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Abstract. In the 1990s, there was considerable interest in mobile com-
putation: systems in which running computations (or mobile agents)
could be moved from one machine to another. Much of this work was
in terms of high-level programming languages and mobile process cal-
culi. An example is Nomadic Pict—a prototype high-level programming
language in which to express and verify overlay networks, for reliable
communication between mobile agents. One can ask whether the lan-
guage abstractions could be useful for scripting programming in modern
distributed deployment platforms, such as many-core processors, grids,
web servers and datacentres. In this paper, we demonstrate selected fea-
tures of Nomadic Pict, and show the use of typed channels and agent
mobility for programming in the grid. We demonstrate example design
patterns that can be used for implementing safe message passing, test &
send, system bootstrapping, and relocatable computation.

1 Introduction

In the 1990s, there was considerable interest in mobile computation: systems
in which running computations could be moved from one machine to another.
Much of this work was in terms of high-level programming languages and mo-
bile process calculi, such as the m-calculus [11] and Mobile Ambients [5] (see e.g.
[14,10,8,12,19,17] among others). Process calculi (also known as process alge-
bras) were originally conceived for the formal study of concurrent and mobile
communication systems. They provide a rigorous framework where complex sys-
tems can be accurately analyzed, including reasoning techniques to verify their
essential properties. In parallel, various high-level programming languages have
been designed based on the process calculi. Unfortunately a lot of this work still
remains theoretical, with only a few language implementations available. Now,
relocatable computation is a pervasive reality, though at the level of virtual
machines rather than high-level languages. One can ask whether the semantic
theory and language abstractions developed in these frameworks could be ap-
plied (or adapted) to scripting languages designed for distributed deployment
platforms such as many-core processors, grids, web servers and datacentres?
One of the goals of scripting languages for distributed deployment platforms
is to provide a lightweight but expressive set of programming constructs for con-
necting distributed chunks of computations (or whole applications, services, etc.)



and defining control flow. In such languages, some programming errors can be
detected via type-checking, either statically or, more often, dynamically. Impor-
tant modern scripting languages include Perl, Python, PHP, JavaScript, Ruby or
extensions of Lisp. Many of these languages were originally developed for special-
ized domains, e.g. web services, but are increasingly being used more broadly. A
shortcoming of most scripting languages is the lack of first-class support for con-
currency. Concurrency is nowadays ubiquitous and no longer bound to a narrow
high-performance computing domain. It is required for scalability and interact-
ing with remote services. The newest proposals of scripting languages overcome
these shortcomings. For example, Thorn [4] has support for concurrency based
on message passing between lightweight, isolated processes. Clojure [6], an ex-
tension of Lisp, takes a different approach to concurrency and supports sharing
changing state between threads in a synchronous and coordinated manner us-
ing Software Transactional Memory (STM). Typed message-passing is the sole
means of communication between processes in the Singularity OS [7]. However,
the implementation does not support cross-machine channels.

On the other hand, relocatable computation is not yet a frequently supported
feature in scripting languages. In the virtualized environments, relocatable com-
putation (or virtual machines) can make it easier to deploy applications and
reduce the impact of partial system failures by moving applications from a mis-
behaving network node to a non-faulty node. Thus, the design of novel scripting
languages that support mobile computations could improve system robustness.
Are tasks typical of scripting programming that would best be expressed at the
level of mobile process calculi? In this paper, we describe a series of programming
examples (or patterns) that answer positively. We target the grid platform but
the patterns presented in the paper are general, and so can be applied to other
deployment platforms as well. In [2], the authors describe type-safe program-
ming mechanisms for combining and managing enterprise services, in the setting
of farms of virtual machines. It would be interesting future work to extend our
language to control VMs, using the service combinators described in [2].

In the late 1990s, we developed Nomadic Pict [18,19,17,13]'—a mobile
agent distributed programming language. The low-level language extends the
compiler and run-time system of Pict [14], a concurrent language based on the
m-calculus, to support our primitives for agent creation, migration, and location-
dependent communication. High-level languages, with particular infrastructures
for location-independent communication, can then be obtained by applying user
supplied translations into the low-level language. An experimental implemen-
tation of Nomadic Pict and further details are available from [13]. The goal
of this paper is to show how Nomadic Pict’s abstractions, such as typed first-
class communication channels and agent mobility could be used to safely express
typical tasks of a scripting language for distributed deployment platforms. We
use concrete examples of executable programs in Nomadic Pict to express: safe
message-passing communication, test & send synchronization, system bootstrap-
ping, and relocatable computation in a networked system. The examples are toy

! Nomadic Pict and its theory is joint work with Peter Sewell and Asis Unyapoth.



applications that serve only to illustrate the concepts, but we hope that abstrac-
tions such as typed first-class channels and relocatable computation will pave
the way into future industrial strength scripting languages.

Some of the Nomadic Pict abstractions have been encoded in libraries of
general-purpose functional programming languages. For example, an experimen-
tal language Acute [15] has a distributed message-passing library that is an
implementation of the Nomadic Pict constructs for migration of mobile com-
putations and communication between them. Acute extends an ML-like core
language to support distributed development, deployment, and execution, al-
lowing type-safe interaction between separately built programs. Some of these
ideas were further developed and put into practice in HashCaml language [3],
an extension of the OCaml bytecode compiler with support for type-safe mar-
shalling and related naming features.

This paper is not a research paper on Nomadic Pict but a paper to ac-
company a language demonstration. The readers interested in the design and
implementation of our language, the Nomadic w-calculi, formal reasoning and
proofs are referred to [18].

2 Language Demonstration

2.1 Typed channels for safe communication

Consider a program in which several parallel processes communicate by means of
messages. One of the frequent programming errors in message-passing programs
is that the type of values marshaled for communication does not match the type
of values expected on the receiver’s side. Below is a small program in Nomadic
Pict to illustrate this case.

new x : “Int {- Communication channel creation -}
run (
x! 10
| x? msg= printi! msg {- Message-passing communication -}
)

The above program creates a communication channel using a keyword new; the
channel is named x, and has a type “Int of channels carrying values of type
Int. Then, the program executes (using run) two parallel processes. The first
process outputs a message (a value 10) on channel x, and terminates. In parallel,
denoted with | (bar), the second process waits for an input on channel x. After
the message has been received, it is substituted for the formal parameter msg
and the process reduces to printi!10, which prints out 10.

If the program would be modified, so that the first process outputs a message
of a different type, e.g. a record of two integers [10 10], or the second process
expects a value of a different type than Int, then the program would not be
correct, and the Nomadic Pict compiler would generate an error. Later in the



paper, we show programs that use typed channels for network communication. In
such programs, the same typing principle is used, allowing type-mismatch errors
to be detected at compile time. This simple typing principle could be further
extended, e.g. to support session types [9].

Processes communicate using message passing instead of shared variables,
which removes the need for locks. Channel names are first-class values, i.e. they
can be created at runtime and passed as arguments or results of function calls.
Contrary to the message-passing languages that follow the Actor model (such
as Erlang [1]), channel names can be passed along other channels in the style of
the m-calculus. For instance, in the following program a channel name x will be
communicated on another channel of type ~~Int to some other process executed
in parallel, which can use x for communication. First-class communication chan-
nels can be very useful in grid programming, e.g. to dynamically reconfigure the
logical network topology of a grid in response to some events.

new x : "Int {- Creation of typed first-class channels -}
new y : ~"Int
run (

x! 10 | y! x | y? p= p? msg= printi! msg {- Communication -}
)

The program above creates two communication channels, named x and vy,
using a keyword new. The channels are typed. The former channel has type
~Int of channels that can only carry values of type Int, while the latter channel
has type ~~Int (understood as ~("Int)) of channels that can carry names of
channels of the former type. In the main part of the program we execute (using
run) three parallel processes. The first and second process output their messages,
respectively on channel x and y and terminate, while the third process waits for
an input on channel y. The output and input on channel y can synchronize,
reducing the third process to an input process x7arg= printi!arg, which again
synchronizes with an output on x. Finally, the program prints out the message
received on channel x, i.e. 10.

The construct <chan>?<pattern>= is only used for one input. If we would
require the input process to be ready to accept new messages, then we should
use a replicated input construct, as in the program below.

new x : “Int
run (
x!'1 | x'2 | x!3 {- Three parallel output processes -}
| x?* arg = printi! arg {- 4 replicated input process (server) -}
)

In the above program, three concurrent processes output integer numbers, which
are received by another process (a server) that prints them all out. The order of
message delivery is unspecified, since the parallel processes in our program are



not synchronized. In case of remote communication, we may choose to replace

the x?* arg = ... construct by a timed input as below.
wait
X7* arg = printi! arg
timeout

t -> print! "Timeout!"

If no message is received on channel x after t seconds (roughly), then an excep-
tion is raised and handled in the timeout clause.

2.2 Agents and test & send

A distributed computation is one whose portions can be executed in different sites
(or grid nodes, or processors) interconnected via a network. In Nomadic Pict a
distributed computation consists of agents located on sites, where a site is an
instance of the Nomadic Pict runtime system. Internally, agents may consist of
many concurrent processes that can communicate using channels. The channels
are distinct, in that outputs and inputs can only interact if they are in the same
agent. This provides a limited form of dynamic binding, with the semantics of
a channel name (i.e., the set of partners that a communication on that channel
might synchronise with) dependent on the agent in which it is used.

In order to test if an agent is present on a local site, we can use a test & send
synchronization construct iflocal.

new chan : “String

agent a =

iflocal <b> chan! "MESSAGE"
then print! "b is on this site."
else print! "b is not here."

and b =
chan 7* msg = print! msg

The above program creates two agents a and b. Execution of the conditional
iflocal <b>chan!"MESSAGE" by agent a checks if agent b is on agent a’s cur-
rent site. If so, then it delivers a message "MESSAGE" to channel chan inside agent
b as part of the same atomic action, and continues with the ’then’ clause. Oth-
erwise, it continues with the ’else’ clause. The iflocal construct may simplify
programming of failure detectors in the grid.

2.3 Distributed bootstrapping

Grid computations are to be executed on a large number of machines. Therefore,
parallel portions of a distributed computation must be spawned on machines
automatically, with any communication links properly established. If the pro-
gramming environment does not offer any support of this sort, the programmer



has to implement bootstrapping of a grid system. Below we demonstrate how
this can be done in Nomadic Pict.

Execution of migrate to n migrates the whole agent including any commu-
nication channels to a site n. After migration, the agent’s execution commences
from the point in which it has stopped before migration. Migration transparency
greatly simplifies programming, for the cost of a more complex virtual machine.

val n = ’’sirius.cs.put.pl’’:5000

new ¢ : “String

agent a =

(
migrate to n {- Migrate agent a to sirius and continue -}
c 7?7* msg = print! msg

)

and b =

<a @ n> c! "Hello!"

In the above program, two agents a and b are created. After creation the former
agent migrates to a site n, identified by a pair of an IP address and a port
number and waits for a message on channel c. In parallel, agent b outputs a
string message "Hello!" to agent a, and terminates. Agent a is expected to
be on site n. If the agent will not be there, when the message has arrived, the
message is discarded. (Alternatively, a message could be sent to a static daemon
agent that uses iflocal to deliver messages locally.)

The Nomadic Pict language also has a construct <a>c!m for location-
independent (LI) communication, which does not require the agent’s site to be
specified. An application-specific overlay network will deliver message m to agent
a irrespective of its current location. It is guaranteed that the message will be
delivered despite of any agent migrations. Different LI overlay networks can be
chosen from the package; the choice depends on the application.

2.4 Relocatable computation

In a grid system, it is inevitable that some machines may partially fail or slow
down. Thus, the grid admins should be able to relocate processes running on
these machines to non-faulty nodes. Now, relocatable computation is a pervasive
reality, though at the level of virtual machines rather than high-level languages.
In a recent paper, we discuss the use of the Nomadic Pict calculus for verifying
overlay networks for relocatable computations [16].

Below we demonstrate the use of relocatable computation for active messages.
Let us assume that on the site ’’sirius.cs.put.pl’’:5000, an agent Smith
has been created, waiting for a message:

new ch : “String

agent Smith =
ch?* msg= print! msg



On another site, a function dispatch is defined that spawns an agent messenger
for delivering message content of type X, to a recipient described using a triple
of agent, site and channel names passed as arguments. After messenger is cre-
ated, the function returns a value 0. Below the function is called, resulting in
messenger migrating to Smith’s site and delivering a message locally. The recipi-
ent’s agent/channel names can be obtained using a name server (see Section 2.7).

def dispatch (#X a:Agent s:Site c:"X msg:X) : Int =
( agent messenger =
(
migrate to s
iflocal <a> c! msg
then print! "OK, delivered."
else print! "No recipient."
)
0)

val stat = (dispatch Smith ’’sirius.cs.put.pl’’:5000 ch "Hello!")

To support different types of messages the channel ¢ in dispatch has a polymor-
phic type (from Pict), which is defined by a type variable X. The type variable
can be specialized to any type. It our example, it is specialized to String, when
substituted in the function call by a channel ch of type “String.

The migrating agent messenger can be an arbitrary program, e.g. a presenter
of the e-mail content. Thus, we can dynamically add some new computation on
Smith’s node, even if the original program on this node was not designed for
this. If needed, messenger could also voluntarily relocate to another server using
migrate to and continue computation there.

2.5 Types for input/output modalities

In some programs, we may intend a communication channel to be used only for
inputs or only for outputs. Otherwise, a program may be incorrect. Below we
illustrate the use of the Pict type system for safe programming of input/output
modalities. This type system has been extended in Nomadic Pict for distributed
programming. Below is an example program implementing a server function,
which creates on demand (in response to the function call) a fresh channel that
can be used for communication with the server, as explained below.

def server () : !Int =
(new ¢ : "Int
run c? msg = printi! msg
c)

val x = (server)
run x! 10

Execution of the above function server creates a fresh communication channel c
carrying integers, and waits for a message on it. The returned channel is assigned



to a variable x that is later used for an output (of a value 10). The type of
channels returned by the function is ! Int instead of ~Int, where ! (exclamation
mark) means that the channel name has only an output capability, i.e. it cannot
be used for an input. Thus, we can guarantee that only the server process can
read on this channel. This mechanism supports confidentiality since no other
process can read from this channel.

2.6 Types for variant messages

It would be inconvenient to create and use a different channel for every new type
of a message. How to communicate messages of different types in the same chan-
nel, and still be able to statically check if the types of marshaled/unmarshaled
values are correct ? Below is an example program that uses a suitable mechanism,
adopted in Nomadic Pict.

new ¢ : ~[num>Int text>String]

run c 7* msg =
switch msg of
(
num> v : Int -> printi! (+ v 1)
text> s : String -> print! (+$ "message: " s)

)

run c! [num> 2]
run c! [text> "foo"]

The above program creates a channel ¢ that has a variant type of channels car-
rying either messages of type num>Int or text>String, where num and text are
labels that differentiate between the types. A message received on this channel
must be first resolved using a construct switch ... of. The construct allows
messages to be matched against patterns, followed by corresponding actions.

In the above program, two types of messages are sent on channel c: an integer
2 and a string "foo". The integer message is incremented and printed out, while
the string message is first concatenated (using a function +$) with another string,
and then printed out. The program does not compile if we would try to send on
the ¢ channel a value of a different type.

2.7 Types for dynamic messages

When programs are compiled separately and should connect each other, the usual
approach is to publish names of channels/agents/sites at some name server. The
address of this server is known to all processes in the grid, so that any new agent
joining the system can get the public names and use them for communication.
For example, in the program in Section 2.4, a process calling function dispatch
could obtain the channel and agent names of the message recipient from a name
server, using library functions publish and subscribe.



In untyped languages, the publish/subscribe code is prone to errors that
can be difficult to find. In typed languages, type-checking of dynamic values is
usually done entirely at runtime. However, the risk of producing erroneous code
exists if the language does not force the programmer to implement exceptions.

Below is a code fragment of a new joining process. The program uses dynamic
types, i.e. types that are not erasured by the compiler, but which accompany
values at runtime. Dynamic types are erasured in Nomadic Pict explicitly, using
a construct typecase, which requires exception code to be specified.

new ¢ : “Dyn

run c?x v =
typecase v of
[ a:Agent s:Site d: ~“String ] -> <a@s> d! "Hello world!"
stat : Int -> printi! stat
else
print! "Type not recognized!"

run c!(dynamic 3)

The above program creates a name server channel ¢ that can be used for carrying
messages of any type at the same time. Then, we implement a client process that
expects only two types of messages to be received from channel c: either a triple
of agent, site and channel names to be used for communication with the agent, or
some integer value. If a message received does not match these types, exception
code is executed (here, an error message is printed).

Contrary to statically checked variant types, described in Section 2.6, type-
checking is done dynamically, when the values are resolved by typecase. A
dynamic value can be created using construct dynamic, which marshals a value
with a runtime representation of its type.

3 Conclusions

In the paper, we gave some taste of distributed programming in Nomadic Pict—-a
prototype, strongly-typed language based on the w-calculus. As other languages
based on process calculi, it offers abstractions that are small and easy to learn.
In the paper, we demonstrated the use of statically and dynamically typed first-
class channels for safe message-passing communication. Notably, Nomadic Pict
also supports relocatable computation—a rare feature that greatly simplifies
system bootstrapping and enables active messages. We think that this sort of
programming abstractions are a tool that would be useful for future concurrent
scripting languages in modern deployment platforms, such as many-core pro-
cessors, grids, web servers and datacentres. In the paper, we demonstrated the
main features of Nomadic Pict, focusing on grid programming. This prototype
serves as a proof-of-concept and lacks many features that are necessary for prac-
tical applications, such as integration with other languages and environments. It



would be interesting future work to develop a concurrent scripting language for
managing relocatable virtual machines, using the abstractions of Nomadic Pict.
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