Leng, G., Ludwig, M.: Neurotransmitters and Peptides: Whispered Secrets and Public Announcements. J. Physiol. 586, 5625–5632 (2008)

    Article  Google Scholar 

  21. Llorens-Cortes, C., Moos, F.: Opposite Potentiality of Hypothalamic Coexpressed Neuropeptides, Apelin and Vasopressin in Maintaining Body-Fluid Homeostasis. Prog. Brain. Res. 170, 559–570 (2008)

    Article  Google Scholar 

  22. Ludwig, M., Sabatier, N., Bull, P.M., Landgraf, R., Dayanithi, G., Leng, G.: Intracellular calcium stores regulate activity-dependent neuropeptide release from dendrites. Nature 418, 85–89 (2002)

    Article  Google Scholar 

  23. Ludwig, M., Leng, G.: Dendritic Peptide Release and Peptide-Dependent Behaviours. Nat. Rev. Neurosci. 7, 126–136 (2006)

    Article  Google Scholar 

  24. MacGregor, D.J., Leng, G.: Modelling the Hypothalamic Control of Growth Hormone Secretion. J. Neuroendocrinol. 17, 788–803 (2005)

    Article  Google Scholar 

  25. MacGregor, D.J., Lincoln, G.A.: A Physiological Model of a Circannual Oscillator. J. Biol. Rhythms 23, 252–264 (2008)

    Article  Google Scholar 

  26. MacGregor, D.J., Williams, C.K., Leng, G.: A New Method of Spike Modelling and Interval Analysis. J. Neurosci. Methods 176, 45–56 (2009)

    Article  Google Scholar 

  27. Ramirez, J.M., Tryba, A.K., Pena, F.: Pacemaker Neurons and Neuronal Networks: an Integrative View. Curr. Opin. Neurobiol. 14, 665–674 (2004)

    Article  Google Scholar 

  28. Roper, P., Callaway, J., Armstrong, W.E.: Burst Initiation and Termination in Phasic Vasopressin Cells of the Rat Supraoptic Nucleus: A Combined Mathematical, Electrical, and Calcium Fluorescence Study. J. Neurosci. 24, 4818–4831 (2004)

    Article  Google Scholar 

  29. Rossoni, E., Feng, J., Tirozzi, B., Brown, D., Leng, G., Moos, F.: Emergent Synchronous Bursting of Oxytocin Neuronal Network. PLoS Comput. Biol. 4, e1000123 (2008)

    Article  MathSciNet  Google Scholar 

  30. Ruan, M., Brown, C.H.: Feedback Inhibition of Action Potential Discharge by Endogenous Adenosine Enhancement of the Medium Afterhyperpolarization. J. Physiol. 587, 1043–1066 (2009)

    Article  Google Scholar 

  31. Sabatier, N., Brown, C.H., Ludwig, M., Leng, G.: Phasic Spike Patterning in Rat Supraoptic Neurones In Vivo and In Vitro. J. Physiol. 558, 161–180 (2004)

    Article  Google Scholar 

  32. Sabatier, N., Leng, G.: Bistability with Hysteresis in the Activity of Vasopressin Cells. J. Neuroendocrinol. 19, 95–101 (2007)

    Article  Google Scholar 

  33. Stern, J.E., Zhang, W.: Cellular Sources, Targets and Actions of Constitutive Nitric Oxide in the Magnocellular Neurosecretory System of the Rat. J. Physiol. 562, 725–744 (2005)

    Article  Google Scholar 

  34. Tasker, J.G., Di, S., Boudaba, C.: Functional Synaptic Plasticity in Hypothalamic Magnocellular Neurons. Prog. Brain. Res. 139, 113–119 (2002)

    Article  Google Scholar 

  35. Towill, D.R.: Industrial Dynamics of Modelling Supply Chains. International Journal of Physical Distribution & Logistics 26, 23–42 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

MacGregor, D.J., Clayton, T.F., Leng, G. (2012). The Vasopressin System – Asynchronous Burst Firing as a Signal Encoding Mechanism. In: Lones, M.A., Smith, S.L., Teichmann, S., Naef, F., Walker, J.A., Trefzer, M.A. (eds) Information Processign in Cells and Tissues. IPCAT 2012. Lecture Notes in Computer Science, vol 7223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28792-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28792-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28791-6

  • Online ISBN: 978-3-642-28792-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics