Skip to main content

A Predictive Evolutionary Algorithm for Dynamic Constrained Inverse Kinematics Problems

  • Conference paper
Book cover Hybrid Artificial Intelligent Systems (HAIS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7208))

Included in the following conference series:

Abstract

This paper presents an evolutionary approach to the Inverse Kinematics problem. The Inverse Kinematics problem concerns finding the placement of a manipulator that satisfies certain conditions. In this paper apart from reaching the target point the manipulator is required to avoid a number of obstacles. The problem which we tackle is dynamic: the obstacles and the target point may be moving which necessitates the continuous update of the solution. The evolutionary algorithm used for this task is a modification of the Infeasibility Driven Evolutionary Algorithm (IDEA) augmented with a prediction mechanism based on the ARIMA model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, A., Corchado, E., Corchado, J.M.: Hybrid learning machines. Neurocomputing 72(13-15), 2729–2730 (2009)

    Article  Google Scholar 

  2. Balestrino, A., De Maria, G., Sciavicco, L.: Robust control of robotic manipulators. In: Proceedings of the 9th IFAC World Congress, vol. 5, pp. 2435–2440 (1984)

    Google Scholar 

  3. Bertram, D., Kuffner, J., Dillmann, R., Asfour, T.: An Integrated Approach to Inverse Kinematics and Path Planning for Redundant Manipulators. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1874–1879 (2006)

    Google Scholar 

  4. Box, G.E.P., Jenkins, G.M.: Time series analysis: Forecasting and control, revised edition. Holden-Day, San Francisco (1976)

    MATH  Google Scholar 

  5. Corchado, E., Abraham, A., Carvalho, A.: Hybrid intelligent algorithms and applications. Information Sciences 180(14), 2633–2634 (2010)

    Article  MathSciNet  Google Scholar 

  6. Corchado, E., Graña, M., Wozniak, M.: New trends and applications on hybrid artificial intelligence systems. Neurocomputing 75(1), 61–63 (2012)

    Article  Google Scholar 

  7. Fêdor, M.: Application of inverse kinematics for skeleton manipulation in real-time. In: Proceedings of the 19th Spring Conference on Computer Graphics, pp. 203–212. ACM (2003)

    Google Scholar 

  8. Garca, S., Fernndez, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences 180(10), 2044–2064 (2010)

    Article  Google Scholar 

  9. Goldenberg, A.A., Benhabib, B., Fenton, G.: A complete generalized solution to the inverse kinematics of robots. IEEE Journal of Robotics and Automation RA-1(1) (1985)

    Google Scholar 

  10. Goldenberg, A.A., Lawrence, D.L.: A generalized solution to the inverse kinematics of robot manipulators. ASME Journal of Dynamic Systems, Measurement, and Control 107, 103–106 (1985)

    Article  MATH  Google Scholar 

  11. Hatzakis, I., Wallace, D.: Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach. In: Proceedings of the GECCO 2006, pp. 1201–1208. ACM (2006)

    Google Scholar 

  12. Karla, P., Mahapatra, P.B., Aggarwal, D.K.: On the solution of multimodal robot inverse kinematics function using real-coded genetic algorithms. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1840–1845 (2003)

    Google Scholar 

  13. Karla, P., Mahapatra, P.B., Aggarwal, D.K.: On the comparison of niching strategies for finding the solution of multimodal robot inverse kinematics. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, vol. 6, pp. 5356–5361 (2004)

    Google Scholar 

  14. Pedrycz, W., Aliev, R.: Logic-oriented neural networks for fuzzy neurocomputing. Neurocomputing 73(1-3), 10–23 (2009)

    Article  Google Scholar 

  15. Singh, H.K., Isaacs, A., Tapabrata, R.: Infeasibility Driven Evolutionary Algorithm (IDEA) for engineering design optimization. In: Proceedings of the 21st Australasian Joint Conference on Artificial Intelligence: Advances in Artificial Intelligence, pp. 104–115 (2008)

    Google Scholar 

  16. Singh, H.K., Isaacs, A., Nguyen, T.T., Ray, T., Yao, X.: Performance of infeasibility driven evolutionary algorithm (IDEA) on constrained dynamic single objective optimization problems. In: Proceedings of IEEE Congress on Evolutionary Computation, CEC 2009, pp. 3127–3134 (2009)

    Google Scholar 

  17. Tabandeh, S., Clark, C., Melek, W.: A genetic algorithm approach to solve for multiple solutions of inverse kinematics using adaptive niching and clustering. In: Proceedings of IEEE Congress on Evolutionary Computation, CEC 2006, pp. 1815–1822 (2006)

    Google Scholar 

  18. Wilfong, G.: Motion planning in the presence of movable obstacles. In: Proceedings of ACM Symposium on Computational Geometry, pp. 279–288 (1988)

    Google Scholar 

  19. Wolovich, W.A., Elliot, H.: A computational technique for inverse kinematics. In: Proceedings of 23rd IEEE Conference on Decision and Control, pp. 1359–1363 (1984)

    Google Scholar 

  20. Zhou, A., Jin, Y., Zhang, Q., Sendhoff, B., Tsang, E.: Prediction-Based Population Re-initialization for Evolutionary Dynamic Multi-objective Optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 832–846. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Filipiak, P., Michalak, K., Lipinski, P. (2012). A Predictive Evolutionary Algorithm for Dynamic Constrained Inverse Kinematics Problems. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, SB. (eds) Hybrid Artificial Intelligent Systems. HAIS 2012. Lecture Notes in Computer Science(), vol 7208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28942-2_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28942-2_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28941-5

  • Online ISBN: 978-3-642-28942-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics