
Ambiguity Detection: Scaling to Scannerless

H. J. S. Basten and P. Klint and J. J. Vinju

Centrum Wiskunde & Informatica
Science Park 123, 1098 XG Amsterdam, The Netherlands

Abstract. Static ambiguity detection would be an important aspect of language
workbenches for textual software languages. However, the challenge is that au-
tomatic ambiguity detection in context-free grammars is undecidable in general.
Sophisticated approximations and optimizations do exist, but these do not scale
to grammars for so-called “scannerless parsers”, as of yet. We extend previous
work on ambiguity detection for context-free grammars to cover disambiguation
techniques that are typical for scannerless parsing, such as longest match and re-
served keywords. This paper contributes a new algorithm for ambiguity detection
in character-level grammars, a prototype implementation of this algorithm and
validation on several real grammars. The total run-time of ambiguity detection
for character-level grammars for languages such as C and Java is significantly
reduced, without loss of precision. The result is that efficient ambiguity detection
in realistic grammars is possible and may therefore become a tool in language
workbenches.

1 Introduction

1.1 Background

Scannerless generalized parsers [7], generated from character-level context-free gram-
mars, serve two particular goals in textual language engineering: parsing legacy lan-
guages and parsing language embeddings. We want to parse legacy languages when
we construct reverse engineering and reengineering tools to help mitigating cost-of-
ownership of legacy source code. The syntax of legacy programming languages fre-
quently does not fit the standard scanner-parser dichotomy. This is witnessed by lan-
guages that do not reserve keywords from identifiers (PL/I) or do not always apply
“longest match” when selecting a token class (Pascal). For such languages we may gener-
ate a scannerless generalized parser that will deal with such idiosyncrasies correctly.

Language embeddings need different lexical syntax for different parts of a composed
language. Examples are COBOL with embedded SQL, or Aspect/J with embedded
Java. The comment conventions may differ, different sets of identifiers may be reserved
as keywords and indeed identifiers may be comprised of different sets of characters,
depending on whether the current context is the “host language” or the embedded “guest
language”. Language embeddings are becoming increasingly popular, possibly due to
the belief that one should select the right tool for each job. A character-level grammar
can be very convenient to implement a parser for such a combined language [8]. The

reason is that the particular nesting of non-terminals between the host language and
the guest language defines where the different lexical syntaxes are applicable. The
lexical ambiguity introduced by the language embedding is therefore a non-issue for a
scannerless parser. There is no need to program state switches in a scanner [15], to use
scanner non-determinism [2], or to use any other kind of (ad-hoc) programming solution.

Using a character-level grammar and a generated scannerless parser results in more
declarative BNF grammars which may be maintained more easily than partially hand-
written parsers [11]. It is, however, undeniable that character-level grammars are more
complex than classical grammars since all lexical aspects of a language have to be speci-
fied in full detail. The character-level grammar contains more production rules, which
may contain errors or introduce ambiguity. In the absence of lexical disambiguation
heuristics, such as “prefer keywords” and “longest match”, a character-level grammar
may contain many ambiguities that need resolving. Ergo, character-level grammars lead
to more declarative grammar specifications but increase the risk of ambiguities and
makes automated ambiguity detection harder.

1.2 Contributions and Roadmap

We introduce new techniques for scaling ambiguity detection methods to the complex-
ity that is present in character-level grammars for real programming languages. Our
point of departure is a fast ambiguity detection framework that combines a grammar
approximation stage with a sentence generation stage [5]. The approximation is used to
split a grammar into a set of rules that certainly do not contribute to ambiguity and a set
that might. The latter is then fed to a sentence generator to obtain a clear and precise
ambiguity report. We sketch this global framework (Section 2) and then describe our
baseline algorithm (Section 4). The correctness of this framework has been established
in [4] and is not further discussed here.

We present several extensions to the baseline algorithm to make it suitable for
character-level grammars (Section 5). First, we consider character classes as shiftable
symbols, instead of treating every character as a separate token. This is necessary to deal
with the increased lexical complexity of character-level grammars. Second, we make
use of disambiguation filters [7] to deal with issues such as keyword reservation and
longest match. These filters are used for precision improvements at the approximation
stage, and also improve the run-time efficiency of the sentence generation stage by
preventing spurious explorations of the grammar. Third, we use grammar unfolding as
a general optimization technique (Section 6). This is necessary for certain character-
level grammars but is also generally applicable. At a certain cost, it allows us to more
effectively identify the parts of a grammar that do not contribute to ambiguity.

We have selected a set of real character-level grammars and measure the speed,
footprint and accuracy of the various algorithms (Section 7). The result is that the total
cost of ambiguity detection is dramatically reduced for these real grammars.

GrammarGrammar Non-deterministic
Finite Automaton

Non-deterministic
Finite Automaton

Construct NFA
(Alg. 2)

Pair GraphPair Graph

Construct &
Traverse PG (Alg. 3)

? Non-ambiguity
Report

Non-ambiguity
ReportHarmless

Productions

Harmless
Productions

Reconstructed
NFA

Reconstructed
NFA

Identify harmless
Productions

Reconstruct
Filtered NFA

Pushdown
Automaton

Pushdown
Automaton

Construct PDA

?

Generate sentences

Time-outTime-out

Ambiguity
Report

Ambiguity
Report

Filter & Reduce

1

3

4

5

2

76

Find Harmless Productions

Find Ambiguous Sentences

Fig. 1. Baseline architecture for fast ambiguity detection.

2 The Ambiguity Detection Framework

2.1 The Framework

Our starting point is an ambiguity detection framework called AMBIDEXTER [5], which
combines an extension of the approximative Noncanonical Unambiguity Test [13] with
an exhaustive sentence generator comparable to [14]. The former is used to split a
grammar into a set of harmless rules and a set of rules that may contribute to ambiguity.
The latter is used to generate derivations based on the potentially ambiguous rules and
produce understandable ambiguity reports.

Figure 1 displays the architecture of the baseline algorithm which consists of seven
steps, ultimately resulting in a non-ambiguity report, an ambiguity report, or a time-out.

1. In step ¶ the grammar is bracketed, starting and ending each rule with a unique
terminal. The language of the bracketed grammar represents all parse trees of the
original grammar. In this same step an NFA is constructed that over-approximates
the language of the bracketed grammar. This NFA allows us to find strings with
multiple parse trees, by approximation, but in finite time.

2. In step · a data-structure called a Pair Graph (PG) is constructed from the NFA.
This PG represents all pairs of two different paths through the NFA that produce
the same sentence, i.e., potentially ambiguous derivations. During construction, the
PG is immediately traversed to identify the part of the NFA that is covered by the
potentially ambiguous derivations.

3. In step ¸ we filter the uncovered parts from the NFA and clean up dead ends. This
might filter potentially ambiguous derivations from the NFA that are actually false
positives, so we reconstruct the PG again to find more uncovered parts. This process
is repeated until the NFA cannot be reduced any further.

4. In step ¹ we use the filtered NFA to identify harmless productions. These are the
productions that are not used anymore in the NFA. If the NFA is completely filtered
then all productions are harmless and the grammar is unambiguous.

5. In step º we prepare the filtered NFA to be used for sentence generation. Due to
the removal of states not all paths produce terminal only sentences anymore. We
therefore reconstruct the NFA by adding new terminal producing paths.
In our original approach we generated sentences based on the remaining potentially
harmful productions. However, by immediately using the filtered NFA we retain
more precision, because the NFA is a more precise description of the potentially
ambiguous derivations than a reconstructed grammar.

6. In step » we convert the NFA into a pushdown automaton (PDA) which enables
faster sentence generation in the next step.

7. The final step (¼) produces ambiguous strings, including their derivations, to report
to the user. This may not terminate, since most context-free grammars generate
infinite languages; we need to stop after a certain limited time. All ambiguity that
was detected before the time limit is reported to the user.

It was shown in [4] that the calculations employed in this architecture are correct,
and in [5] that indeed the efficiency of ambiguity detection can be improved considerably
by first filtering harmless productions. However, the baseline algorithm is not suitable
for character-level grammars since it is unable to handle their increased complexity and
it will still find ambiguities that are already solved. It can even lead to incorrect results
because it cannot deal with the non-context-free behaviour of follow restrictions. In this
paper we identify several opportunities for optimization and correction:

– We filter nodes and edges in the NFA and PG representations in order to make use
of disambiguation information that is found in character-level grammars (Section 5).

– We “unfold” selected parts of a grammar to handle the increased lexical complexity
of character-level grammars (Section 6).

For the sake of presentation we have separated the discussion of the baseline algorithm
(Section 4), the filtering (Section 5), and the unfolding (Section 6), but it is important to
note that these optimizations are not orthogonal.

2.2 Notational Preliminaries

A context-free grammar G is a four-tuple (N,T, P, S) where N is the set of non-
terminals, T the set of terminals, P the set of productions over N × (N ∪ T)∗, and S is
the start symbol. V is defined as N ∪ T . We use A,B,C, . . . to denote non-terminals,
X,Y, Z, . . . for either terminals or non-terminals, u, v, w, . . . for sentences: strings of
T ∗, and α, β, γ, . . . for sentential forms: strings over V ∗.

A production (A,α) in P is written as A→α. A grammar is augmented by adding
an extra non-terminal symbol S′, a terminal symbol $ and a production S′ → S$, and
making S′ the start symbol. We use the function pid :P→N to relate each production
to a unique number. An item indicates a position in a production rule with a dot, for
instance as S → A•BC. We use I to denote the set of all items of G.

The relation =⇒ denotes derivation. We say αBγ directly derives αβγ, written
as αBγ =⇒ αβγ if a production rule B → β exists in P . The symbol =⇒∗ means
“derives in zero or more steps”. The language of G, denoted L(G), is the set of all

sentences derivable from S. We use S(G) to denote the sentential language of G: the
set of all sentential forms derivable from S.

From a grammar G we can create a bracketed grammar Gb by surrounding each
production rule with unique bracket terminals [9]. The bracketed grammar of G is
defined as Gb = (N,Tb, Pb, S) where Tb is the set of terminals and brackets, defined as
Tb = T∪ T〈∪ T〉, T〈 = {〈i |i ∈ N}, T〉 = {〉i |i ∈ N}, and Pb = {A→ 〈iα〉i |A→ α ∈
P, i = pid(A→ α)}. Vb is defined as N ∪ Tb. We use the function bracketP to map a
bracket to its corresponding production, and bracketN to map a bracket to its production’s
left hand side non-terminal. They are defined as bracketP(〈i) = bracketP(〉i) = A→ α
iff pid(A→ α) = i, and bracketN(〈i) = bracketN(〉i) = A iff ∃A→ α ∈ P, pid(A→
α) = i. A string in the language of Gb describes a parse tree of G. Therefore, if two
unique strings exist in L(Gb) that become identical after removing their brackets, G is
ambiguous.

3 Character-Level Grammars

Now we introduce character-level grammars as used for scannerless parsing. Character-
level grammars differ from conventional grammars in various ways. They define their
syntax all the way down to the character level, without separate token definitions. For
convenience, sets of characters are used in the production rules, so-called character
classes. Regular list constructs can be used to handle repetition, like in EBNF. Also,
additional constructs are needed to specify the disambiguation that is normally done
by the scanner, so called disambiguation filters [12]. Typical disambiguation filters for
character-level grammars are follow restrictions and rejects [7]. Follow restrictions are
used to enforce longest match of non-terminals such as identifiers and comments. Rejects
are typically used for keyword reservation. Other commonly used disambiguation filters
are declarations to specify operator priority and associativity, so these do not have to be
encoded manually into the production rules.

3.1 Example

Figure 2 shows an excerpt of a character-level grammar, written in SDF [10,16]. The
excerpt describes syntax for C-style variable declarations. A Declaration statement
consists of a list of Specifiers followed by an Identifier and a semicolon, separated
by whitespace (Rule 1). A Specifier is either a predefined type like int or float, or
a user-defined type represented by an Identifier (Rule 4). At Rule 5 we see the use
of the character class [a-z] to specify the syntax of Identifier.

The grammar contains both rejects and follow restrictions to disambiguate the lexical
syntax. The {reject} annotation at Rule 6 declares that reserved keywords of the
language cannot be recognized as an Identifier. The follow restriction statements at
Rules 9–11 declare that any substring that is followed by a character in the range [a-z]
cannot be recognized as an Identifier or keyword. This prevents the situation where
a single Specifier, for instance an Identifier of two or more characters, can also
be recognized as a list of multiple shorter Specifiers. Basically, the follow restrictions
enforce that Specifiers should be separated by whitespace.

Declaration ::= Specifiers Ws? Identifier Ws? ";" (1)

Specifiers ::= Specifiers Ws? Specifier (2)

Specifiers ::= Specifier (3)

Specifier ::= Identifier | "int" | "float" | ... (4)

Identifier ::= [a-z]+ (5)

Identifier ::= Keyword { reject } (6)

Keyword ::= "int" | "float" | ... (7)

Ws ::= [\ \t\n]+ (8)

Identifier -/- [a-z] (9)

"int" -/- [a-z] (10)

"float" -/- [a-z] (11)

Fig. 2. Example character-level grammar for C-style declarations.

3.2 Definition

We define a character-level context-free grammar GC as the eight-tuple (N,T, C, P C , S,
RD, RF , RR) where C ⊂ N is the set of character classes over P(T), P C the set of
production rules over N ×N∗, RD the set of derivation restrictions, RF the set of follow
restrictions, RR the set of rejects.

A character class non-terminal is a finite set of terminals in T . For each of its
elements it has an implicit production with a single terminal right hand side. We can
write αCβ =⇒ αcβ iff C ∈ C and c ∈ C.

The derivation restrictions RD restrict the application of productions in the context
of others. They can be used to express priority and associativity of operators. We define
RD as a relation over I × P C . Recall that we have defined I as the set of all items of a
grammar. An element (A → α•Bγ,B → β) in RD means that we are not allowed to
derive a B non-terminal with production B → β, if it originated from the B following
the dot in the production A→ αBγ.

The follow restrictions RF restrict the derivation of substrings following a certain
non-terminal. We define them as a relation over N × T+. An element (A, u) in this
relation means that during the derivation of a string βAγ, γ can not be derived into a
string of form uδ.

The rejects RR restrict the language of a certain non-terminal, by subtracting the
language of another non-terminal from it. We define them as a relation over N ×N . An
element (A,B) means that during the derivation of a string αAβ, A cannot be derived
to a string that is also derivable from B.

4 Baseline Algorithm

In this section we explain the baseline algorithm for finding harmless production rules
and ambiguous counter-examples. The presentation follows the steps shown in Figure 1.
We will mainly focus on the parts that require extensions for character-level grammars,
and refer to [4,5] for a complete description of the baseline algorithm. Algorithm 1 gives
an overview of the first stage of finding harmless productions. All functions operate on a
fixed input grammar G = (N,T, P, S) to which they have global read access.

Algorithm 1 Base algorithm for filtering the NFA and finding harmless productions.
function FIND-HARMLESS-PRODUCTIONS() =

(Q,R) = BUILD-NFA()
do

nfasize = |Q|
Qa = TRAVERSE-PATH-PAIRS(Q,R) // returns items used on conflicting path pairs
(Q,R) = FILTER-NFA(Q,R,Qa) // removes unused items and prunes dead ends

while nfasize 6= |Q|
return P \ USED-PRODUCTIONS(Q)

4.1 Step 1: NFA Construction

The first step of the baseline algorithm is to construct the NFA from the grammar. It is
defined by the tuple (Q,R) where Q is the set of states and R is the transition relation

over Q× Vb ×Q. Edges in R are denoted by Q Vb7−→ Q. The states of the NFA are the
items of G. The start state is S′ → •S$ and the end state is S′ → S$•. There are three
types of transitions:

– Shifts of (non-)terminal symbols to advance to a production’s next item,
– Derives from items with the dot before a non-terminal to the first item of one of the

non-terminal’s productions, labeled over T〈,
– Reduces from items with the dot at the end, to items with the dot after the non-

terminal that is at the first item’s production’s left hand side, labeled over T〉.

Algorithm 2 describes the construction of the NFA fromG. First, the set of statesQ is
composed from the items of G. Then the transitions in R are constructed, assuming only
items in Q are used. Lines 2–4 respectively build the shift, derive and reduce transitions
between the items of G.

Intuitively, the NFA resembles an LR(0) parse automaton before the item closure.
The major differences are that also shifts of non-terminals are allowed, and that the
NFA has — by definition — no stack. The LR(0) pushdown automaton uses its stack to
determine the next reduce action, but in the NFA all possible reductions are allowed. Its
language is therefore an overapproximation of the set of parse trees of G. However, the
shape of the NFA does allow us to turn it into a pushdown automaton that only generates
valid parse trees of G. We will do this later on in the sentence generation stage.

Without a stack the NFA can be searched for ambiguity in finite time. Two paths
through it that shift the same sequence of symbols in V , but different bracket symbols
in Tb, represent a possible ambiguity. If no conflicting paths can be found then G is

Algorithm 2 Computing the NFA from a grammar.
function BUILD-NFA() =
1 Q = I // the items of G

2 R = {A→ α•Xβ
X7−→ A→ αX•β | } // shifts

3 ∪ {A→ α•Bγ
〈i7−→ B → •β | i = pid(B → β)} // derives

4 ∪ {B → β•
〉i7−→ A→ αB•γ | i = pid(B → β)} // reduces

5 return (Q,R)

unambiguous, but otherwise it is uncertain whether or not all conflicting paths represent
ambiguous strings in L(G). However, the conflicting paths can be used to find harmless
production rules. These are the rules that are not or incompletely used on these paths. If
not all items of a production are used in the overapproximated set of ambiguous parse
trees of G, then the production can certainly not be used to create a real ambiguous
string in L(G).

4.2 Step 2: Construct and Traverse Pair Graph

NFA Traversal To collect the items used on all conflicting path pairs we can traverse
the NFA with two cursors at the same time. The traversal starts with both cursors at the
start item S′ → •S$. From there they can progress through the NFA either independently
or synchronized, depending on the type of transition that is being followed. Because we
are looking for conflicting paths that represent different parse trees of the same string, the
cursors should shift the same symbols in V . To enforce this we only allow synchronized
shifts of equal symbols. The derive and reduce transitions are followed asynchronously,
because the number of brackets on each path may vary.

During the traversal we wish to avoid the derivation of unambiguous substrings, i.e.
an identical sequence of one derive, zero or more shifts, and one reduce on both paths,
and prefer non-terminal shifts instead. This enables us to filter more items and edges
from the NFA. Identical reduce transitions on both paths are therefore not allowed if
no conflicts have occurred yet since their corresponding derives. A path can thus only
reduce if the other path can be continued with a different reduce or a shift. This puts
the path in conflict with the other. After the paths are conflicting we do allow identical
reductions (synchronously), because otherwise it would be impossible to reach the end
item S′ → S$•. To register whether a path is in conflict with the other we use boolean
flags, one for each path. For a more detailed description of these flags we refer to [13,4].

Algorithm 3 describes the traversal of path pairs through the NFA. It contains gaps
¬–¯ that we will fill in later on (Algorithm 7), when extending it to handle character-
level grammars. To model the state of the cursors during the traversal we use an item
pair datatype with four fields: two items q1 and q2 in Q, and two conflict flags c1 and c2
in B. We use Π to denote the set of all possible item pairs.

The function TRAVERSE-EDGES explores all possible continuations from a given
item pair. We assume it has access to the global NFA variables Q and R. To traverse each
pair graph edge it calls the function TRAVERSE-EDGE — not explained here — which
in turn calls TRAVERSE-EDGES again on the next pair. The function SHIFTABLE
determines the symbol that can be shifted on both paths. In the baseline setting we
can only shift if the next symbols of both paths are identical. Later on we will extend
this function to handle character-level grammars. The function CONFLICT determines
whether a reduce transition of a certain path leads to a conflict. This is the case if the
other path can be continued with a shift or reduce that differs from the first path’s reduce.

Pair Graph There can be infinitely many path pairs through the NFA, which can not
all be traversed one-by-one. We therefore model all conflicting path pairs with a finite
structure, called a pair graph, which nodes are item pairs. The function TRAVERSE-
EDGES describes the edges of this graph. An infinite amount of path pairs translates to

Algorithm 3 Traversing NFA edge pairs.
function TRAVERSE-EDGES(p ∈ Π) =
1 for each (p.q1

〈i7−→ q′1) ∈ R do // derive q1
2 p′ = p, p′.q1 = q′1, p

′.c1 = 0
3 TRAVERSE-EDGE(p, p′)
4 od
5 for each (p.q2

〈i7−→ q′2) ∈ R do // derive q2
6 p′ = p, p′.q2 = q′2, p

′.c2 = 0
7 TRAVERSE-EDGE(p, p′)
8 od
9 for each (p.q1

X7−→ q′1), (p.q2
Y7−→ q′2)∈R

10 do // synchronized shift
11 if SHIFTABLE(X , Y) 6= ∅ then
12 p′ = p, p′.q1 = q′1, p

′.q2 = q′2
13 // . . . ¬

14 TRAVERSE-EDGE(p, p′)
15 fi
16 for each (p.q1

〉i7−→ q′1) ∈ R do
17 if CONFLICT(p.q2, 〉i) then
18 // conflicting reduction of q1
19 p′ = p, p′.q1 = q′1, p

′.c1 = 1
20 // . . .

21 TRAVERSE-EDGE(p, p′)
22 fi

23 for each (p.q2
〉i7−→ q′2) ∈ R do

24 if CONFLICT(p.q1, 〉i) then
25 // conflicting reduction of q2
26 p′ = p, p′.q2 = q′2, p

′.c2 = 1
27 // . . . ®

28 TRAVERSE-EDGE(p, p′)
29 fi
30 if p.c1 ∨ p.c2 then
31 for each (p.q1

〉i7−→ q′1), (p.q2
〉i7−→ q′2)∈R

32 do // synchronized reduction
33 p′ = p, p′.q1 = q′1, p

′.q2 = q′2
34 p′.c1 = p′.c2 = 1
35 // . . . ¯

36 TRAVERSE-EDGE(p, p′)
37 od

function SHIFTABLE(X ∈ V , Y ∈ V) =
1 if X = Y then return X else return ∅

function CONFLICT(q ∈ Q, 〉i ∈ T〉) =

1 return ∃q′ ∈ Q, u ∈ T ∗〈 : (∃X : q
uX7−→+ q′) ∨ (∃ 〉j 6= 〉i : q

u〉j7−→+ q′)

cycles in this finite pair graph. To find the items used on all conflicting paths it suffices
to do a depth first traversal of the pair graph that visits each edge pair only once.

4.3 Steps 3–4: NFA Filtering and Harmless Rules Identification

After the items used on conflicting path pairs are collected we can identify harmless
production rules from them. As said, these are the productions of which not all items are
used. All other productions of G are potentially harmful, because it is uncertain if they
can really be used to derive ambiguous strings.

We filter the harmless production rules from the NFA by removing all their items
and pruning dead ends. If there are productions of which some but not all items were
used, we actually remove a number of conflicting paths that do not represent valid parse
trees of G. After filtering there might thus be even more unused items in the NFA. We
therefore repeat the traversing and filtering process until no more items can be removed.
Then, all productions that are not used in the NFA are harmless. This step concludes the
first stage of our framework (Find Harmless Productions in Figure 1).

4.4 Steps 5–7: NFA Reconstruction and Sentence Generation

In the second part of our framework we use an inverted SGLR parser [7] as a sentence
generator to find real ambiguous sentences in the remainder of the NFA. However, certain
states in the NFA might not lead to the generation of terminal-only sentences anymore,
due to the removal of terminal shift transitions during filtering. These are the states with
outgoing non-terminal shift transitions that have no corresponding derive and reduce
transitions anymore. To make such a non-terminal productive again we introduce a new
terminal-only production for it that produces a shortest string from its original language.
Then we add a new chain of derive, shift, and reduce transitions for this production to
the states before and after the unproductive non-terminal shift.

After the NFA is reconstructed we generate an LR(0) pushdown automaton from it
to generate sentences with. In contrast to the first stage, we now do need a stack because
we only want to generate proper derivations of the grammar. Also, because of the item
closure that is applied in LR automata, all derivations are unfolded statically, which
saves generation steps at run-time.

The inverted parser generates all sentences of the grammar, together with their parse
trees. If it finds a sentence with multiple trees then these are reported to the user. They are
the most precise ambiguity reports possible, and are also very descriptive because they
show the productions involved [3]. Because the number of derivations of a grammar can
be infinite, we continue searching strings of increasing length until a certain time limit
is reached. The number of strings to generate can grow exponentially with increasing
length, but filtering unambiguous derivations beforehand can also greatly reduce the
time needed to reach a certain length as Section 7 will show.

5 Ambiguity Detection for Character-level Grammars

After sketching the baseline algorithm we can extend it to find ambiguities in character-
level grammars. We take disambiguation filters into account during ambiguity detection,
so we do not report ambiguities that are already solved by the grammar developer.
Furthermore, we explain and fix the issue that the baseline harmless rules filtering is
unable to properly deal with follow restrictions.

5.1 Application of Baseline Algorithm on Example Grammar

Before explaining our extensions we first show that the baseline algorithm can lead to
incorrect results on character-level grammars. If we apply it to the example grammar of
Figure 2, the harmless production rule filter will actually remove ambiguities from the
grammar. Since the filtering is supposed to be conservative, this behaviour is incorrect.

The baseline algorithm will ignore the reject rule and follow restrictions in the
grammar (Rules 6, 7, 9–11), and will therefore find the ambiguities that these filters meant
to solve. Ambiguous strings are, among others, “float f;” (float can be a keyword
or identifier) and “intList l;” (intList can be one or more specifiers). Rules 1–5
will therefore be recognized as potentially harmful. However, in all ambiguous strings,
the substrings containing whitespace will always be unambiguous. This is detected by
the PG traversal and Rule 8 (Ws ::= [\ \t\n]+) will therefore become harmless.

Rule 8 will be filtered from the grammar, and during reconstruction Ws? will be
terminalized with the shortest string from its language, in this case ε. This effectively
removes all whitespace from the language of the grammar. In the baseline setting the
grammar would still be ambiguous after this, but in the character-level setting the
language of the grammar would now be empty! The follow restriction of line 9 namely
dictates that valid Declaration strings should contain at least one whitespace character
to separate specifiers and identifiers.

This shows that our baseline grammar filtering algorithm is not suitable for character-
level grammars as is, because it might remove ambiguous sentences. In addition, it might
even introduce ambiguities in certain situations. This can happen when non-terminals are
removed that have follow restrictions that prohibit a second derivation of a certain string.
In short, follow restrictions have a non-context-free influence on sentence derivation,
and the baseline algorithm assumes only context-free derivation steps. In the extensions
presented in the next section we repair this flaw and make sure that the resulting algorithm
does not introduce or lose ambiguous sentences.

5.2 Changes to the Baseline Algorithm

The differences between character-level grammars and conventional grammars result
in several modifications of our baseline algorithm. These modifications deal with the
definitions of both the NFA and the pair graph. We reuse the NFA construction of
Algorithm 2 because it is compliant with character-level productions, and apply several
modifications to the NFA afterwards to make it respect a grammar’s derivation restrictions
and follow restrictions. An advantage of this is that we do not have to modify the pair
graph construction. To keep the test practical and conservative we have to make sure that
the NFA remains finite, while its paths describe an overapproximation of S(Gb).

Character Classes Because of the new shape of the productions, we now shift entire
character classes at once, instead of individual terminal symbols. This avoids adding
derives, shifts and reduces for the terminals in all character classes, which would bloat
the NFA, and thus also the pair graph. In the PG we allow a synchronized shift of two
character classes if their intersection is non-empty. To enforce this behaviour we only
need to change the SHIFTABLE function as shown in Algorithm 4.

Derivation Restrictions and Follow Restrictions After the initial NFA is constructed
we remove derive and reduce edges that are disallowed by the derivation restric-
tions. This is described in function FILTER-DERIVE-RESTRICTIONS in Algorithm 5.
Then we propagate the follow restrictions through the NFA to make it only generate

Algorithm 4 SHIFTABLE function for character-level pair graph.
function SHIFTABLE(X ∈ N , Y ∈ N) =

// returns the symbol that can be shifted from X and Y
if X ∈ C ∧ Y ∈ C then return X ∩ Y // X and Y are character classes
else if X = Y then return X // X and Y are the same non-terminal
else return ∅ // no shift possible

Algorithm 5 Filtering derive restrictions from the NFA.
function FILTER-DERIVE-RESTRICTIONS(R) =

return R \{A→ α•Bγ
〈i7−→ B → •β | i = pid(B → β), (A→ α•Bγ,B → β) ∈ RD}

\{B → β•
〉i7−→ A→ αB•γ | i = pid(B → β), (A→ α•Bγ,B → β) ∈ RD}

strings that comply with them. This is described in function PROPAGATE-FOLLOW-
RESTRICTIONS in Algorithm 6. The operation will result in a new NFA with states
that are tuples containing a state of the original NFA and a set of follow restrictions over
P(T+). A new state cannot be followed by strings that have a prefix in the state’s follow
restrictions. To enforce this we constrain character class shift edges according to the
follow restrictions of their source states.

The process starts at (S′ → •S$, ∅) and creates new states while propagating a state’s
follow restrictions over the edges of its old NFA item. In contrast to the original NFA,
which had at most one shift edge per state, states in the new NFA can have multiple. This
is because non-terminal or character class edges actually represent the shift of multiple
sentences, which can each result in different follow restrictions. Lines 6–9 show the
reconstruction of character-class shift edges from a state (A→ α•Bβ, f). Shift edges
are added for characters in B that are allowed by f . All characters in B that will result
in the same new set of follow restrictions are combined into a single shift edge, to not
bloat the new NFA unneccesarily. The restrictions after a shift of a are the tails of the
strings in f beginning with a, and are calculated by the function NEXT-FOLLOW.

Line 12 describes how a state’s restrictions are passed on unchanged over derive
edges. Lines 13–20 show how new non-terminal shift edges are added from a state
(A→ α•Bβ, f) once their corresponding reduce edges are known. This is convenient
because we can let the propagation calculate the different follow restrictions that can
reach A→ αB•β. Once the restrictions that were passed to the derive have reached a
state B → γ•, we propagate them upwards again over a reduce edge to A→ αB•β. If
B has follow restrictions — in RF — these are added to the new state as well. Note
that multiple follow restriction sets might occur at the end of a production, so we might
have to reduce a production multiple times. For a given state B → •γ, the function
SHIFT-ENDS returns all states that are at B → γ• and that are reachable by shifting.

If the reduced production is of form B → ε we create a special non-terminal symbol
Bε and make it the label of the shift edge instead of B. This is a small precision
improvement of the PG traversal. It prevents the situation where a specific non-terminal
shift that —because of its follow restriction context— only represents the empty string,
is traversed together with another instance of the same non-terminal that cannot derive ε.

The propagation ends when no new edges can be added to the new NFA. In theory the
new NFA can now be exponentially larger than the original, but since follow restrictions
are usually only used sparingly in the definition of lexical syntax this will hardly happen
in practice. In Section 7 we will see average increases in NFA size of a factor 2–3.

Rejects Instead of encoding a grammar’s rejects in the NFA, we choose to handle them
during the PG traversal. Consider an element (A,B) in RR, which effectively subtracts
the language of B from that of A. If the language of B is regular then we could, for
instance, subtract it from the NFA part that overapproximates the language of A. This

Algorithm 6 Propagating follow restrictions through the NFA.
function PROPAGATE-FOLLOW-RESTRICTIONS(Q, R) =
// propagate follow restrictions through NFA (Q,R) and return a new NFA (Q′, R′)
1 Q′ = {(S′ → •S$, ∅)}, R′ = ∅
2 repeat
3 add all states used in R′ to Q′

4 for qf = (A→ α•Bβ, f) ∈ Q′ do
5 if B ∈ C then // B is a character class
6 for a ∈ B, a /∈ f do // all shiftable characters in C
7 let B′ = {b | b ∈ B, b /∈ f, NEXT-FOLLOW(a, f) = NEXT-FOLLOW(b, f)}
8 add qf

B′7−→ (A→ αB•β, NEXT-FOLLOW(a, f)) to R′

9 od
10 else // B is a normal non-terminal
11 for A→ α•Bβ

〈i7−→ q′ ∈ R do
12 add qf

〈i7−→ (q′, f) to R′ // propagate f over derivation
13 for qrf = (qr, fr) ∈ SHIFT-ENDS((q′, f))
14 let qsf = (A→ αB•β, fr ∪ RF (B)) // shift target

15 add qrf
〉i7−→ qsf to R′ // reduction to shift target

16 if bracketP(〈i) = B → ε then
17 add qf

Bε

7−→ qsf to R′ // non-terminal shift representing empty string
18 else
19 add qf

B7−→ qsf to R′ // non-terminal shift of non-empty strings
20 od
21 od
22 until no more edges can be added to R′

23 return (Q′, R′)

function SHIFT-ENDS((A→ •α, f) ∈ Q′) =
1 // return the states at the end of A→ α, reachable from q using only shifts
2 let 99K= {q 99K q′ | q B7−→ q′ ∈ R′} // the shift transitions of R′

3 return {(A→ α•, f ′) | (A→ •α, f) 99K∗ (A→ α•, f ′)}

function NEXT-FOLLOW(a ∈ T, f ∈ P(T+))
1 return {α | aα ∈ f, α 6= ε} // the next follow restrictions of f after a shift of a

would not violate the finiteness and overapproximation requirements. However, if the
language of B is context-free we have to underapproximate it to finite form first, to
keep the NFA an overapproximation and finite. A possible representation for this would
be a second NFA, which we could subtract from the first NFA beforehand, or traverse
alongside the first NFA in the PG.

Instead, we present a simpler approach that works well for the main use of rejects:
keyword reservation. We make use of the fact that keywords are usually specified as a
set of non-terminals that represent literal strings — like Rules 6 and 7 in Figure 2. The
production rules for "int", "float", etc. are not affected by the approximation, and
appear in the NFA in their original form. We can thus recognize that, during the PG
traversal, a path has completely shifted a reserved keyword if it reduces "int". After that,

Algorithm 7 Extensions to TRAVERSE-EDGES for avoiding rejected keywords.
// at ¬ (shift) insert:
p′.r1 = p′.r2 = ∅ // clear reduced sets

// at and ¯ (conflicting and pairwise reduce) insert:
if not CHK-REJECT(〉i, p.r2) then continue
p′.r1 = NEXT-REJECT(〉i, p.r1)

// similarly, insert at ® and ¯:
if not CHK-REJECT(〉i, p.r1) then continue
p′.r2 = NEXT-REJECT(〉i, p.r2)

function CHK-REJECT(〉i ∈ T〉, r ∈ P(N)) =
// returns whether a reduction with 〉i is possible after reductions r on other path
let A = bracketN(〉i)
return ¬∃B ∈ r : (A,B) ∈ RR ∨ (B,A) ∈ RR

function NEXT-REJECT(〉i ∈ T〉, r ∈ P(N)) =
// adds non-terminal reduced with 〉i to r if it is involved in a reject
let A = bracketN(〉i)
if ∃B ∈ r : (A,B) ∈ RR ∨ (B,A) ∈ RR then

return r ∪ {A}
else return r

we can prevent the other path from reducing Identifier before the next shift. This does
not restrict the language of Identifier in the NFA — it is kept overapproximated —,
but it does prevent the ambiguous situation where “int” is recognized as an Identifier
on one path and as an "int" on the other path.

Of course, Identifier could also be reduced before "int", so we need to register
the reductions of both non-terminals. During the PG traversal, we keep track of all
reduced non-terminals that appear in RR, in two sets r1 and r2, one for each path. Then,
if a path reduces a non-terminal that appears in a pair in RR, together with a previously
reduced non-terminal in the other path’s set, we prevent this reduction. The sets are
cleared again after each pairwise shift transition. Algorithm 7 shows this PG extension.

5.3 NFA Reconstruction

In Section 5.1 we saw that follow restrictions should be handled with care when filtering
and reconstructing a grammar, because of their non-context-free behaviour. By removing
productions from a grammar certain follow restrictions can become unavoidable, which
removes sentences from the language. On the other hand, by removing follow restrictions
new sentences can be introduced that were previously restricted. When reconstructing a
character-level grammar we thus need to terminalize filtered productions depending on
the possible follow-restrictions they might generate or that might apply to them.

Instead, by directly reusing the filtered NFA for sentence generation, we can avoid
this problem. The follow restrictions that are propagated over the states already describe
the follow restriction context of each item. For each distinct restriction context of an

item a separate state exists. We can just terminalize each unproductive non-terminal shift
edge with an arbitrary string from the language of its previously underlying automaton.

Furthermore, the filtered NFA is a more detailed description of the potentially
ambiguous derivations than a filtered grammar, and therefore describes less sentences.
For instance, if derive and reduce edges of a production B → β are filtered out at a
specific item A → α•Bγ, but not at other items, we know B → β is harmless in the
context ofA→ α•Bγ. The propagated follow restrictions also provide contexts in which
certain productions can be harmless. We could encode this information in a reconstructed
grammar by duplicating non-terminals and productions of course, but this could really
bloat the grammar. Instead, we just reuse the baseline NFA reconstruction algorithm.

6 Grammar Unfolding

In Section 7 we will see that the precision of the algorithm described above is not always
sufficient for some real life grammars. The reason for this is that the overapproximation in
the NFA is too aggressive for character-level grammars. By applying grammar unfoldings
we can limit the approximation, which improves the precision of our algorithm.

The problem with the overapproximation is that it becomes too aggressive when
certain non-terminals are used very frequently. Remember that due to the absence of a
stack, the derive and reduce transitions do not have to be followed in a balanced way.
Therefore, after deriving from an item A→ α•Bβ and shifting a string in the language
of B, the NFA allows reductions to any item of form C → γB•δ. This way, a path can
jump to another production while being in the middle of a first production. Of course, a
little overapproximation is intended, but the precision can be affected seriously if certain
non-terminals are used very frequently. Typical non-terminals like that in character-level
grammars are those for whitespace and comments, which can appear in between almost
all language constructs. Since these non-terminals can usually derive to ε, we can thus
jump from almost any item to almost any other item by deriving and reducing them.

To restrict the overapproximation we can unfold the frequently used non-terminals
in the grammar, with a technique similar to one used in [6]. A non-terminal is unfolded
by creating a unique copy of it for every place that it occurs in the right-hand sides of the
production rules. For each of these copies we then also duplicate the entire sub-grammar
of the non-terminal. The NFA thus gets a separate isolated sub-automaton for each
occurence of an unfolded non-terminal. After the derivation from an item A→ α•Bβ
a path can now only reduce back to A → αB•β, considering B is unfolded. After
unfolding, the NFA contains more states, but has less paths through it because it is more
deterministic. In the current implementation we unfold all non-terminals that describe
whitespace, comments, or literal strings like keywords, brackets and operators. Later on
we will refer to this unfolding extension as CHAR+UNF.

7 Experimental Results

We have evaluated our ambiguity detection algorithm for character-level grammars on
the grammar collection shown in Table 1. All grammars are specified in SDF [10,16].
The selection of this set is important for external validity. We have opted for grammars

Table 1. Character-level grammars used for validation.

Name Prods. SLOC Non-terms. Derive rest. Follow restr. Reserved keywords
C1 324 415 168 332 10 32
C++2 807 4172a 430 1 87 74
ECMAScript3 403 522 232 1 27 25
Oberon04 189 202 120 132 31 27
SQL-925 419 495 266 23 5 30
Java 1.56 698 1629 387 297 78 56
1SDF grammar library, revision 27501, http://www.meta-environment.org
2TRANSFORMERS 0.4, http://www.lrde.epita.fr/cgi-bin/twiki/view/Transformers/Transformers
3ECMASCRIPT-FRONT, revision 200, http://strategoxt.org/Stratego/EcmaScriptFront
4RASCAL Oberon0 project (converted to SDF), rev. 34580, http://svn.rascal-mpl.org/oberon0/
5SQL-FRONT, revision 20713, http://strategoxt.org/Stratego/SqlFront
6JAVA-FRONT, revision 17503, http://strategoxt.org/Stratego/JavaFront
aAfter removal of additional attribute code

of general purpose programming languages, which makes it easier for others to validate
our results. For each grammar we give its name, number of productions, number of
source lines (SLOC), number of non-terminals, number of priorities and associativities
(derivation restrictions), number of follow restrictions and number of reserved keywords.

7.1 Experiment Setup

We have run both our NFA filtering and sentence generation algorithms on each of
these grammars. Most measurements were carried out on an Intel Core2 Quad Q6600
2.40GHz with 8GB DDR2 memory, running Fedora 14. A few memory intensive runs
were done on an Amazon computing cloud EC2 High-Memory Extra Large Instance with
17.1GB memory. The algorithms have been implemented in Java and are available for
download at http://homepages.cwi.nl/~basten/ambiguity. In order to identify
the effects of the various extensions, we present our empirical findings for the following
combinations:

– BASE: the baseline algorithm for token-level grammars as described in Section 4,
with the only addition that whole character-classes are shifted instead of individual
tokens. Even though this configuration can lead to incorrect results, it is included as
a baseline for comparison.

– CHAR: the baseline algorithm extended for handling character-level grammars as
described in Section 5, including extensions for follow restrictions, derive restrictions
and rejects.

– CHAR+UNF: the CHAR algorithm combined with grammar unfolding (Section 6).

7.2 Results and Analysis

In Table 2 we summarize our measurements of the NFA filtering and harmless production
rule detection. For each grammar and extension configuration we give the number of
harmless productions found versus total number of productions, number of edges filtered
from the NFA, execution time (in seconds) and memory usage (in MB).

http://www.meta-environment.org
http://www.lrde.epita.fr/cgi-bin/twiki/view/Transformers/Transformers
http://strategoxt.org/Stratego/EcmaScriptFront
http://svn.rascal-mpl.org/oberon0/
http://strategoxt.org/Stratego/SqlFront
http://strategoxt.org/Stratego/JavaFront
http://homepages.cwi.nl/~basten/ambiguity

Table 2. Timing and precision results of filtering harmless productions.

Grammar Method Harmless NFA edges Time Memory
productions filtered (sec) (MB)

C BASE 48 / 324 343 / 14359 64 2128
CHAR 62 / 324 2283 / 24565 120 3345
CHAR+UNF 75 / 324 8637 / 30653 97 2616

C++ BASE 0 / 807 0 / 8644 32 1408
CHAR 0 / 807 0 / 39339 527 7189
CHAR+UNFa – – >9594 >17.3G

ECMAScript BASE 44 / 403 414 / 4872 12 547
CHAR 46 / 403 1183 / 10240 46 1388
CHAR+UNF 88 / 403 9887 / 19890 31 1127

Oberon0 BASE 0 / 189 0 / 3701 4.2 256
CHAR 70 / 189 925 / 6162 9.0 349
CHAR+UNF 73 / 189 10837 / 20531 14 631

SQL-92 BASE 13 / 419 98 / 4944 16 709
CHAR 20 / 419 239 / 9031 83 2093
CHAR+UNF 65 / 419 7285 / 14862 37 1371

Java 1.5 BASE 0 / 698 0 / 16844 60 2942
CHAR 0 / 698 0 / 45578 407 7382
CHAR+UNFa 189 / 698 180456 / 262030 1681 15568

aRun on Amazon EC2 High-Memory Extra Large Instance

Every configuration was able to filter an increasing number of productions and edges
for each of the grammars. For C and ECMAScript BASE could already filter a small
number rules and edges, although it remains unsure whether these are all harmless
because the baseline algorithm cannot handle follow restrictions properly. For C and
Oberon0 our character-level extensions of CHAR improved substantially upon BASE,
without the risk of missing ambiguous sentences.

Of all three configurations CHAR+UNF was the most precise. For the grammar order
of the table, it filtered respectively 23%, 0%, 22%, 39%, 16% and 27% of the production
rules, and 28%, 0%, 50%, 53%, 49% and 69% of the NFA edges. Unfolding grammars
leads to larger but more deterministic NFAs, which in turn can lead to smaller pair graphs
and thus faster traversal times. This was the case for most grammars except the larger
ones. ECMAScript, SQL-92 and Oberon0 were checkable in under 1 minute, and C in
under 2 minutes, all requiring less than 3GB of memory. Java 1.5 was checkable in just
under 16GB in 30 minutes, but for the C++ grammar — which is highly ambiguous —
the pair graph became too large. However, the additional cost of unfolding was apparently
necessary to deal with the complexity of Java 1.5.

Table 3 allows us to compare the sentence generation times for the unfiltered and
filtered NFAs. For each grammar and NFA it shows the number of sentences of a certain
length in the language of the NFA, and the times required to search them for ambiguities.
The unfiltered sentence generation also takes disambiguation filters into account. C++ is
not included because its NFA could not be filtered in the previous experiments.

For all grammars we see that filtering with CHAR and CHAR+UNF lead to re-
ductions in search space and generation times. To indicate whether the investments in
filtering time actually pay off, the last column contains the maximum speedup gained by

Table 3. Timing results of sentence generation. Times are in seconds. For each sentence length,
the run-time of the fastest configuration (also taking filtering time into account) is highlighted.
Speedup is calculated as unfiltered sentence gen. time

filtering time+sentence gen. time .

Grammar Len Ambig Unfiltered CHAR CHAR+UNF Maximum
NTs Sentences Time Sentences Time Sentences Time speedup

C 5 6 345K 7.9 273K 5.9 267K 5.9 0.08x
6 8 5.06M 35 3.77M 25 3.66M 25 0.29x
7 8 75.5M 398 53.4M 270 51.6M 259 1.1x
8 9 1.13G 5442 756M 3466 727M 3362 1.6x
9 10 17.0G 78987 10.8G 47833 10.3G 47018 1.7x

ECMAScript 3 6 14.2K 4.5 11.7K 3.5 9.29K 3.3 0.13x
4 8 274K 11 217K 8.9 159K 6.7 0.29x
5 10 5.17M 149 3.92M 120 2.64M 69 1.5x
6 11 96.8M 2805 70.5M 2186 43.8M 1184 2.3x
7 12 1.80G 54175 1.26G 41091 719M 20264 2.7x

Oberon0 22 0 21.7M 60 320 1.0 182 1.0 6.0x
23 0 62.7M 186 571 1.0 248 1.0 19x
24 0 247M 815 1269 1.0 468 1.0 82x
25 0 1.39G 4951 3173 1.1 1343 1.1 490x
26 0 9.56G 35007 9807 1.3 3985 1.3 3399x
32 0 108M 172 13.8M 28
33 0 549M 885 55.6M 101
34 0 2.80G 4524 224M 393
35 0 14.3G 22530 906M 1591
36 0 3.66G 6270

SQL-92 11 5 2.65M 16 1.54M 9.4 321K 4.2 0.39x
12 6 15.8M 102 7.36M 47 1.66M 14 2.0x
13 6 139M 1018 51.3M 379 11.5M 90 8.0x
14 6 1.49G 11369 453M 3572 90.8M 711 15x
15 7 4.39G 35024 742M 5781
16 8 6.13G 47211

Java 1.5 7 0 187K 33 39.1K 6.8 0.02x
8 1 3.15M 115 482K 20 0.07x
9 1 54.7M 1727 6.05M 212 0.91x

10 1 959M 39965 76.2M 4745 6.2x

either CHAR or CHAR+UNF. For sentence lengths that are already relatively cheap
to generate, filtering beforehand has no added value. However, the longer the sentences
get the greater the pay-off. We witnessed speedup factors ranging from a small 1.1
(C length 7) to a highly significant 3399 (Oberon0 length 26). Filtering Oberon0 with
CHAR+UNF was so effective that it increased the sentence length checkable in around
15 minutes from 24 to 35.

For most grammars filtering already becomes beneficial after around 15 seconds to 6
minutes. For Java 1.5 this boundary lies around 35 minutes, because of its high filtering
time. However, after that we see an immediate speedup of a factor 6.2. In all cases
CHAR+UNF was superior to CHAR, due to its higher precision and lower run-times.

The third column of Table 3 contains the number of ambiguous non-terminals found
at each length. Because of filtering, ambiguous non-terminals at larger lengths were

found earlier in multiple grammars. There were 2 ambiguous non-terminals in C that
were found faster, and 4 non-terminals in ECMAScript and 3 in SQL-92.

Concluding, we see that our character-level NFA filtering approach was very benefi-
cial on the small to medium grammars. A relatively low investment in filtering time —
under 2 minutes — lead to significant speedups in sentence generation. This enabled
the earlier detection of ambiguities in these grammars. For the larger Java 1.5 grammar
the filtering became beneficial only after 32 minutes, and for the highly ambiguous
C++ grammar the filtering had no effect at all. Nevertheless, ambiguity detection for
character-level grammars is ready to be used in interactive language workbenches.

7.3 Validation

In [4] we proved the correctness of our baseline algorithm. To further validate our
character-level extensions and their implementations we applied them on a series of
toy grammars and grammars of real world programming languages. We ran various
combinations of our algorithms on the grammars and automatically compared the
ambiguous sentences produced, to make sure that only those ambiguities that exist in a
grammar were found, so not more and not less. For the version of our implementation
that we used for the experiments above, we found no differences in the ambiguous strings
generated. The validation was done in the following stages:

– First we built confidence in our baseline sentence generator by comparing it to the
external sentence generators AMBER [14] and CFGANALYZER [1]. For this we
used a grammar collection also used in [3], which contains 87 small toy grammars
and 25 large grammars of real-world programming languages.

– Then we validated the character-level extension of the baseline sentence generator by
comparing it to a combination of our baseline sentence generator and the SGLR [7]
parser used for SDF. By running the baseline sentence generator on character-level
grammars it will report more strings as ambiguous than actually exist in a grammar,
because it does not regard disambiguation filters. We therefore filter out the truly
ambiguous sentences by using the SGLR parser as an oracle, and test whether our
character-level sentence generator finds exactly the same ambiguous sentences. In
some situations SGLR will produce non-optimal parse trees, so we had to verify
these by hand. In this step and the following we used the SDF grammars in Table 1.

– Third, we validated our NFA filtering algorithms by running the character-level
sentence generator on both filtered and unfiltered NFAs. Because a filtered NFA
contains only one reconstructed sentence for non-terminals with only harmless
productions, it might produce less variations of ambiguous sentences. We therefore
reduced all ambiguous sentences to their core ambiguous sentential forms [4]
before comparison. This is done by removing the unambiguous substrings from an
ambiguous sentence, and replacing them with their deriving non-terminal.

8 Conclusion

We have presented new algorithms for ambiguity detection for character-level grammars
and by experimental validation we have found an affirmative answer to the question

whether ambiguity detection can be scaled to this kind of grammars. We have achieved
significant speedups of up to three orders of magnitude for ambiguity checking of real
programming language grammars. Ambiguity detection for character-level grammars
is ready to be used in interactive language workbenches, which is good news for the
main application areas of these grammars: software renovation, language embedding
and domain-specific languages.

References
1. Axelsson, R., Heljanko, K., Lange, M.: Analyzing context-free grammars using an incremental

SAT solver. In: Proceedings of the 35th International Colloquium on Automata, Languages,
and Programming (ICALP’08). LNCS, vol. 5126 (2008)

2. Aycock, J., Horspool, R.N.: Schrödinger’s token. Software: Practice & Experience 31(8),
803–814 (2001)

3. Basten, H.J.S.: The usability of ambiguity detection methods for context-free grammars. In:
Johnstone, A., Vinju, J.J. (eds.) Proceedings of the Eigth Workshop on Language Descriptions,
Tools and Applications (LDTA 2008). ENTCS, vol. 238 (2009)

4. Basten, H.J.S.: Tracking down the origins of ambiguity in context-free grammars. In: Caval-
canti, A., Deharbe, D., Gaudel, M.C., Woodcock, J. (eds.) Theoretical Aspects of Computing
– ICTAC 2010, LNCS, vol. 6255, pp. 76–90. Springer Berlin / Heidelberg (2010)

5. Basten, H.J.S., Vinju, J.J.: Faster ambiguity detection by grammar filtering. In: Brabrand, C.,
Moreau, P.E. (eds.) Proceedings of the Tenth Workshop on Language Descriptions, Tools and
Applications (LDTA 2010). ACM (2010)

6. Brabrand, C., Giegerich, R., Møller, A.: Analyzing ambiguity of context-free grammars. Sci.
Comput. Program. 75(3), 176–191 (2010)

7. van den Brand, M.G.J., Scheerder, J., Vinju, J.J., Visser, E.: Disambiguation filters for scan-
nerless generalized LR parsers. In: CC ’02: Proceedings of the 11th International Conference
on Compiler Construction. pp. 143–158. Springer-Verlag (2002)

8. Bravenboer, M., Visser, E.: Concrete syntax for objects: domain-specific language embedding
and assimilation without restrictions. In: Vlissides, J.M., Schmidt, D.C. (eds.) OOPSLA. pp.
365–383. ACM (2004)

9. Ginsburg, S., Harrison, M.A.: Bracketed context-free languages. Journal of Computer and
System Sciences 1(1), 1–23 (1967)

10. Heering, J., Hendriks, P.R.H., Klint, P., Rekers, J.: The syntax definition formalism SDF -
reference manual. SIGPLAN Notices 24(11), 43–75 (1989)

11. Kats, L.C.L., Visser, E., Wachsmuth, G.: Pure and declarative syntax definition: paradise lost
and regained. In: Cook, W.R., Clarke, S., Rinard, M.C. (eds.) OOPSLA. pp. 918–932. ACM
(2010)

12. Klint, P., Visser, E.: Using filters for the disambiguation of context-free grammars. In: Pro-
ceedings of the ASMICS Workshop on Parsing Theory. pp. 1–20. Technical Report 126-1994,
Università di Milano (1994)

13. Schmitz, S.: Conservative ambiguity detection in context-free grammars. In: Arge, L., Cachin,
C., Jurdziński, T., Tarlecki, A. (eds.) ICALP’07: 34th International Colloquium on Automata,
Languages and Programming. LNCS, vol. 4596 (2007)

14. Schröer, F.W.: AMBER, an ambiguity checker for context-free grammars. Tech. rep., compil-
ertools.net (2001), see http://accent.compilertools.net/Amber.html

15. Van Wyk, E., Schwerdfeger, A.: Context-aware scanning for parsing extensible languages. In:
Consel, C., Lawall, J.L. (eds.) GPCE. pp. 63–72. ACM (2007)

16. Visser, E.: Syntax Definition for Language Prototyping. Ph.D. thesis, University of Amsterdam
(September 1997)

http://accent.compilertools.net/Amber.html

	Ambiguity Detection: Scaling to Scannerless
	Introduction
	The Ambiguity Detection Framework
	Character-level Grammars
	Baseline Algorithm
	Amibguity Detection for Character-level Grammars
	Grammar Unfolding
	Experimental Results
	Conclusion
	References

