
Integrating Statechart Components in Polyglot

Daniel Balasubramanian1, Corina S. Păsăreanu2, Jason Biatek3, Thomas
Pressburger4, Gabor Karsai1, Michael Lowry4, and Michael W. Whalen3

1 Vanderbilt University/ISIS, 1025 16th Ave S, Nashville, TN 37212
2 Carnegie Mellon Silicon Valley, NASA Ames, M/S 269-2, Moffett Field CA 94035
3 University of Minnesota, Dept. of Comp. Sci. and Eng., Minneapolis, MN 55455

4 NASA Ames Research Center, M/S 269-2, Moffett Field, CA 94035

Abstract. Statecharts is a model-based formalism for simulating and
analyzing reactive systems. In our previous work, we developed Polyglot,
a unified framework for analyzing different semantic variants of Stat-
echart models. However, for systems containing communicating, asyn-
chronous components deployed on a distributed platform, additional
features not inherent to the basic Statecharts paradigm are needed.
These include a connector mechanism for communication, a schedul-
ing framework for sequencing the execution of individual components,
and a method for specifying verification properties spanning multiple
components. This paper describes the addition of these features to Poly-
glot, along with an example NASA case study using these new features.
Furthermore, the paper describes on-going work on modeling Plexil exe-
cution plans with Polyglot, which enables the study of interaction issues
for future manned and unmanned missions.

Keywords: Statecharts, analysis, modeling, testing

1 Introduction and Motivation

This paper reports on an on-going project at NASA Ames, whose goal is to
develop early, design-level automated techniques for error detection in the flight
control software developed for the next generation of manned and unmanned
space missions. The Ares-Orion abort scenario for the Constellation program
was an original motivating example for this work and is also used in this paper to
illustrate the technical capabilities of integrating different Statechart components
in our modeling and analysis framework.

During the Constellation Program, NASA was determined to provide a last-
chance option for astronaut survival if the Ares launch vehicle exploded during
launch – as did the rocket booster for the Space Shuttle Challenger in 1986 –
and therefore spent significant resources on a launch abort system. The driv-
ing requirement was to provide the Orion crew capsule with a powerful abort
rocket capable of rapidly pulling the capsule away in case of an explosion. The
Ares launch vehicle on-board fault diagnostics would interact with the Orion
spacecraft’scontrol system to detect an emerging hazard and execute either a
crew-initiated or automated firing of the launch abort rocket. Achieving the



2 Integrating Statechart Components in Polyglot

rapid control capability for a launch abort became a major design driver for
the Orion software architecture, the Ares software architecture, and also the
interface between Ares and Orion.

The interface requirements between Ares and Orion were defined in an English-
language Interface Control Document that included communication and control
specifications to be implemented by the Ares and Orion flight software. Both
Ares and Orion had adopted model-based software design methods. However,
due to cultural reasons and the technical capabilities of different tools, a multi-
tude of modeling formalisms were adopted: Enterprise Architect (UML 2.0) for
Ares, Mathworks Simulink/Stateflow for math-intensive functions on Orion, and
Rhapsody for the overall software framework for Orion. The Statechart control
component for these different modeling formalisms each has different execution
semantics. This makes performing conventional formal methods analysis of in-
teracting systems developed with these different modeling formalisms difficult.

In previous work [2] we developed Polyglot, a framework for modeling and
analysis of software using different Statechart formalisms. Polyglot uses a com-
mon intermediate representation with customizable Statechart semantics and
leverages existing verification and test case generation technologies developed at
Ames [1, 4]. However, to study integration issues between asynchronous compo-
nents described using different modeling formalisms, as in the Ares-Orion case
study, additional features need to be added to Polyglot. These include a connec-
tor mechanism for modeling communication, an execution scheduling framework
and a method for specifying verification properties that span multiple compo-
nents. This paper describes the addition of these features to Polyglot, along with
an analysis of the Ares-Orion abort scenario using these new features. We also
describe on-going work on modeling Plexil [3] execution plans with Polyglot,
which enables the study of interaction issues for future manned and unmanned
(robotic) missions. Although we make our presentation in the context of a par-
ticular NASA project, we believe that our work should be relevant to other
complex, safety critical model-based software that is built from multiple compo-
nents modeled with different Statechart formalisms.

2 Integrating Statechart Components in Polyglot

Due to space constraints, we present here only a brief review of the typical us-
age of Polyglot; for a detailed description, see [2]. The basic Polyglot framework
is used in the following way. First, the structure of the Statechart model (ex-
pressed in Matlab Stateflow, or Rational Rhapsody) is translated into a common
intermediate representation (IR). The IR is then translated into Java code that
represents the structure of the model. Only the structure of a model is trans-
lated because the semantics are provided as ”pluggable” modules. Currently,
modules implementing the semantics of Matlab Stateflow, Rational Rhapsody,
and UML Statemachines are provided. The Java code representing the structure
of the model is combined with one of these semantic modules, resulting in an
executable component. Analysis can be performed using Symbolic Pathfinder



Integrating Statechart Components in Polyglot 3

(SPF), the symbolic execution module of Java Pathfinder (JPF), which provides
test-case generation and reachability analysis.

Polyglot can be used as described above to execute and analyze both individ-
ual models and also systems with simple communication between multiple mod-
els where the communication semantics matches that of Statecharts (i.e. event
broadcast). However, large systems often contain components that execute in
parallel and communicate asynchronously, and the basic Statecharts formalism
does not provide a way to model either asynchrony or non-trivial communi-
cation between components. The remainder of this section gives a high-level
overview of the connector and scheduling frameworks that were added to Poly-
glot for modeling communicating, asynchronous components, and also describes
how properties spanning such components can be specified and checked.
Connectors The connector framework provides a generic way for components
to communicate. From a component’s point of view, a connector is simply a
source (destination, resp.) of inputs (outputs). Instead of reading data from or
sending data directly to another component, data is read from or written to a
connector. The connector is responsible for determining both how data is queued
when it arrives and the order in which messages are delivered when data is read.

Our basic implementation of connectors exposes two methods, recvFrom and
sendTo, which components call to receive data from or write data to the connec-
tor. Sending data to a connector is non-blocking, but attempting to read from a
connector that has no available data will block the calling component. This block
happens on the level of the scheduling framework, so that upon being blocked, the
component returns control to the scheduler. A component becomes unblocked,
and thus eligible to be run by the scheduler, when another component sends
data to it through a connector. The connector that we used in the experiment
in Section 4 was lossless and messages were delivered in FIFO order. Another
connector that we developed implements ARINC-653 5 ports. Our intention is
to develop an extensive library of connectors, modeling different communication
mechanisms, including lossy communication and non-FIFO message delivery.
Scheduler The scheduling framework is responsible for determining the or-
der of component execution and invoking the property checking. We have de-
veloped a generic scheduler that can be instantiated with different scheduling
mechanisms, e.g. non-deterministic, priority-based, calendar-based, etc. The de-
fault non-deterministic scheduler implementation works in the following way.
First, each Statechart component is registered with the scheduler and marked as
“ready” for execution. The scheduler is then run, and upon each step of its exe-
cution, it non-deterministically runs a single step of a component that is either
”ready”, meaning it previously ran without blocking and is ready again, or “un-
blocked”, meaning that the component was blocked during its previous execution
step (when trying to read data from an empty connector, for instance), but has
since become unblocked by the occurrence of some external event (such as hav-
ing data sent to it through a connector). Unblocked components are invoked so
that they can continue executing at the point at which they last became blocked,
5 Avionics Application Standard Software Interface, Aeronautical Radio, Inc.



4 Integrating Statechart Components in Polyglot

if desired. After the selected component finishes a step of execution, properties
(described below) are checked.

Additionally, the scheduler is implemented such that if JPF or SPF are be-
ing used, all of the feasible paths with respect to which eligible (i.e., ready or
unblocked) component is chosen to run are explored. This allows JPF to explore
all possible valid orderings of component execution.

Properties Checking properties that span multiple components (i.e., the prop-
erty involves the state configuration of more than one Statechart model) involves
two main tasks. The first is specifying the property. The second is deciding when
to check for property satisfaction. We specify properties using observer automata
defined as Statechart models because it allows us to leverage the existing frame-
work for translating high-level automata descriptions into Java code that can
be executed directly by Polyglot. If the individual components are modeled in
different tools, then the property can still be modeled as a Statechart in any one
of those tools and then translated into Java.

The relevant state variables and state configuration of the components be-
ing observed are modeled as inputs to the observer automata. However, in the
generated Java code, the values of these inputs are set directly by the observer
automata by using references to the individual components. The observers can
look directly inside the components being monitored thus eliminating the need
for the Statechart components to pass any messages to the observer automata.

All properties are checked by the scheduler after each step of execution by a
component, i.e. after each step of the state machine that implements the compo-
nent. Because the properties are defined as observer automata using Statechart
models, they are translated into Java code and executed like normal Statechart
components (with the only difference being that the observers set the values of
their inputs at each step by looking directly inside the monitored components).
Properties that are not satisfied trigger an exception, which can be caught by
SPF. The sequence of input values leading to the property violation is also re-
ported by SPF.

3 Integrating Plexil

To further extend the reach of Polyglot, we have recently added support for
Plexil [3], a PLan EXecution Language that is being used in developing various
mission software for e.g., the K10 Rover [5] and human habitat automation.
Plexil is based on hierarchical state machines, but unlike the other notations in
Polyglot, the state machines in Plexil are implicit in the definitions of nodes,
which describe the computational activities for executing a plan. In addition,
Plexil has several language features useful for planning that are not included in
the other notations, such as an extended type system in which all variables can
take on the value “unknown”, and a variety of different node types that have
template behaviors for several activities commonly required for plan execution.

As it is likely that Plexil plans will be integrated into complex mission soft-
ware involving Rhapsody, Simulink, and UML Statecharts, we want Polyglot to



Integrating Statechart Components in Polyglot 5

have the capability of simultaneously analyzing models in all of these notations.
To that end, we have added support for translating Plexil plans into Polyglot
state machines whose execution model matches the Rhapsody semantics. The
most significant aspect of the translation is to make explicit the implicit state
machines in the Plexil plan, and to add support for the extended type system
used in Plexil plans. We have added the type extensions through a Java class
library that in turn is loaded into Polyglot for interpretation in JPF. There are
several benefits of translating into Rhapsody besides the obvious integration into
Polyglot. First, it is possible to visualize the state machines involved in Plexil
nodes using the IBM Rhapsody tool suite. Second, it is possible to use the tool
suite to generate code for Plexil plans.

The translation is schematic in the structure of the Plexil plan and is based
on the operational semantics of Plexil [3]. However, it is currently not well-
optimized, and the Rhapsody semantics impose a certain amount of inefficiency
on top of the analysis due to some mismatches between the Rhapsody and Plexil
conception of state machines. In the future, we are planning to perform two addi-
tional steps with respect to Plexil. First, unlike the other Statecharts notations,
there is a single semantics for the Plexil Statecharts. Therefore, there is not the
same utility to ”swapping out” of multiple Statecharts semantics for Plexil plans.
We plan first to create a better optimized translation into Polyglot in which we
create a custom interpreter for Plexil plans to better match the Plexil state ma-
chine semantics. In addition, we are examining a direct-to-Java code generation
option for Plexil plans as it allows still more efficient analysis.

4 Experience

The extensions to Polyglot presented in this paper were applied to models rep-
resenting the interaction between the Ares launch vehicle and the Orion Crew
Exploration Vehicle described in Section 1. An Ares engineer modeled both Ares
and Orion in Stateflow. The Ares Stateflow model consists of six concurrent re-
gions, each containing a state machine, while the Orion Stateflow model consists
of five concurrent regions, each containing its own state machine. The inputs for
this model consist of ten different boolean signals. We analyzed the component
interactions using the non-deterministic scheduler described in Section 2.

We analyzed the Ares-Orion communication during abort by formulating
a property derived from the official flight software design documents and the
software requirements specification available for Ares I. The property states that:
“Ares aborts only if Orion initiates abort or crew commands automatic abort.”

We formulated the property as an observer automaton (as described in Sec-
tion 2) which is advanced whenever the Ares or Orion components execute one
step through their associated state machines. Using Symbolic Pathfinder to check
this property resulted in a property violation in a 3 step sequence leading to the
error. The generated test sequence revealed that Ares could also abort when
there is loss of communication. Based on this analysis, we formulated a new
property that, when analyzed with SPF, holds on the system.



6 Integrating Statechart Components in Polyglot

Our analysis confirmed problems suspected by the engineer who developed
the model, who had already submitted a request for a change to the Ares I
design document. Even though NASA’s manned space flight program has moved
beyond project Constellation, the same cultural and technical factors that led
to multiple modeling formalisms used in interacting safety-critical systems will
persist for future missions. Our framework provides automated formal methods
tools for the analysis of interactive components modeled with multiple Statechart
formalisms, not only Stateflow as we discussed for this case study, as well as
robotic plan execution represented by Plexil plans. This will be a key capability
for verification and validation of future manned and unmanned missions.

We have implemented the component framework presented here in Java, and
based on our profiling results with the Ares-Orion scenario and also with other
examples, we made improvements to the performance of Polyglot when used with
SPF. Our original analysis using the non-optimized version of Polyglot took a
total of 4m, 15s. The optimized version of Polyglot took 2m, 2s, over 50% less
time compared to the original version.

5 Conclusions

We have presented a high-level overview of three extensions to Polyglot that al-
low systems with communicating, asynchronous components to be modeled and
analyzed. These extensions are a connector framework for modeling communica-
tion, a scheduling framework for sequencing component execution and a method
for specifying properties spanning multiple, asynchronous components. A NASA
case study using these extensions was described, as well as our on-going work to
support the analysis of Plexil plans in Polyglot.

We continue to work on the Plexil integration and to apply our framework to
the analysis of interacting software components developed for human and robotic
missions. We also plan to investigate program specialization via symbolic execu-
tion to increase the speed of our analysis. This involves using SPF to specialize
the Polyglot semantic modules with respect to particular Statechart models.

The Polyglot framework is available in open source form, and we plan to
make the scheduling and connector framework available as well.

References

1. Java Pathfinder tool-set. http://babelfish.arc.nasa.gov/trac/jpf, 2011.
2. D. Balasubramanian, C. S. Păsăreanu, M. W. Whalen, G. Karsai, and M. R. Lowry.

Polyglot: modeling and analysis for multiple statechart formalisms. In ISSTA, 2011.
3. G. Dowek, C. Muñoz, and C. S. Păsăreanu. A small-step semantics of PLEXIL.

Technical Report 2008-11, National Institute of Aerospace, Hampton, VA, 2008.
4. C. S. Păsăreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet, M. R. Lowry,

S. Person, and M. Pape. Combining unit-level symbolic execution and system-level
concrete execution for testing nasa software. In ISSTA, pages 15–26, 2008.

5. V. Verma, V. Baskaran, H. Utz, R. Harris, and C. Fry. Demonstration of Robust
Execution on a NASA Lunar Rover Testbed. In iSAIRAS, 2008.


