Skip to main content

Evolved Artificial Signalling Networks for the Control of a Conservative Complex Dynamical System

  • Conference paper
Book cover Information Processign in Cells and Tissues (IPCAT 2012)

Abstract

Artificial Signalling Networks (ASNs) are computational models inspired by cellular signalling processes that interpret environmental information. This paper introduces an ASN-based approach to controlling chaotic dynamics in discrete dynamical systems, which are representative of complex behaviours which occur in the real world. Considering the main biological interpretations of signalling pathways, two ASN models are developed. They highlight how pathways’ complex behavioural dynamics can be captured and represented within evolutionary algorithms. In addition, the regulatory capacity of the major regulatory functions within living organisms is also explored. The results highlight the importance of the representation to model signalling pathway behaviours and reveal that the inclusion of crosstalk positively affects the performance of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, U.: An introduction to systems biology: design principles of biological circuits. Chapman & Hall/CRC Mathematical and Computing Biology Series (2007)

    Google Scholar 

  2. Arias, M.A., Hayward, P.: Filtering transcriptional noise during development: concept and mechanisms. Nature Reviews Genetics 7(1), 34–44 (2006)

    Article  Google Scholar 

  3. Bray, D., Lay, S.: Computer simulated evolution of a network of cell signalling molecules. Biophysical Journal 66, 972–977 (1994)

    Article  Google Scholar 

  4. Chirikov, B.V.: Research concerning the theory of nonlinear resonance and stochasticity. Tech. rep., Institute of Nuclear Physics, Novosibirsk (1962)

    Google Scholar 

  5. Deckard, A., Sauro, M.H.: Preliminary studies on the in silico evolution of biochemical networks. Chembiochem. 5(10), 1423–1431 (2004)

    Article  Google Scholar 

  6. Decraene, J., Mitchell, G.G., McMullin, B.: Evolving artificial cell signalling networks: Perspectives and Methods. SCI, vol. 6, pp. 167–186 (2009)

    Google Scholar 

  7. Huang, Z., Hahm, J.: Fuzzy modeling of signal transduction networks. In: Proc. 17th World Control, The International Federation of Automatic Control, pp. 15867–15872 (2008)

    Google Scholar 

  8. Klamt, S., Saez-Rodriguez, J., Lindquist, J.A., Simeoni, L., Giles, D.E.: A methodology for the structural and functional analysis of signalling and regulatory networks. BMC Bioinformatics 7(56), 1–26 (2006)

    Google Scholar 

  9. Lones, M.A., Tyrrell, A.M., Stepney, S., Caves, L.S.: Controlling Complex Dynamics with Artificial Biochemical Networks. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 159–170. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Morris, K.M., Saez-Rodriguez, J., Sorger, K.P., Lauffenburger, A.D.: Logic-based models for analysis of cell signalling networks. Biochemistry 4(49), 3216–3224 (2010)

    Article  Google Scholar 

  11. Sachs, K., Gifford, D., Jaakkola, T., Sorger, P., Lauffenburger, D.A.: Bayesian networks approach to the cell signalling pathway modeling. Science’s STKE 148, 38–42 (2002)

    Google Scholar 

  12. Stepney, S.: Nonclassical computation: a dynamical systems perspective. In: Rozenberg, G., Bäck, T., Kok, N.J. (eds.) Handbook of Natural Computing, vol. 2, ch. 52. Springer, Heidelberg (2011)

    Google Scholar 

  13. Said, M.R., Oppenheim, A.V., Lauffenburger, D.A.: Modelling cellular signal processing using interacting Markov chains. In: Proc. International Conference on Acoustic, Speech, Signal Processing (ICASSP 2003), Hong Kong, pp. 41–44 (2003)

    Google Scholar 

  14. Schroer, C.G., Ott, E.: Targeting in Hamiltonian systems that have mixed regular/chaotic phase spaces. Chaos 7, 512–519 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tulupyev, A., Nikolenko, S.: Directed Cycles in Bayesian Belief Networks: Probabilistic Semantics and Consistency Checking Complexity. In: Gelbukh, A., de Albornoz, Á., Terashima-Marín, H. (eds.) MICAI 2005. LNCS (LNAI), vol. 3789, pp. 214–223. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Ziegler, J., Banzhaf, W.: Evolving control metabolisms for a robot. Artificial Life 7, 171–190 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fuente, L.A., Lones, M.A., Turner, A.P., Stepney, S., Caves, L.S., Tyrrell, A.M. (2012). Evolved Artificial Signalling Networks for the Control of a Conservative Complex Dynamical System. In: Lones, M.A., Smith, S.L., Teichmann, S., Naef, F., Walker, J.A., Trefzer, M.A. (eds) Information Processign in Cells and Tissues. IPCAT 2012. Lecture Notes in Computer Science, vol 7223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28792-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28792-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28791-6

  • Online ISBN: 978-3-642-28792-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics