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Abstract. We analyse two very simple Petri nets inspired by the Oreg-
onator model of the Belousov-Zhabotinsky reaction using our stochas-
tic Petri net simulator. We then perform the Krohn-Rhodes holonomy
decomposition of the automata derived from the Petri nets. The sim-
plest case shows that the automaton can be expressed as a cascade of
permutation-reset cyclic groups, with only 2 out of the 12 levels having
only trivial permutations. The second case leads to a 35-level decompo-
sition with 5 different simple non-abelian groups (SNAGs), the largest
of which is A9. Although the precise computational significance of these
algebraic structures is not clear, the results suggest a correspondence be-
tween simple oscillations and cyclic groups, and the presence of SNAGs
indicates that even extremely simple chemical systems may contain func-
tionally complete algebras.

Introduction
In self-organising systems, the “self” or autonomous aspect is provided by the
fall towards equilibrium, which serves as the driver or energy source. As a con-
sequence, a system that needs to maintain self-organising behaviour indefinitely
must be open since, if it were closed, once it had reached equilibrium it would
stop functioning. Therefore, in order to keep going it must be open and con-
nected to a source of (free) energy that can keep it ‘far from equilibrium’, to
use Prigogine’s famous phrase [19], even whilst it is continually falling towards
it. The Belousov-Zhabotinsky (BZ) reaction has been studied extensively [20]
because it was the first reaction to exhibit sustained oscillations even in an iso-
lated system, although they do die down eventually. Before Belousov’s discovery
in the 1930s and Zhabotinsky’s confirmation of the phenomenon in the 1960s,
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species concentrations were believed to vary monotonically unless driven by a
periodic forcing function. In a constant-flow reactor the oscillations are periodic
and can be sustained indefinitely, as long as the inflow and outflow are kept
constant. This qualifies the BZ reaction as a system far from equilibrium. In this
paper we analyse a simplified ordinary differential equation (ODE) model of the
BZ reaction, the almost equally famous “Oregonator” model, developed by Field
and Noyes at the University of Oregon [11].

We compare the structure and behaviour of a very simple system inspired by
the Oregonator model of the BZ reaction from the different viewpoints of systems
biology and algebraic automata theory. In particular, we focus on its oscillatory
behaviour. Although the computational properties of chemical oscillations are
not clear, the fact that we are very familiar with them at both an intuitive and
a mathematical level makes them a useful reference system when attempting to
decipher the computational significance of the algebraic structures uncovered in
the corresponding finite state automata, as we discuss below. This was, in fact,
the main motivation for selecting the BZ reaction as an object of study. Thus, this
work aims to merge two research traditions: dynamical systems theory rooted
in physics and informing much of modern-day systems biology, and theoretical
computer science rooted in algebraic automata theory [16].

Discretisation

To be able to analyse the (Oregonator model of the) BZ reaction from these two
different perspectives we must find a way to discretise it. A good way to achieve
this is with a Petri net (PN), although Kauffman’s Boolean networks [15,7]
and Rhodes’s reaction digraphs [22] are also useful possibilities, all amenable to
algebraic automata-theoretic methods. The PN notation, invented to describe
interaction and transformation in discrete distributed systems [21,6], is highly
suitable to depict the structure of biochemical reaction networks at the level
of interaction between molecules. In combination with kinetic information, PN
models are useful tools in the derivation of the coupled ODE systems that de-
scribe the dynamic behaviour of these networks [23]. Once such a PN has been
obtained, it is straightforward to derive a finite-state automaton by treating each
possible marking of the PN as a different state of the automaton. In order to
obtain a finite state automaton the number of tokens is bounded, and the bound
is called the “capacity” of the place. This can be viewed as discretising con-
centration levels or bounding the number of molecules of each type. Since the
resulting number of states can be very large, normally the markings-to-states
mapping is done for a specific choice of initial conditions, which yields a subset
of the global automaton of all possible states.

Krohn-Rhodes Theory

The Krohn-Rhodes prime decomposition theorem for finite automata [16] has
been discussed, explained, and applied in a large number of books and articles
since the theorem was published in 1965 ([1] and many others). In 1967 Zeiger
[26] proved a variant, called holonomy decomposition (HD), according to which
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any finite automaton can be decomposed into a cascade of permutation-reset
automata arising from a study of how inputs act on certain subsets of the pow-
erset of the state set. In other words, the state transitions of the component
automata can only be either permutations (of certain subsets of subsets) of the
state set or resets (Cases 1a and 1b in Figure 1, respectively). The permutation-
reset automata can then be further decomposed into (finite and discrete) groups
and two-state resets (also known as flip-flops). Finally, using the Jordan-Hölder
theorem each group can be further subdivided into a sequence of simple groups,
known as its composition factors, recovering the Krohn-Rhodes decomposition
into irreducible atomic groups (simple groups) and combinatorial semigroups
(cascades of banks of flip-flops). The HD has continuously been improved in
efficiency over the years (e.g., [10,13,3,18,4], finally leading to computer alge-
braic realisation ([9], which has more recently been reimplemented in GAP [25]
as SgpDec [8]), making possible the decomposition and analysis of structures
previously well beyond human capacity to analyse.
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Fig. 1. Different kinds of transformations of 6 states (inspired by [18])

HD diagrams, used to visualise the decomposition, do not show how the
groups act explicitly, but indicate the presence of different groups at the various
levels of the cascade. These groups indicate the presence of ‘local pools of re-
versibility’ [22], but it is still unclear what algorithmic significance the transitions
these groups induce might have. Further, they show up in the decomposition of
automata derived from metabolic and regulatory pathways. Because every group
is associated with one or more symmetries and because biological systems ex-
hibit – in fact, depend on – many symmetries in their structure and behaviour,
it seems inescapable that the groups embedded in the HD of biological automata
have something to do with their self-organising properties. We now look at the
BZ system in more detail.

Analysis of BZ Reaction

The BZ reaction has been analysed by many people over the last 50 years. In
addition to the Field, Noyes, and Körös works already cited a useful reference
is Scott [24], on whom we mostly rely. The size of the HD tends to increase
exponentially with automaton size. Thus, although SgpDec has made it possible
to analyse systems that are immensely greater than what could previously be
done only by hand, we still need to keep the systems analysed as small as possible.
Therefore, although the Oregonator model is already a significant simplification
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relative to the full set of chemical equations of the BZ system, we had to simplify
it further in order to bring the corresponding automaton to a size amenable for
algebraic analysis. We now provide a brief summary of the original model and
corresponding ODE system in order to explain and justify the simplifications
effected. The Oregonator chemical equations are the following [24]:

A + Y → X + P rate = k3AY (1)

X + Y → 2P rate = k2XY (2)

A + X → 2X + 2Z rate = k5AX (3)

2X → A + P rate = k4X
2 (4)

B + Z → (1/2)fY rate = kcBZ (5)

X, Y , and Z correspond to the three compounds that undergo periodic oscil-
lations under steady-state boundary conditions, meaning inside the continuous-
flow stirred-tank (CFST) reactor. A, B, and P , by contrast, do not vary as a
function of time, a consequence of the CFST reactor setup. The three colours
Red, Green and Blue shown correspond to the three processes the BZ reaction
is conceptually divided into.4 Table 1 describes the variables in question.

Oregonator Chemical Chemical Association with
Variable Compound Symbol BZ Reaction Process

X Bromous Acid HBrO2 Process B (reduces X, generates Z)
Y Bromide Ion Br− Process A (reduces Y , generates X)
Z Cerum 4 Ce(IV ) Process C (reduces Z, generates Y )
A Bromate BrO−

3 All 3 processes
B Malonic Acid CH2(COOH)2 Process C
P Hypobromous Acid HOBr Process A and C

Table 1. Summary of Oregonator variables

From Eqs. 1-5 the rate equations are easily derived as a set of three ODEs:

dX

dt
= k3AY − k2XY + k5AX − 2k4X

2 (6)

dY

dt
= −k3AY − k2XY + 1/2fkcBZ (7)

dZ

dt
= 2k5AX − kcBZ, (8)

where the colours indicate the contribution to the rates of change of the three
variables due to the three processes A, B, and C. Since our objective is to reach
an intuitive understanding of the computational significance of the algebraic
structure of automata derived from biochemical systems, we now proceed to
make a number of radical simplifications to this system, a step which we believe
to be necessary at this early stage in the analysis. In fact, since, as we shall see

4 Using the potentially confusing accepted notation, the names of the processes have
nothing to do with the letters A, B, and P assigned to three of the compounds.
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below, the HD results can be very difficult to interpret even with very simple
systems, it is important to start with the simplest possible system.

In order to see behaviour that is close to a non-equilibrium dynamical sys-
tem’s we needed each place to have a capacity of at least 4 tokens, so we reduced
the number of places to the smallest number possible, i.e. 3. The justification for
eliminating the three compounds A, B, and P lies in the fact that for a CFST
reactor they remain constant. Thus, including them greatly increases the state
space of the automaton derived from the PN in spite of their not contributing
to the dynamics we are investigating. Furthermore, we eliminated also k2 and k4
in Eqs. 6-8. The motivation is that although they are important for reproducing
the shape of the BZ oscillations, the oscillations themselves can be generated
with a simpler system, which is preferable for now. Similarly, the factor of 2 in
front of the first term on the right-hand side of Eq. 8, which comes from the
factor of 2 in front of Z in Eq. 3, is also ignored in constructing the PN. This
will need to be brought back in at a later stage because it is responsible for the
characteristically fast growth of the Z compound (in Process A).

The problem with these modifications is that the resulting system is so differ-
ent from the original BZ system that it may not even oscillate. This is remedied
by artificially introducing inhibition, which is applied cyclically around the three
active compounds. Unfortunately once this step is taken it becomes impossible
to compare directly the resulting PN to the original ODE system, even if simpli-
fied. However, since the average place concentrations obtained with a stochastic
PN simulator will converge to the ODE results as the number of runs approaches
infinity [12], we can still analyse the resulting system as if we did know the gov-
erning equations. The result of all these simplifications and modifications is an
extremely simple and highly symmetrical PN, shown in Figure 2. A weight n of
the inhibition arc between, for example, Place Y and Transition t1 means that
t1 is inhibited if Y contains n or more tokens.

Figure 2 shows the GAP input file prepared for our PN package [5] and the 15-
state automaton corresponding to the initial condition (0, 4, 0) (States 5, 8 and
10 are not reachable and are not shown). At the bottom of Figure 2 the output of
a stochastic PN simulator coded in Mathematica can be seen as a time series of
the token values in the three places of this PN. The traces shown are the average
of 500 runs. Damped oscillations are clearly visible, as well as the fact that this
PN conserves mass (1.3 · 3 ≈ 4). The states of the automaton shown are the
possible markings of the PN from the given initial condition. The rate constants
for this example are all 1 (K = (1, 1, 1)). Finally, SgpDec was used to generate the
HD, revealing 12 cascaded permutation-reset levels, whereby ‘1’ indicates either
an irreversible component or a trivial group, and the other groups are shown in
standard notation. It is not very surprising that in this extremely simple and
symmetrical example most of the levels of the decomposition are groups, and
they are particularly simple (in the colloquial sense of the term) groups, since
they are all cyclic groups.

The abstract concept of algebraic structure is useful for understanding math-
ematical theorems, but by itself it is not readily applicable. Fortunately, Krohn-



6 P Dini, C L Nehaniv, A Egri-Nagy and M J Schilstra

Rhodes theory is closely related to a cognitive tool with which we are intimately
familiar in our daily lives: coordinatisation. Namely, the different levels of the
Krohn-Rhodes decomposition of an automaton are analogous to the different
positions in our positional number systems. The decomposition then becomes
an expansion of a given automaton into an “abstract number system” that is
defined by the automaton itself: each state is expressed as a different multi-digit
“number”, where each “digit” corresponds to a level in the decomposition. The
significance of this insight, due to Rhodes, is that the coordinatisation perspec-
tive gives us at once powerful cognitive and calculational tools for manipulating
an automaton in our mind or with possible software support, and also gives us
the starting point of a general computer science methodology.

petrinet := rec(
inputs:= [[1,0,0],
               [0,1,0],
              [0,0,1]

         ],

outputs := [[0,0,1],
                  [1,0,0],
                  [0,1,0]

            ],

inhibcons :=  [[0,0,1],
                      [1,0,0],
                     [0,1,0]

               ],

capacity := [4,4,4],
initial := [[0,4,0]]

);

K = (1, 1, 1)
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Fig. 2. Stochastic simulation and HD analysis of very simple BZ-like system

Figure 3 shows a rather different story. Here the PN is not symmetrical since
one of the inhibitions is missing, and the other two have different values. The
stochastic simulation shows strongly damped oscillations, and the automaton
(with the same states) is more complex. The most interesting output, however,
is by far the HD. The decomposition shows 35 levels, with a fair number of
groups. This case is remarkable because of the presence of very large groups (S9

has 9! = 362, 880 elements acting on subsets of the states shown, at level 14).
The groups shown in red all contain SNAGs, i.e. A9, A8, A7, A6, A5.

Discussion and Conclusion

The SNAGs are exactly the functionally complete groups [17,14] and are also
considered to be related to error-correction [22]. The former property of SNAGs
makes them a natural candidate for realizing an analogue of “universal compu-
tation” within the finite realm [22,17,14,2]. Therefore, we can conclude that the
appearance of SNAGs indicates that even such a simple system is capable of
functionally complete computation (i.e. like Boolean algebra). In particular, this
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petrinet := rec(
inputs:= [[1,0,0],
               [0,1,0],
              [0,0,1]

         ],

outputs := [[0,0,1],
                  [1,0,0],
                  [0,1,0]

            ],

inhibcons :=  [[0,0,0],
                      [2,0,0],
                     [0,1,0]

               ],

capacity := [4,4,4],
initial := [[0,4,0]]

);
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Fig. 3. Analysis of asymmetric variation of very simple BZ-like system

implies that there are reversible subsystems of this system whose dynamics re-
alize this (SNAG) computation by permuting certain “higher-level” (or macro-)
states. Natural emerging research questions now are: (1) How, in detail, do os-
cillatory systems such as the simple BZ-like one analysed here realise this kind
of (functionally complete) computation in terms of the dynamics of specific re-
versible subsystems? And (2) How might the finitary universal computational
potential of these BZ subsystems be harnessed?
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14. Horváth, G.: Functions and Polynomials over Finite Groups from the Computa-

tional Perspective. The University of Hertfordshire, PhD Dissertation (2008)
15. Kauffman, S.: The Origins of Order: Self-Organisation and Selection in Evolution.

Oxford University Press, Oxford (1993)
16. Krohn, K., Rhodes, J.: Algebraic Theory of Machines. I. Prime Decomposition

Theorem for Finite Semigroups and Machines. Transactions of the American Math-
ematical Society 116, 450–464 (1965)

17. Krohn, K., Maurer, W.D., Rhodes, J.: Realizing complex boolean functions with
simple groups. Information and Control 9(2), 190–195 (1966)

18. Maler, O.: On the Krohn-Rhodes Cascaded Decomposition Theorem, http://

www-verimag.imag.fr/~maler/, web publication
19. Nicolis, G., Prigogine, I.: Self-Organization in Nonequilibrium Systems. Wiley, New

York (1977)
20. Noyes, R.M., Field, R.J., Körös, E.: Oscillations in Chemical Systems I. Detailed

Mechanism in a System Showing Temporal Oscillations. Journal of the American
Chemical Society 94(4), 1394–1395 (1972)

21. Petri, C.A.: Kommunikation mit Automaten. Schriften des IIM 2 (1962)
22. Rhodes, J.: Applications of Automata Theory and Algebra via the Mathematical

Theory of Complexity to Biology, Physics, Psychology, Philosophy, and Games.
World Scientific Press (2010)

23. Schilstra, M.J., Martin, S.R.: Simple stochastic simulation. In: Michael, L., Ludwig,
B. (eds.) Methods in Enzymology, pp. 381–409. Academic Press (Elsevier) (2009)

24. Scott, S.: Oscillations, Waves, and Chaos in Chemical Kinetics. Oxford University
Press, Oxford (1994)

25. The GAP Group: GAP – Groups, Algorithms, and Programming, Version 4.4 (2006),
http://www.gap-system.org

26. Zeiger, H.P.: Cascade synthesis of finite-state machines. Information and Control
10(4), 419–433 (1967)

http://sourceforge.net/projects/pn2a/
http://sourceforge.net/projects/pn2a/
http://sgpdec.sf.net
http://sgpdec.sf.net
http://www-verimag.imag.fr/~maler/
http://www-verimag.imag.fr/~maler/
http://www.gap-system.org

	Dini_Algebraic_analysis_computation_2012_cover
	Algebraic Analysis of the Computation in the Belousov-Zhabotinsky Reaction (author)
	Algebraic Analysis of the Computation in the Belousov-Zhabotinksy Reaction




