Skip to main content

Review of Graph Invariants for Quantitative Analysis of Structure Dynamics

  • Chapter
  • 954 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 416))

Abstract

In this work we review graph invariants used for quantitative analysis of evolving graphs. Focusing on graph datasets derived from structural pattern recognition and complex networks fields, we demonstrate how to capture relevant topological features of networks. In an experimental setup, we study structural properties of graphs representing rotating 3D objects and show how they are related to characteritics of undelying images. We present how evolving strucure of Autonomous Systems (ASs) network is reflected by non-trivial changes in scalar graph descriptors. We also inspect characteristics of growing tumor vascular networks, obtained from a simulation. Additionally, the overview of currently used graph invariants with several possible groupings is provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Iapr technical commitee 15 (January 31, 2012), http://www.greyc.ensicaen.fr/iapr-tc15/

  2. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Reviews of modern physics 74(1), 47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baish, J.W., Jain, R.K.: Fractals and cancer. Cancer Research 60(14), 3683 (2000)

    Google Scholar 

  4. Barabási, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nature Reviews Genetics 5(2), 101–113 (2004)

    Article  Google Scholar 

  5. Barrat, A., Barthlemy, M., Vespignani, A.: Dynamical processes on complex networks. Cambridge University Press (2008)

    Google Scholar 

  6. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: Structure and dynamics. Physics Reports 424(4-5), 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  7. Buluç, A., Gilbert, J.R., Budak, C.: Solving path problems on the gpu. Parallel Computing 36(5-6), 241–253 (2010)

    Article  MATH  Google Scholar 

  8. Carmeliet, P., Jain, R.K.: Angiogenesis in cancer and other diseases. NATURE-LONDON, 249–257 (2000)

    Google Scholar 

  9. Chung, F.R.K.: Spectral Graph Theory. CBMS Regional Conference Series in Mathematics, vol. 92, p. 3, 8. American Mathematical Society (1997)

    Google Scholar 

  10. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. International Journal of Pattern Recognition and Artificial Intelligence 18(3), 265–298 (2004)

    Article  Google Scholar 

  11. Costa, L.F., Rodrigues, F.A., Travieso, G., Boas, P.: Characterization of complex networks: A survey of measurements. Advances in Physics 56(1), 167–242 (2007)

    Article  Google Scholar 

  12. Czech, W.: Graph descriptors from b-matrix representation. In: Jiang, X., Ferrer, M., Torsello, A. (eds.) GbRPR 2011. LNCS, vol. 6658, pp. 12–21. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Czech, W., Goryczka, S., Arodz, T., Dzwinel, W., Dudek, A.: Exploring complex networks with graph investigator research application. Computing and Informatics 30(2) (2011)

    Google Scholar 

  14. Czech, W., Yuen, D.A.: Efficient graph comparison and visualization using gpu. In: Proceedings of the 14th IEEE International Conference on Computational Science and Engineering (CSE 2011), pp. 561–566 (2011), doi:10.1109/CSE.2011.223

    Google Scholar 

  15. Estrada, E.: Generalized walks-based centrality measures for complex biological networks. Journal of Theoretical Biology 263(4), 556–565 (2010)

    Article  Google Scholar 

  16. Estrada, E., Fox, M., Higham, D., Oppo, G.: Network Science. Springer (2010)

    Google Scholar 

  17. Estrada, E., Higham, D.: Network properties revealed through matrix functions. SIAM Review 52(4), 696–714 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Estrada, E., Higham, D., Hatano, N.: Communicability betweenness in complex networks. Physica A: Statistical Mechanics and its Applications 388(5), 764–774 (2009)

    Article  Google Scholar 

  19. Freeman, L.: A set of measures of centrality based on betweenness. Sociometry, 35–41 (1977)

    Google Scholar 

  20. Freeman, L.: Centrality in social networks conceptual clarification. Social Networks 1(3), 215–239 (1979)

    Article  Google Scholar 

  21. Gazit, Y., Berk, D., Leunig, M., Baxter, L., Jain, R.: Scale-invariant behavior and vascular network formation in normal and tumor tissue. Physical Review Letters 75(12), 2428–2431 (1995)

    Article  Google Scholar 

  22. Gfeller, D., Rios, P.D.L., Caflisch, A., Rao, F.: Complex network analysis of free-energy landscapes. Proceedings of the National Academy of Sciences 104(6), 1817 (2007)

    Article  Google Scholar 

  23. Godsil, C., Royle, G.: Algebraic graph theory. Springer, New York (2001)

    Book  MATH  Google Scholar 

  24. Gordon, M., Scantlebury, G.: Non-random polycondensation: Statistical theory of the substitution effect. Transactions of the Faraday Society 60, 604–621 (1964)

    Article  Google Scholar 

  25. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, Manchester, UK, vol. 15, p. 50 (1988)

    Google Scholar 

  26. Jamakovic, A., Uhlig, S.: On the relationships between topological measures in real-world networks. Networks and Heterogeneous Media 3(2), 345 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Képès, F.: Biological networks. World Scientific Pub. Co. Inc. (2007)

    Google Scholar 

  28. Leskovec, J.: Stanford large network dataset collection, http://snap.stanford.edu/data/

  29. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Densification and shrinking diameters. ACM Transactions on Knowledge Discovery from Data (TKDD) 1(1), 2–es (2007)

    Google Scholar 

  30. Luo, B., Wilson, R., Hancock, E.: Spectral embedding of graphs. Pattern Recognition 36(10), 2213–2230 (2003)

    Article  MATH  Google Scholar 

  31. Luo, Y., Lin, H., Huang, M., Liaw, T.: Conformation-networks of two-dimensional lattice homopolymers. Physics Letters A 359(3), 211–217 (2006)

    Article  Google Scholar 

  32. Marchette, D.: Random graphs for statistical pattern recognition. Wiley-IEEE (2004)

    Google Scholar 

  33. Marfil, R., Escolano, F., Bandera, A.: Graph-Based Representations in Pattern Recognition and Computational Intelligence. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009. LNCS, vol. 5517, pp. 399–406. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  34. Nene, S., Nayar, S., Murase, H.: Columbia object image library (coil-20). Dept. Comput. Sci., Columbia Univ., New York (1996), http://www.cs.columbia.edu/CAVE/coil-20.html

  35. Newman, M.: A measure of betweenness centrality based on random walks. Social networks 27(1), 39–54 (2005)

    Article  Google Scholar 

  36. Newman, M.: The mathematics of networks. The New Palgrave Encyclopedia of Economics (2007)

    Google Scholar 

  37. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web (1999)

    Google Scholar 

  38. Platt, J.: Influence of neighbor bonds on additive bond properties in paraffins. The Journal of Chemical Physics 15, 419 (1947)

    Article  Google Scholar 

  39. Qiu, H., Hancock, E.: Clustering and embedding using commute times. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(11), 1873–1890 (2007)

    Article  Google Scholar 

  40. Song, C., Havlin, S., Makse, H.: Self-similarity of complex networks. Nature 433 (2005)

    Google Scholar 

  41. Topa, P.: Dynamically reorganising vascular networks modelled using cellular automata approach. Cellular Automata, 494–499 (2010)

    Google Scholar 

  42. Wasserman, S., Faust, K.: Social network analysis: Methods and applications. Cambridge Univ. Pr. (1994)

    Google Scholar 

  43. Wcisło, R., Dzwinel, W., Gosztyla, P., Yuen, D.A., Czech, W.: Interactive visualization tool for planning cancer treatment. Tech. rep., University of Minnesota Supercomputing Institute Research Report UMSI 2011/7, CB number 2011-4 (2011)

    Google Scholar 

  44. Wcisło, R., Dzwinel, W., Yuen, D., Dudek, A.: A 3-d model of tumor progression based on complex automata driven by particle dynamics. Journal of Molecular Modeling 15(12), 1517–1539 (2009)

    Article  Google Scholar 

  45. Welter, M., Rieger, H.: Physical determinants of vascular network remodeling during tumor growth. Eur. Phys. J. E 33, 149–163 (2010)

    Article  Google Scholar 

  46. Wiener, H.: Structural determination of paraffin boiling points. Journal of the American Chemical Society 69(1), 17–20 (1947)

    Article  Google Scholar 

  47. Wilson, R., Hancock, E., Luo, B.: Pattern vectors from algebraic graph theory. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(7), 1112–1124 (2005)

    Article  Google Scholar 

  48. Xiao, B., Hancock, E., Wilson, R.: A generative model for graph matching and embedding. Computer Vision and Image Understanding 113(7), 777–789 (2009)

    Article  Google Scholar 

  49. Xiao, B., Hancock, E., Wilson, R.: Graph characteristics from the heat kernel trace. Pattern Recognition 42(11), 2589–2606 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Czech .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Czech, W., Dzwinel, W. (2012). Review of Graph Invariants for Quantitative Analysis of Structure Dynamics. In: Byrski, A., Oplatková, Z., Carvalho, M., Kisiel-Dorohinicki, M. (eds) Advances in Intelligent Modelling and Simulation. Studies in Computational Intelligence, vol 416. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28888-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28888-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28887-6

  • Online ISBN: 978-3-642-28888-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics