
Integrating attribute grammar and functional
programming language features

Ted Kaminski and Eric Van Wyk

Department of Computer Science and Engineering
University of Minnesota, Minneapolis, MN 55455, USA

tedinski@cs.umn.edu, evw@cs.umn.edu

Abstract. While attribute grammars (AGs) have several features mak-
ing them advantageous for specifying language processing tools, func-
tional programming languages offer a myriad of features also well-suited
for such tasks. Much other work shows the close relationship between
these two approaches, often in the form of embedding AGs into lazy func-
tional languages. This paper continues in this tradition, but in the other
direction, by integrating various functional language features into AGs.
Specifically we integrate rich static types (including parametric polymor-
phism, typed distinctions between decorated and undecorated trees, type
inference, and generalized algebraic data-types) and pattern-matching,
all in a manner that maintains familiar and convenient attribute gram-
mar notations and especially their highly extensible nature.

1 Introduction

Attribute grammars[8] are a programming paradigm for the declarative specifica-
tion of computations over trees, especially of interest in specifying the semantics
of software languages. The underlying context free grammar of the language pro-
vides the structure for syntax-directed analysis, and synthesized and inherited
attributes provide a convenient means for declaratively specifying the flow of
information up and down the tree.

Over the years many additions to this formalism have been proposed to in-
crease the expressiveness, flexibility, extensibility, and convenience of attribute
grammars. Higher-order attributes [19] were introduced to, among other things,
end the hegemony of the original syntax tree. Many computations are easier over
transformed syntax trees, which is why compilers often transform between sev-
eral intermediate languages, or are not possible without dynamically generating
arbitrarily larger trees. Through higher-order attributes, these new trees can be
constructed, stored in attributes, and also decorated with attributes.

Reference attributes [5] were introduced to handle non-local dependencies
across a tree, and are often described as superimposing a graph structure on
top of the abstract syntax tree. A typical use of reference attributes is obtaining
a direct reference to the declaration node of an identifier at a use site of that
identifier. These help dramatically in allowing specifications to be written at a
high-level.

Forwarding [16] and production attributes were introduced in order to solve
an extensibility problem for attribute grammars. Independently designed lan-
guage extensions can be written as attribute grammar fragments that can add
new productions (new language constructs) or new attributes and attribute equa-
tions to existing productions (new analysis or translation). But, these extensions
may not compose because the new attributes will not have defining equations
on the new productions. Forwarding provides a solution to this problem by per-
mitting new productions to forward any queries for unspecified attributes to a
semantically equivalent tree in the host language, where these attributes would
have been defined. This tree does not have to be statically determined, and can
be computed dynamically, often by using higher-order attributes. Forwarding has
also proven useful for more than simply achieving this extensibility property. It
is an easy way of de-sugaring, while still being able to explicitly define attributes
on the extension syntax where needed. It is also very useful for specifying static
dispatch based on, for example, types.

There are many other useful extensions to attribute grammars such as re-
mote attributes and collections [1], circular attributes [2], generic attribute gram-
mars [12], and more. In this paper, however, we will only be considering the three
described above.

Functional programming languages also offer a number of compelling fea-
tures, such as strong static typing, parametric polymorphism, type inference,
pattern matching, and generalized algebraic data types. We are interested in
integrating these feature into attribute grammars in order to enjoy the best of
both worlds. We have a number of goals in doing so:

1. Safety. The language should have features that help us identify and prevent
bugs in our attribute grammar.

2. Synergy. The features should work together and not be separate, disjointed
parts of the language.

3. Simplicity. It should not be a heavy burden on implementer of the attribute
grammar specification language.

4. Extensible. We do not want to compromise on one of the biggest advantages
attribute grammars and forwarding provide.

5. Fully-featured. These features should be integrated with attribute grammars
well enough that they are still as useful and powerful as they are in functional
languages.

6. Natural. Notation should be convenient, sensible and not overly cumbersome,
and error messages should be appropriate and clear.

One of the strongest motivating examples for this integration is that of using
attribute grammar constructs for representing type information in a language
processor. We would definitely like the extensibility properties that attribute
grammars possess: we should be able to create new types (new productions),
as well as add new attributes to existing types. For example, we might want
to extend a language with a specialized list type, and add a new production
attribute to all types for handling an append operation that dispatches on type.
If the attribute grammar is embedded in Haskell, Java, or similar languages, the

2

algebraic data types and classes available in these languages cannot meet these
requirements to the same satisfaction that attribute grammars can.

We would equally like a number of functional programming language features
for this application. Checking for type equality (or unifying two types) without
making use of pattern matching often results in programmers creating an isFoo

attribute for every production foo, along with attributes used only to access the
children of a production, and using those to test for equality. This is essentially
reinventing pattern matching, badly. These tedious “solutions” are elegantly
avoided by allowing pattern matching on nonterminals.

Pattern matching proves useful far beyond just types, however. There are
many cases in language processing where we care about the local structure of
syntax trees, and these are all ideal for handling with pattern matching. In
many cases, the expressiveness pattern matching provides can be difficult to
match with attributes since a large number of attributes are typically necessary
to emulate a pattern.

Having decided to represent types using grammars, we may ask what other
“data structure”-like aspects of the language definition might benefit from being
represented as grammars as well? One example is the type of information typ-
ically stored in a symbol table. Extensible environments, where new language
features can easily add new namespaces, scopes, or other contextual informa-
tion, become possible simply by representing them as grammars with existing
attribute grammar features. New namespaces, for example, can simply be new
attributes on the environment nonterminal, and new information can be added
to the environment in an extensible way through new productions that make
use of forwarding. But without parametric polymorphism, a specialized nonter-
minal has to be rewritten for every type of information that we wish to store
in the environment, which quickly becomes tedious. But with it, we can design
environments and symbol table structures in a generic way so that they can be
implemented once in a library and reused in different language implementations.

We make the following contributions:

– We describe a small attribute grammar language Ag, a subset of Silver [17],
that captures the essence of most attribute grammar specification languages
(section 2.)

– We show how types help simplify the treatment of higher-order, reference,
and production-valued attributes (section 2.)

– We describe a type system for Ag that carefully integrates all of the desired
features (section 3). We also identify and work around a weakness of applying
the simple Hindley-Milner type system to attribute grammars (section 3.2.)

– We describe a method for using types to improve the notation of the lan-
guage, by automatically inferring whether a child identifier intends to refer-
ence the originally supplied tree (on which values for attributes have not be
computed) or the version of the tree that has been decorated with attributes
(section 3.3.)

– We describe a new interaction with forwarding that permits pattern match-
ing to be used on attribute grammars without compromising the extensibility
of the grammar (section 4.)

3

T ::= nv | nn<T > | Decorated nn<T > | Production (nn<T > ::= T)
D ::= · | nonterminal nn<nv > ; D
| synthesized attribute na<nv > ::T ; D
| inherited attribute na<nv > ::T ; D

| attribute na<T > occurs on nn<nv > ; D

| production n nl ::nn<T > ::= n ::T { S } D

S ::= n .na = E ; | forwards to E { A } ;

A ::= na = E

E ::= n | Ef (E) | E .na | decorate E with { A } | new E

Fig. 1. The language Ag

2 The AG language

A number of Silver features are omitted from the language Ag, as we wish to
focus on those parts of the language that are interesting from a typing and
semantics perspective and are generally applicable to other attribute grammar
languages. To that end, terminals, other components related to parsing and
concrete syntax, aspects productions, collection and local attributes, functions,
operations on primitive types, as well as many other basic features are all omitted
from Ag. For most of these features, there are no additional complications in
adding them to scale Ag up to Silver.

The grammar for the language Ag is given in Fig. 1. Names of values (e.g.
productions and trees) are denoted n, and we follow the convention of denoting
nonterminal names as nn, attribute names as na, and type variables as nv.

A program in Ag is a set of declarations, denoted D. These declarations
would normally be mutually recursive, but for simplicity of presentation, we
consider them in sequence in Ag. (Mutual recursion could cause problems for
type reconstruction, but we are not relying on type reconstruction in any way
for declarations in Ag or Silver.) The forms of declaration should be relatively
standard for attribute grammars; we take the view of attributes being declared
separately from the nonterminals on which they occur.

Note that nonterminals are parameterized by a set of type variables (nv).
We will adopt the convention of omitting the angle brackets whenever this list
is empty. Attributes, too, are parameterized by a set of type variables, and it
is the responsibility of the occurs on declaration to make clear the association
between any variables an attribute is parameterized by, and those variables the
nonterminal is parameterized by.

Production declarations give a name (nl) and type (nn<T>) to the non-
terminal they construct. The name is used to define synthesized attributes for
this production or access inherited attributes given to this production inside the
body of the production (S). Each of the children of the production is also given
a name and type, and the body of the production consists of a set of (what we
will call) statements (S).

4

App

Abs "x"

Id "x"

Unit

Env: {}
type: ()
env: {}

type: a -> a
env: {}

type: a
env: {x : a}

type: ()
env: {}

Undecorated Tree

Decorated Tree

Inherited attributes

decorate

new

App

Abs "x" Unit

Id "x"

with

Fig. 2. The distinction between undecorated and decorated trees, and the operations
decorate and new on them. The trees are a representation of the lambda calculus
expression (λx.x)().

The attribute definition statement may define synthesized attributes for the
node created by the current production, or inherited attributes for its children,
depending on whether the name (n) is the left hand side (nl in production
declarations) or the name of a child, respectively.

Forwarding is simply another form of equation that can be written as part of
the production body. Forwarding works by forwarding requests of any attributes
not defined by this production to the forwarded-to tree (E). Any inherited at-
tributes requested by the forwarded-to tree may be supplied in A, or will other-
wise be forwarded to the inherited attributes supplied to this node of the tree. If
no new synthesized attribute equations are given in a production, and no inher-
ited attribute equations are given in the forward, then forwarding would behave
identically to simple macro expansion.

Expressions are denoted E. Production application (tree construction) and
attribute access are standard, but there are two new forms of expression avail-
able: new creates an undecorated version of a tree from a decorated tree, and
decorate creates a new decorated tree by supplying it with a list of inherited at-
tribute definitions, denoted A. These operation are illustrated visually in Fig. 2.

In the specification of types, T , we see that every (parameterized) nontermi-
nal nn produces two distinct, but related, types:

5

– the undecorated type, denoted nn, is for trees without computed attribute
values (these play the same role as algebraic data types in ML or Haskell)

– the decorated type, denoted Decorated nn, is a tree that is decorated with
attributes, created by supplying an undecorated tree with its inherited at-
tributes.

The observed distinction between these two goes back at least as far as [3], and
a type distinction between decorated and undecorated trees shows up naturally
in functional embeddings of attribute grammars (such as in [6]), but with less
familiar notation. Despite this, to the best of our knowledge, the type distinction
has not been deliberately exposed as part of an attribute grammar specification
language before. For a comparison with other languages, see related work in
section 5.

Distinguishing these two kinds of trees by types provides the following ad-
vantages:

– Enhanced Static Type Safety. Object-oriented embeddings in particular often
do not make this distinction, allowing either kind of tree to be used incor-
rectly. This stems from the ability to set inherited attributes by side-effects
on objects representing trees.

– Simplicity. Higher-order [19], reference [5] and production-valued [16] at-
tributes are just ordinary attributes of different types (respectively, nn,
Decorated nn, and Production(...)), and need no special treatment by the
evaluator or the language.

– Maintain expressiveness. Productions can deliberately take decorated trees
as children, for example, allowing a tree to share sub-trees with other trees.
This is technically allowed in other systems with reference attributes, but at
the expense of type safety, and it’s not clear it is an intended feature.

– Convenience. In section 3.3 we show how these types can be used to provide
a convenient notation in Ag.

A small example of a grammar for boolean propositions is given in Fig. 3.
The example assumes the existence of a primitive boolean type, not included
in our definition of Ag, and one shorthand notation: the with syntax of the
nonterminal declaration stands in for occurs on declarations of Ag for each of
the attributes that follow it.

The grammar shows the use of a few of the basic features of attribute gram-
mars, in the notation of Ag. The eval attribute is an ordinary synthesized
attribute, while the negation attribute is a so-called higher-order attribute. In
Ag, we can see this is just an ordinary attribute with a different type. The
implies production shows the use of forwarding in a very macro-like fashion,
while the iff production demonstrates that it’s still possible to provide equa-
tions for attributes when forwarding.

The example grammar in Fig. 4 shows the use of the polymorphic syntax for
nonterminal, attribute, and production declarations for the very simple exam-
ple of the pair data structure. We will be referring back to these two example
grammars later on in the paper to illustrate some subtle details.

6

nonterminal Expr with eval, negation;

synthesized attribute eval :: Boolean;

synthesized attribute negation :: Expr;

production and

e::Expr ::= l::Expr r::Expr

{ e.eval = l.eval && r.eval;

e.negation = or(not(l),not(r));

}

production or

e::Expr ::= l::Expr r::Expr

{ e.eval = l.eval || r.eval;

e.negation = and(not(l),not(r));

}

production not

e::Expr ::= s::Expr

{ e.eval = !s.eval;

e.negation = s;

}

production literal

e::Expr ::= b::Boolean

{ e.eval = b;

e.negation = literal(!b);

}

production implies

e::Expr ::= l::Expr r::Expr

{ forwards to or(not(l),r);

}

production iff

e::Expr ::= l::Expr r::Expr

{ e.eval = l.eval == r.eval;

forwards to and(implies(l,r),

implies(r,l));

}

Fig. 3. An simple example grammar for boolean propositions, written in Ag

nonterminal Pair<a b>;

synthesized attribute fst<a> :: a;

synthesized attribute snd<a> :: a;

attribute fst<a> occurs on Pair<a b>;

attribute snd<d> occurs on Pair<c d>;

production pair

p::Pair<a b> ::= f::a s::b

{ p.fst = f;

p.snd = s;

}

Fig. 4. An simple example defining a pair type, written in Ag

3 The AG type system

3.1 The type inference rules

Each of the nonterminals in the (meta) language Ag has a rather special typing
relation, and so we will describe them in some detail.

N ;P ;S; I;O;Γ ` D Declarations

Here N,P, S, I, and O represent, respectively, declared nonterminal types, pro-
duction names, synthesized attributes, inherited attributes, and occurs declara-
tions. These reflect the various components of an attribute grammar specifica-
tion, but here we specify them explicitly. Since these do not change except at
the top level of declarations (D), we will omit writing them for the other typing
relations and consider them to be implicitly available.

L;R;Γ ` S Production body statements

7

L is the name and type of the left-hand side symbol of the production (the type
the production constructs.) R is the set of name/type pairs for the right-hand
side symbols (the children) of the production. These are used to distinguish
when it is acceptable to defined inherited or synthesized attributes inside the
production statements.

X;Γ ` A Inherited attribute assignments

Here, X is the type of the nonterminal that inherited attributes are being sup-
plied to by decorate expressions and forwards to statements.

Γ ` E : T Expressions

This is the standard relation for expressions, except for N,P, S, I, and O that
are implicitly supplied.

Inference rules. The type inference rules for Ag are shown in Fig. 5. In all
rules, we omit explicitly checking the validity of types (T) written in the syn-
tax. All that is required to ensure types are valid is that nn actually refer to a
declared nonterminal, with an appropriate number of parameter types. Wher-
ever nn appears on its own in the syntax, however, we will write these checks
explicitly. Additionally, we always require lists of type variables nv to contain
no duplicates.

We use fv(T) to represent the free type variables of a type T. This may also
be applied to many types (T), in which case it is the union of the free type
variables. To ensure that different sequences of types or type variables have the
same number of elements, we use the notation T∀k to indicate that there are k
elements in the sequence T.

The rule D-nt declaring nonterminals is straightforward and adds the non-
terminal type to N . We omit basic checks for redeclarations here for brevity.
The rule D-syn adds the type of the synthesized attribute to S and ensures the
type of the attribute is closed under the variables it is parameterized by. The
rule for inherited attributes is symmetric and not shown.

The rule D-occ requires some explanation. The actual value stored in O
for an occurrence of an attribute on a nonterminal is a function, α, from the
nonterminal’s type to the type of the attribute. We write [nv 7→ T] to represent
a substitution that maps each type variable to its respective type. The definition
of α looks complex but is quite simple: first, we are interested in the type of the
attribute (Ta), so that is what the substitution is applied to. We want to equate
the variables declared as parameters of the nonterminal (nvdn) with both the
variables written in this occurs declaration (nv) and with the types supplied as
a parameter to this function (Tp). Finally, we want to equate the type variables
that are parameters of the attribute (nvda) with the actual type supplied for
those parameters in this occurs declaration (T). The directions of these rewrites
are simply such that no type variables from these declarations “escape” into the

8

N ∪ nn<nv >;P ;S; I;O;Γ ` D
N ;P ;S; I;O;Γ ` nonterminal nn<nv > ; D

(D-nt)

fv(T) \ nv = ∅ N ;P ;S ∪ na<nv > : T; I;O;Γ ` D
N ;P ;S; I;O;Γ ` synthesized attribute na<nv > ::T ; D

(D-syn)

fv(T) \ nv = ∅ na<nvda∀k > : Ta ∈ S ∪ I nn<nvdn∀j > ∈ N
α(nn<Tp∀j >) = ([nvda 7→ T] ◦ [nv 7→ nvdn] ◦ [nvdn 7→ Tp])(Ta)

N ;P ;S; I;O ∪ na@nn = α;Γ ` D
N ;P ;S; I;O;Γ ` attribute na<T∀k > occurs on nn<nv∀j > ; D

(D-occ)

nn<nvdn∀k > ∈ N
nl : nn<Tn>;nc : Tc;Γ ∪ nl : Decorated nn<Tn>∪nc : dec(Tc) ` S

Tp = Production (nn<Tn> ::= Tc)
N ;P ∪ n;S; I;O;Γ ∪ n : ∀fv(Tp).Tp ` D

N ;P ;S; I;O;Γ ` production n nl ::nn<Tn∀k > ::= nc ::Tc { S } D
(D-prod)

n : T = L, na ∈ S, T = nn<Tn>, na@nn = α ∈ O, Γ ` E : α(T)

L;R;Γ ` n .na = E ;
(S-syn)

n : T ∈ R, na ∈ I, T = nn<Tn>, na@nn = α ∈ O, Γ ` E : α(T)

L;R;Γ ` n .na = E ;
(S-inh)

n : T = L Γ ` E : T T;Γ ` A
L;R;Γ ` forwards to E { A } ;

(S-fwd)

na ∈ I X = nn<Tn> na@nn = α ∈ O Γ ` E : α(T)

X;Γ ` na = E
(A-inh)

n : ∀nv.Tq ∈ Γ
Γ ` n : [nv 7→ ν]T

(E-var)
Γ ` E : Decorated nn<Tn>

Γ ` new E : nn<Tn>
(E-new)

Γ ` Ef : Production (T ::= Tc) Γ ` E : Tc

Γ ` Ef (E) : T
(E-app)

Γ ` E : Decorated nn<Tn> na@nn = α ∈ O
Γ ` E .na : α(nn<Tn>)

(E-acc)

Γ ` E : nn<Tn> nn<Tn>;Γ ` A
Γ ` decorate E with { A } : Decorated nn<Tn>

(E-dec)

Fig. 5. Type inference rules Ag.
.

9

resulting type. For example, the function α for fst attribute on Pair shown in
Fig. 4 would map Pair < T S > to T .

The rule D-prod has a few very particular details. The types written in the
production signature are those types that should be supplied when the produc-
tion is applied. Inside the body of the production, however, the children and
left-hand side should appear decorated. So, if a child is declared as having type
Expr (as in many of the productions of Fig. 3), then inside the production body,
its type is seen to be Decorated Expr. To accomplish this, we apply dec to the
types of the children when adding them to the environment (Γ). dec’s behavior
is simple: it is the identity function, except that nonterminal types nn<T> be-
come their associated decorated types Decorated nn<T>. The purpose of this
is to reflect what the production does: there will be rules inside the production
body (S) that define inherited attributes for its children, and therefore, the chil-
dren are being automatically decorated by the production and should be seen
as decorated within the production body.

Note that when D-prod checks the validity of its statements S, it supplies
R with types unchanged (that is, without dec applied.) This is also important,
as inherited attributes can only be supplied to previously undecorated children.
Children of already decorated type already have their inherited attributes, and
so this information (R, without dec applied) is necessary to distinguish between
children that were initially undecorated and those that were already decorated
and cannot be supplied new inherited attributes.

The rules S-syn and S-inh are again symmetric, and apply to the same
syntax. Which rule is used depends on whether an inherited attribute is being
supplied to a child, or a synthesized attribute is being defined for the production.
Note that we use the shorthand na ∈ S simply to mean that it is a declared
attribute of the appropriate kind, as we no longer care about the type declared
for the attribute specifically, that will be obtained from the occurs declaration
via the function α. The only major detail for rule S-fwd is the the expression
type is undecorated. Rule A-inh is similar to S-inh except that we obtain the
type from the context, rather than by looking up a name.

The rules E-var, and E-app are slight adaptations of the standard versions
of these for the lambda calculus. Notice in the rule E-acc that the expression
type is required to be decorated (attributes cannot be accessed from trees that
have not yet been decorated with attributes.) In section 3.2, we consider the
problem with this rule, as written, where we must know the type of the left
hand side in order to report any type at all for the whole expression, due to the
function α. The rules E-dec and E-new should look straightforward, based on
their descriptions in the previous section, and the visual in Fig. 2.

Generalized algebraic data types A full description of GADTs can be found
in [11]. Examples of the utility of GADTs are omitted here for space reasons,
but many of the examples in the cited functional programming literature make
use of them for syntax trees—the application to attribute grammars should be
obvious.

10

The language Ag (as it currently stands, without pattern matching) supports
GADTs effortlessly. The type system presented in Fig. 5 needs no changes at all,
whether GADTs are allowed or not. The only difference is actually syntactic. If
the type of the nonterminal on the left hand side of production declarations
permits types (T) inside the angle brackets (as they do in Fig. 1), GADTs are
supported. If instead, these are restricted to type variables (nv), then GADTs
are disallowed. All of the complication in supporting GADTs appears to lie
in pattern matching, as we will see in section 4.2 when we introduce pattern
matching to Ag.

3.2 Polymorphic attribute access problem

We encountered an issue in adapting a Hindley-Milner style type system to
attributes grammars. Typing the attribute access expression e.a immediately
runs into two problems with the standard inference algorithm:

– There is no type we can unify e with. The constraint we wish to express is
that, whatever e’s type, the attribute a occurs on it. That is, na@nn = α
has to be in O.

– There is no type that we can report as the type of the whole expression,
without knowing e’s type, because without that nonterminal type we cannot
find the function α needed to report the attribute’s type.

These problems can occur even in the simplest case of parameterized attributes.
For example, we cannot know that e.fst means that e should be a Pair or a
Triple. Any access of fst simply requires knowing what type we’re accessing
fst on.

Fortunately, a sufficient level of type annotations guarantees that we’re able
to infer the type of the subexpression before needing to report a type for the
attribute access expression which is necessary to continue type inference. Ag
actually requires type annotations for every name introduced into the environ-
ment, which results in nearly all subexpressions evaluating to a closed type. For
Ag this requirement is not a burden, since production declarations and attribute
declarations really should provide explicit types (even if we had the option not
to), and these are the only value declarations in the language.

Type inference does still provide a significant advantage since it infers the
“type parameters” to parameterized productions. In a prototype implementation
of parametric polymorphism in Silver [4] without inference one needed to specify,
for example, the type of elements in an empty list literal. Explicitly specifying
such type parameters quickly becomes tedious.

The major downside of needing type annotations would be for features not
present in Ag. Lambda functions, let expressions, “local attributes” and so forth
where we might like type inference must now all have type annotations, instead.

3.3 Putting types to work

In rule D-prod, nonterminal children are added to the environment in their dec-
orated form for the body of the production (using the function dec.) While this is

11

correct behavior, it can be inconvenient, as it can lead to a tedious proliferation
of new wherever the undecorated form of a child is needed, instead.

What we’d like is to have these names refer to either of their decorated or
undecorated values, and simply disambiguate based upon type. The example
grammar in Fig. 3 is already relying on this desired behavior. In the or pro-
duction, we happily access the eval attribute from the child l, when defining
the equation for eval on this production. But, we also happily apply the not

production to l, when defining negation. As currently written, the type rules
would require us to write new(l) in the latter case, because the not production
expects an undecorated value, and l is seen as decorated within the production.

The simplest change to the type rules to reflect this idea would be to add
a new rule for expressions, able to refer implicitly to the R and L contextual
information given to statements:

n : T ∈ R ∪ L
Γ ` n : T

(E-AsIs)

Unfortunately, simply introducing this rule leads to nondeterminism when typing
checking. With it, there is no obvious way to decide whether to use it or E-var,
which is problematic.

To resolve this issue, we introduce a new pseudo-union type of both the
decorated and undecorated versions of a nonterminal. But this type, called Und
for undecorable, will also carry with it a type variable that is specialized to the
appropriate decorated or undecorated type when the it is used in one way or the
other. This restriction reflects the fact that we need to choose between one of
these values or the other.

Und is introduced by altering the dec function used in D-prod to turn un-
decorated child types into undecorable types, rather than decorated types. An
undecorable type will freely unify with its corresponding decorated and undec-
orated type, but in doing so, refines its corresponding hidden type variable.

U(Und〈nn<nv >, a〉, nn<nv >) :- U(a, nn<nv >)

U(Und〈nn<nv >, a〉, Decorated nn<nv >) :- U(a, Decorated nn<nv >)

U(Und〈nn<nv >, a〉, Und〈nn<nv >, b〉) :- U(a, b)

Now, suppose we have the admittedly contrived example below, with the
types of foo and bar as shown, and we attempt to type the expression invoking
foo

bar :: Production(Baz ::= Expr)

foo :: Production(Baz ::= a Production(Baz ::= a) a)

foo(child1, bar, child2)

child1 will report type Und〈Expr, a〉, and child2 will report Und〈Expr, b〉.
We will then enforce two constraints while checking the application of foo:

12

E ::= case E of p→ Ep

p ::= np(n) |

Fig. 6. The pattern extension to Ag

Und〈Expr, a〉 = Expr, which using the first rule above will result in requir-
ing a = Expr, then Und〈Expr,Expr〉 = Und(〈Expr〉, b) which will using the
third rule requires b = Expr.

The introduction of this undecorable type is something of a special-purpose
hack, but the notation gains are worth it. The notational gains could also be
achieved with more sophisticated type machinery (like type classes), but it also
seems worthwhile to stick to the simple Hindley-Milner style of type systems.

4 Pattern matching

In this section we consider the extensions that must be made to include pattern
matching in Ag. The main challenge lies in the interaction of forwarding and
pattern matching.

4.1 Adding pattern matching to AG

Fig. 6 shows the extension to expression syntax for patterns. Note that to sim-
plify our discussion, we are considering only single-value, non-nested patterns.
Support for nested patterns that match on multiple values at once can be ob-
tained simply by applying a standard pattern matching compiler, such as [20].

As already noted in the introduction, pattern matching can be emulated with
attributes, but that emulation comes at the cost of potentially needing many
attributes. One possible translation of pattern matching to attributes begins
by creating a new synthesized attribute for each match expression, occurring
on the nonterminal it matches on, with the corresponding pattern expression
as the attribute equation for each production1. This also requires every name
referenced in that equation to be turned into an inherited attribute that is passed
into that nonterminal by the production performing the match. These names not
only include children of the production, but also any pattern variables bound
by enclosing pattern matching expressions, such as those created by the pattern
compiler from multi-value, nested patterns.

This translation actually does not quite work in Ag: pattern matching on ref-
erence attributes is problematic because they’re already decorated values that we
cannot supply with more inherited attributes. In practice, though, there are other
language features available that can be used to avoid this problem. Still, this is

1 The observant reader may note here that we have left out wildcards. This is delib-
erate, and will be considered shortly.

13

nonterminal Type with eq, eqto;

synthesized attribute eq :: Boolean;

inherited attribute eqto :: Type;

abstract production pair

t::Type ::= l::Type r::Type

{ t.eq =

case t.eqto of

pair(a, b) ->

(decorate l with { eqto = a }).eq &&

(decorate r with { eqto = b }).eq

| _ -> false

end;

}

abstract production tuple

t::Type ::= ts::[Type]

{ forwards to

case ts of

[] -> unit()

| a:[] -> a

| a:b:[] -> pair(a, b)

| f:r -> pair(f, tuple(r))

end;

}

Fig. 7. A use of pattern matching in types.

not a good approach for implementing pattern matching. The most prolific data
structures are probably also those pattern matched upon the most, and unless
the attribute grammar implementation is specifically designed around solving
this problem, there will be overhead for every attribute. A List nonterminal,
for example, could easily balloon to very many attributes that are the result of
translated-away patterns, and there could easily be very many more cons nodes
in memory. The result would not be memory efficient, to say the least.

The true value of considering this translation to attributes is in trying to
resolve the problem pattern matching raises for extensibility. Patterns are ex-
plicit lists of productions (constructors), something that works just fine for data
types in functional languages because data types are closed: no new constructors
can be introduced. Nonterminals are not closed, and this is a major friction in
integrating these two language features. However, if pattern matching has a suc-
cessful reduction to attributes, that problem is already solved: forwarding gives
us the solution.

But, the translation to attributes is not quite fully specified: what do we do
in the case of wild cards? We choose the smallest possible answer that could still
allow us to be sure we cover all cases: wild cards will apply to all productions,
not already elsewhere in the list of patterns, that do not forward. Thus, we
would continue to follow forwards down the chain until either we reach a case in
the pattern matching expression, or we reach a non-forwarding, non-matching
production, in which case we use the wild card. The dual wild card behavior
(applying to all productions, not just those that do not forward) would mean
that the “look through forwards” behavior of pattern matching would only occur
for patterns without wild cards, which seems unnecessarily limiting.

In Fig. 7, we show a very simple example of the use of pattern matching in
determining equality of types. (We again take a few small liberties in notation;
new in this example is the use of a list type and some notations for it borrowed

14

from Haskell.) The advantage of interacting pattern matching and forwarding
quickly becomes apparent in the example of a tuple extension to the language
of types. The tuple type is able to “inherit” its equality checking behavior from
whatever type it forwards to, as is normal for forwarding. But, this alone is not
sufficient: consider checking two tuples (tuple([S, T, U])) against each other.
The first will forward to pair(S, pair(T, U)), and pattern match on the sec-
ond. But, without the “look-through” behavior we describe here, the pattern will
fail to match, as it will look like a tuple. With the behavior, it will successfully
match the pair production it forwards to, and proceed from there.

Alternative wild card behavior. One alternative might be to take advantage
of higher level organizational information (not considered in Ag) to decide which
productions to apply the wildcard case to. For example, the wildcard could apply
to all known productions wherever the case expression appears (based on imports
or host/extension information), instead of all non-forwarding productions. This
has the advantage that we wouldn’t need to repeat the wildcard case for some
forwarding productions in those cases where we’d like to distinguish between a
production and the production it forwards to, but it has a few disadvantages as
well:

– We may now need to repeat case alternatives if we don’t want to distinguish
between a forward we know about (e.g. for syntactic sugar.)

– The meaning of a case expression might change based on where it appears
or by changing the imports of the grammar it exists in.

– A “useless imports” analysis would have to become more complex to ensure
no pattern matching expressions would change behavior, as the wildcard of
a case expression may be implicitly referencing that grammar.

As a result, this behavior has enough additional implementation and conceptual
complexities that we have not adopted it.

4.2 Typing pattern matching expressions

Matching on undecorated trees seems to introduce no new interesting behav-
ior different from pattern matching on ordinary data types, which makes sense
because in a very real sense undecorated trees are not different from ordinary
data types. Pattern matching on decorated trees, however, introduces a couple
of interesting behaviors:

– As we saw in the previous section, we can evaluate the forward of a produc-
tion and allow pattern matching to “look through” to the forward.

– We can also allow pattern variables to extract the decorated children of a
production, rather than just the undecorated children.

Further, restricting pattern matching to only apply to decorated trees doesn’t
lose us anything: if it makes sense to pattern match on an undecorated tree,
then the case construct can simply decorate a tree with no inherited attributes

15

Γ ` E : Decorated nn<T > Γ ` p→ Ep : nn<T >→ T

Γ ` case E of p→ Ep : T
(E-case)

np ∈ P Γ ` np : Production(Tn ::= Tc)

θ ∈ mgu(Ts = Tn) θ(Γ, n : dec(Tc)) ` Ep : θ(Tr)

Γ ` np(n)→ Ep : Ts → Tr

(P-prod)

Fig. 8. The additional typing rules for pattern matching expressions.

to pattern match upon it. As a result, we have decided to just consider pattern
matching on decorated trees in Ag.

The type rules for patterns are shown in Fig. 8. Notice in E-case that the
scrutinee expression (E) must be a decorated type. Also note that dec is applied
directly to Tc in P-prod. The reason for this is to allow pattern matching to
extract the decorated trees corresponding to a node’s children. This function
(dec) must be applied prior to any type information outside the original decla-
ration of the production being considered, in order to be accurate about which
children are available as decorated trees. For example, the pair production in
Fig. 4 would not be decorating its children, even though they might turn out
to be a (undecorated) nonterminal type (i.e. a pair of Expr), because to the
pair production, the types of its children are type variables. Applying dec early
means that here we see the type of the children as type variables, rather than a
specific type, just as the original production would have.

The use of θ in the type rule P-prod is the cost that we must pay for
supporting GADTs in patterns. The details for handling GADTs in patterns are
adapted from [11], as this approach seemed especially simple to implement. In
that paper, much attention is paid to a notion of wobbly and rigid types. Thanks
to the concessions in type reconstruction we must make due to the attribute
access problem discussed in section 3.2, all bindings in Ag can be considered
rigid in their sense, vastly simplifying the system even more.

The essential idea is to compute a most general unifier (θ) between the pat-
tern scrutinee’s type and the result type of the production 2. We then check the
right hand side of the alternative, under the assumptions of the unifier. In effect,
all this rule is really stating is that whatever type information we learn from
successfully matching a particular GADT-like production stays confined to that
branch of the pattern matching expression.

2 The need to concern ourselves with “fresh” most general unifiers in the sense of the
cited paper is eliminated again due to the lack of “wobbly” types.

16

4.3 Other concerns

No new special cases need to be introduced to perform a well-definedness test
in the presence of pattern matching, as pattern matching can be translated to
attributes (the troubles mentioned earlier are eliminated if we are allowed full-
program information), and forwarding can also be translated away to higher
order attribute grammars [16].

The standard techniques apply for ensuring exhaustive matching of patterns,
except that we only need to consider productions that do not forward as the
essential cases to cover.

Although it is often glossed over in descriptions of type systems, it’s worth
noting that we’re allowing type variables to appear in productions’ right hand
sides (that is, in the children) that do not appear in the left hand side. This
corresponds to a notion of existential types in functional languages, but we do
not require any special forall notation to include them. Background discussion
on existential types can be found in [9].

5 Related work

The integration of pattern matching and forwarding we present in this paper is
novel. Some aspects of the rest of the system can be found in scattered in other
attribute grammar languages in various forms, but not in ways that provide both
the type safety and the familiar and convenient notations that we provide here.

In JastAdd [5] and Kiama[14], trees are represented as objects and attribute
evaluation mutates the tree effectfully (either directly as in JastAdd or indirectly
via memoization as in Kiama.) As a result, both of these languages lack a type
distinction between the two kinds of trees. Instead, the user must remember to
invoke a special copy method, analogous to our new expression, wherever a new
undecorated tree is needed. These copy methods do not change the type of the
tree, as our new operation does, resulting in a lack of the type safety that we
have here. UUAG[15] does not appear to support reference attributes, and so the
type distinction is irrelevant. In functional embeddings these type distinctions
occur naturally but at the notational cost of typically having different names for
the two views of the tree and needing to explicitly create the decorated tree from
the undecorated one. AspectAG [18] is a sophisticated embedding into Haskell
that naturally maintains the type safety we seek but at some loss of notational
convenience. It also requires a fair amount of so-called “type-level” programming
that is less direct than the Silver specifications, and the error messages generated
can be opaque.

Kiama and UUAG, by virtue of their embedding in functional languages, do
support parameterized nonterminals and attributes. UUAG side-steps the at-
tribute access problem of section 3.2 by simply not having reference attributes.
All attribute access are therefore only on children, which have an explicit type
signature provided. UUAG does not appear to support GADT-like productions,
but we suspect it could be easily extended to. Both also support pattern match-
ing on nonterminals. In UUAG, this is only supported for undecorated trees,

17

and its behavior is identical to ordinary pattern matching in Haskell. In Kiama,
pattern matching can extract decorated children from a production. But in both
cases, use of pattern matching would compromise the extensibility of the specifi-
cation. Rascal’s [7] allows trees to be dynamically annotated with values, similar
to adding attribute occurs-on specifications dynamically. However, the presence
of annotations is not part of the static type system and thus neither is the
distinction between decorated and undecorated trees.

Scala’s [10] support for pattern matching and inheritance presents the same
type of extensibility problem we faced when integrating pattern matching with
forwarding. Their solution is a notion of sealed classes that simply prevent new
classes from outside the current file from inheriting from it directly.

In [13], a type system with constraints powerful enough to capture the α
functions created by our occurs declarations is presented. To regain full type
inference, we believe the basic Hindley-Milner style system must be abandoned
in favor of something at least this powerful.

6 Future work

Typing attribute grammars offers a wealth of future work possibilities. The lan-
guage Ag is not quite suitable for proving soundness results, as writing down op-
erational semantics for it would be overly complicated. Instead, we would like to
develop a smaller core attribute calculus, with an appropriate operational seman-
tics and obtain a soundness result from that. To get the simple Hindley-Milner
type system to apply, we sacrificed the ability to remove some type annotations
from the languages. We believe a more powerful core type system (such as [13])
will permit inference to work freely. The type system currently does not permit
many forms of functions over data structures to be recast as attributes. For ex-
ample, quantifiers are not permitted in the right places to allow if-then-else

to somehow be written as attributes on a Boolean nonterminal. Attributes also
cannot occur on only some specializations of a nonterminal, which means natural
functions like sum over a list of integers cannot be recast as attributes. (Such
computations are realized as functions in Silver.)

Furthermore, the traditional well-definedness tests for attribute grammars
may have another useful interpretation in terms of types, perhaps refining our
blunt distinction between undecorated and decorated types. There may also be
refinements possible due to the presence of pattern matching. Generic attribute
grammars[12] are partly covered by polymorphic nonterminals, except for their
ability to describe constraints on the kinds of types that can be incorporated.
For example, in Silver, permitting nonterminals to require type variables to be
concrete types, permitting these type variables to appear in concrete syntax, and
reifying the result before it is sent to the parser generator would be a fantastic
addition to the language. Finally, we would like to account for circular attributes,
which are extremely useful for fixed point computations. It would be interesting
to see if there is a type-based distinction for circular attributes, just as we show
for reference, higher-order, and production attributes in this paper.

18

7 Conclusion

In this paper we have claimed that certain features found in modern functional
languages can be added to an attribute grammar specification language to pro-
vide a number of benefits. By using types to distinguish decorated and undec-
orated trees the type system can prevent certain errors and help to provide
more convenient notations. Pattern matching on decorated trees adds a measure
of convenience and expressiveness (in the informal sense) to attribute grammar
specification languages, and crucially, it can be done while maintaining the exten-
sibility possible with forwarding. Parameterized nonterminals and productions
can play the same role as algebraic data types in functional languages; they can
be used as syntax trees or for more general purpose computations. Furthermore,
GADT-like productions are a very natural fit for attribute grammars.

However, in scaling Ag up to Silver, the type annotations requirement to
get around the attribute access problem stands in the way of meeting our full-
featured goal. This means that functions and local attributes, for example, must
specify their types.

In integrating these features into an attribute grammar specification language
we found that some small modifications to the implementation of Hindley-Milner
typing were needed. To meet our goals of having natural and familiar notations
(for attribute access and in order to infer if the decorated or undecorated ver-
sion of a tree is to be used) it was helpful to have direct control over the type
system to make modifications so that attribute grammar-specific concerns could
be addressed. Supporting GADT-like productions and pattern matching that is
compatible with forwarding required similar levels of control of the languages
implementation and translation.

We previously added polymorphic lists and a notion of pattern-matching
that was not compatible with forwarding using language extensions [17]. While
this approach does allow expressive new features to be added to the language,
it could not accomplish all of our goals, as adding a new typing infrastructure
(for type inference) replaces and does not extend the previous type system in
Silver. Adding these kinds of features by embedding attribute grammars in a
function language or writing a preprocessor that is closely tied to the underlying
implementation language can also make it more difficult to achieve these goals.
However, an advantage of these approaches that should not be overlooked is
that many useful features of the underlying language can be used “for free” with
no real effort on the attribute grammar system designer to include them into
their system. It is difficult to draw any conclusions beyond noting that these
are the sort of trade-offs that AG system implementers, specifically (and DSL
implementers, more generally) need to consider.

References

1. Boyland, J.T.: Remote attribute grammars. J. ACM 52(4), 627–687 (2005)
2. Farrow, R.: Automatic generation of fixed-point-finding evaluators for circular, but

well-defined, attribute grammars. ACM SIGPLAN Notices 21(7) (1986)

19

3. Ganzinger, H., Giegerich, R.: Attribute coupled grammars. SIGPLAN Notices 19,
157–170 (1984)

4. Gao, J.: An Extensible Modeling Language Framework via Attribute Grammars.
Ph.D. thesis, University of Minnesota, Department of Computer Science and En-
gineering, Minneapolis, Minnesota, USA (2007)

5. Hedin, G.: Reference attribute grammars. Informatica 24(3), 301–317 (2000)
6. Johnsson, T.: Attribute grammars as a functional programming paradigm. In:

Kahn, G. (ed.) Functional Programming Languages and Computer Architecture.
LNCS, vol. 274, pp. 154–173. Springer-Verlag (1987)

7. Klint, P., van der Storm, T., Vinju, J.: Rascal: a domain specific language for
source code analysis and manipulation. In: Proc. of Source Code Analysis and
Manipulation (SCAM 2009) (2009)

8. Knuth, D.E.: Semantics of context-free languages. Mathematical Systems Theory
2(2), 127–145 (1968), corrections in 5(1971) pp. 95–96

9. Läufer, K., Odersky, M.: Polymorphic type inference and abstract data types. ACM
Trans. on Prog. Lang. and Systems (TOPLAS) 16(5), 1411–1430 (1994)

10. Odersky, M., Spoon, L., Venners, B.: Programming in Scala. Artima, second edn.
(2010)

11. Peyton Jones, S., Vytiniotis, D., Weirich, S., Washburn, G.: Simple unification-
based type inference for GADTs. In: Proceedings of the eleventh ACM SIGPLAN
international conference on Functional programming. pp. 50–61. ACM (2006)

12. Saraiva, J., Swierstra, D.: Generic Attribute Grammars. In: 2nd Workshop on
Attribute Grammars and their Applications. pp. 185–204 (1999)

13. Schrijvers, T., Peyton Jones, S., Sulzmann, M., Vytiniotis, D.: Complete and de-
cidable type inference for GADTs. In: Proceedings of the 14th ACM SIGPLAN
International Conference on Functional Programming. pp. 341–352. ACM (2009)

14. Sloane, A., Kats, L., Visser, E.: A pure object-oriented embedding of attribute
grammars. In: Proc. of Language Descriptions, Tools, and Applications (LDTA
2009). ENTCS, vol. 253, pp. 205–219. Elsevier Science (2010)

15. Swierstra, S., Alcocer, P., Saraiva, J.: Designing and implementing combinator
languages. In: Proc. Third International Summer School on Advanced Functional
Programming. LNCS, vol. 1608, pp. 150–206. Springer (1999)

16. Van Wyk, E., de Moor, O., Backhouse, K., Kwiatkowski, P.: Forwarding in at-
tribute grammars for modular language design. In: Proc. 11th Intl. Conf. on Com-
piler Construction. LNCS, vol. 2304, pp. 128–142 (2002)

17. Van Wyk, E., Bodin, D., Gao, J., Krishnan, L.: Silver: an extensible attribute gram-
mar system. Science of Computer Programming 75(1–2), 39–54 (January 2010)

18. Viera, M., Swierstra, S.D., Swierstra, W.: Attribute grammars fly first-class: How
to do aspect oriented programming in haskell. In: Proc. of 2009 International Con-
ference on Functional Programming (ICFP’09) (2009)

19. Vogt, H., Swierstra, S.D., Kuiper, M.F.: Higher-order attribute grammars. In: ACM
Conf. on Prog. Lang. Design and Implementation (PLDI). pp. 131–145 (1990)

20. Wadler, P.: Efficient compilation of pattern matching. In: The Implementation of
Functional Programming Languages, pp. 78–103. Prentice-Hall (1987)

20

	Integrating attribute grammar and functional programming language features

