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Abstract   This chapter shows that combining Haar-Hilbert and Log-Gabor 

improves iris recognition performance leading to a less ambiguous biometric 

decision landscape in which the overlap between the experimental intra- and inter-

class score distributions diminishes or even vanishes. Haar-Hilbert, Log-Gabor 

and combined Haar-Hilbert and Log-Gabor encoders are tested here both for 

single and dual iris approach. The experimental results confirm that the best 

performance is obtained for the dual iris approach when the iris code is generated 

using the combined Haar-Hilbert and Log-Gabor encoder, and when the matching 

score fuses the information from both Haar-Hilbert and Log-Gabor channels of the 

combined encoder. 

1. Introduction 

In 1970s, Flom and Safir [11], two American ophthalmologists noticed that the iris 

texture differs from one person to another and later asked Daugman to develop a 

system for identifying persons using their iris. The system patented by Daugman 

in 1994 [4] and based on a 2-dimensional Gabor filter was the first fully functional 

iris recognition system. In the same period, Wildes et al [53] proposed a different 

iris recognition system. 

Compared to 1990s, iris recognition is nowadays a relatively popular research 

topic, many new segmentation, encoding or matching methods being proposed in 

the last two decades as original solutions produced by well-established research 

teams from Bath University ([29], [47]), CASIA ([23]-[25], [54]-[57]), NIST 

([13], [31]), Notre-Dame University ([1], [18], [22], [33]), Kent University ([46], 

[51], ) or by individual researchers around the world: L. Masek - [28], C. Tisee 

[59], S. Yang [62], S. Yoon [63], S. Ziauddin [66] and many others. Approaches 

relying on soft computing techniques, logical formalism and neuro-evolutionary 

architectures for iris recognition systems were recently proposed by N. Popescu-

Bodorin, V.E. Balas and I.M. Motoc in [36] and [39]-[43]. Some airports and 

seaports around the world (Arab Emirates, for example) decided to increase their 

security and they achieve that using iris recognition system, whereas in 
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Afghanistan, authorities plan to scan the irides of the entire population. On the 

other hand, the global market of biometric devices and technologies continues to 

expand - some of them recently being tested by NIST [13], [31]. 

The independent evaluation undertaken by NIST for the most popular iris 

recognition technologies available in 2007-2009 established a characterization of 

what is the present state of the art in iris recognition, and established a framework 

for future progress and a level of understanding the iris recognition theory and 

practice. 

When we say “iris recognition” we understand that an artificial agent extracts 

and matches some iris codes in order to produce a biometric decision 

(accept/reject) accordingly to a computed similarity score assumed to encode in 

some degree the actual similarity between the iris images currently being 

compared. This is a human-made agent and therefore we might be tempted to 

think that it will behave like a human. However, things are far from being this 

way: on the one hand IREX report shows that the present state of the art in iris 

recognition is still grounded to a statistical decisional landscape in which the 

biometric decision is bimodal (the two distribution of scores overlap each other 

creating a confusion zone), and on the other hand, in [41] and [42] it is shown in 

what conditions the statistically confused score distributions could generate a 

binary consistent artificial understanding of iris recognition. 

2. Perceiving iris recognition through Turing tests 

The idea of undertaking Turing tests [60] for iris recognition originated in [44], 

some results of such tests being published already in [40] and [42]. The 

importance of these tests resides in the fact that they certify the distance between 

the present state of the art statistical (bimodal) iris recognition and a prototype 

recognition function identified while interrogating the human agent during the 

Turing test. Such a test leads to an inevitable comparison between how a human 

perceives and performs the act of iris recognition (Fig.1.a from [42]) and how an 

artificial agent (for example, a state of the art iris recognition system, which takes 

statistically motivated biometric decisions - like those tested in [13]) operates the 

iris recognition task.  

During a Turing test of iris recognition, it’s easy for a human agent to see if 

between two irides is or isn’t a difference, hence, as it is said in [42], the geometry 

[64] of his decisions is a crisp one (Fig. 1.a, [42]) and consists of one collection of 

crisp points (0 and 1) and a histogram that shows how many times the human 

agent recognized two irides as being similar (when the decision is given with an 

unitary score) or as being different (when the decision is encoded as a null score).  

However, despite the fact that for a software agent the recognition is a much-

complicated task, the recognition results in this case are not necessarily as 

accurate and correct as those given by the human agent. The human agent sees the 
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genuine and imposter comparisons as two crisp and disjoint concepts, but for the 

artificial agent (for an iris recognition system practicing the present bimodal 

statistical recognition) these concepts are fuzzy and statistically confused along 

the zone where the imposter and genuine score distributions overlap each other. 

This overlapping defines here the confusion zone. 

A human needs only two values (0 and 1) to encode the meaning of the two 

different, complementary and mutually exclusive concepts (‘genuine’ and 

‘imposter’ comparisons) whereas the machine will encode the similarity between 

the two irides using certain methods of computing a similarity score belonging in 

[0, 1] interval. Hence, the concepts ‘genuine’ and ‘imposter’ are crisp in human 

perception / understanding and they are fuzzy in the artificial perception of an 

artificial software agent.  

Nevertheless, despite the way in which the artificial and human agents perceive 

them, what really matters is how these two concepts really are: they are distinct 

(disjoint), complementary and mutually exclusive.  

The fact that in the artificial perception of some iris recognition system the two 

concepts are seen as being insufficiently distinct (the genuine and the imposter 

scores define two fuzzy intervals which are different in meaning - see the concept 

m-precisiation, Zadeh [65], but they overlap each other), and consequently not 

quite complementary and not quite mutually exclusive, is not a reason to believe 

that the iris recognition and those two concepts are indeed fuzzy in their nature. 

This fact proves only how much room for improvement exists between two 

paradigms of iris recognition, namely between the statistical / bimodal iris 

recognition ([1]-[7], [13]), on the one hand, and on the other hand, the intelligent 

and logical recognition certified as being possible by the Turing test and recently 

studied in [44] and also in [40]-[43].  

3. EER vs. f-EER 

It has been shown in [42] that the decisions given by the artificial agent during 

a Turing test of iris recognition defines an f-geometry (Zadeh, [64]) in which the 

inter- and intra-class score distributions could or could not overlap each other.  

On the other hand, as Daugman said in [7], the recognition errors are caused by 

the intersection of the genuine and imposter distributions (the system is more 

efficient if the error is insignificant, almost zero, meaning that greater the distance 

between the two distribution of scores, better the iris recognition system is).  

To express the fuzzification between inter- and intra-class score distribution, a 

crisp concept known as Equal Error Rate (EER) is usually used, but as it is said in 

[44] and also in [38]-[41], the existence of such a crisp point was not 

experimentally confirmed. In our experience also, the theoretical concept of EER 

corresponds to a collection of possible EER points that are varying from one 

recognition test to another. This collection of varying EER points can be seen as a 
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fuzzy EER interval (denoted f-EER in [42]), which, as it is said in [43], means “a 

collection of recognition thresholds for which is very hard (or simply impossible) 

to say for sure if they are recognition scores rather than rejection scores or vice 

versa”.  

The f-EER interval is the f-geometry (Zadeh, [64]) corresponding to the crisp 

and theoretical concept of EER point. This happens every time when the genuine 

and imposter score distributions overlap each other along a confusion zone which 

causes an eventual binary logical model of iris recognition to collapse (to become 

logically inconsistent) because people which are not enrolled in the system may 

have the possibility to pass as they would be a genuine match for an enrolled 

person.  

One way to eliminate the inconsistency ([42], [44]) is adding a third fuzzy set 

in-between the fuzzy intervals containing the genuine and imposter scores, namely 

the f-EER interval, which is seen like defining a safety band that enable the 

biometric system to keep the inter- and intra-class score distributions disjoint.  

More exactly, f-EER corresponds to a third logical state “u” (uncertain / 

unknown) different from 0 and 1. The similarity scores belonging in this region 

will label as unenrollable or undecidable those pairs of irides (or pairs of iris 

codes) for which the artificial agent (the iris recognition system) could not say 

exactly if they are genuine or imposter pairs, indeed. 

4. Iris segmentation, encoding and matching 

This section describes three iris texture encoders: Log-Gabor, Haar-Hilbert, and 

the combination between them. All of them will be tested further in this paper in 

the single eye enrollment scenario and also in the dual iris approach (proposed in 

[45] and [46]). One of our goals here is to test the combination between the dual 

iris approach and the fusion of the two classifiers based on Log-Gabor and Haar 

Hilbert encoders, respectively.  
 

Iris segmentation is practiced here using the Circular Fuzzy Iris Segmentation 

procedure (CFIS2) proposed in [38] and available for download in [39]. For any 

input eye image from the test database, the result of this segmentation procedure is 

a concentric circular ring (delimited by a circular approximation of the pupil at the 

interior and by a circular approximation of the limbic boundary at the exterior) or 

equivalently, a rectangular polar unwrapped iris segment whose lines are iris 

circles unfolded in the angular direction.  
 

Relative to the iris segment extracted with CFIS2, an additional correction is 

applied here for the pupil segmentation by eliminating from the unwrapped iris 

segment the lines situated near the pupil and which accidentally contain a certain 

amount of pixels from the pupil. All the unwrapped iris segments are further 

normalized at the dimension of 256x16.  
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4.1. The Log-Gabor iris texture encoder  

The Gabor filters were introduced in 1940 [12] as signal processing techniques, 

then studied by Helstrom [16], Montgomery [30], and Rihaczek [49]. They later 

came into the attention of some researchers focused on understanding the way in 

which the cells of visual cortex within the mammal’s brain sustain the complex 

process of vision and on finding a computational model for the human vision. 

Marčelja ([27], 1980) and Field ([10], 1987) relied on them to describe the 

functionality of receptive fields of the visual cortex, and Daugman ([3], 1988) 

used them initially as image compression tools and later for phase-based encoding 

of the iris texture ([4]-[8], 1994-2007).  

When it came to choose between 1D or 2D Log-Gabor encoding, we selected 

the former because, as in [44], we also found that as long as the equations 

describing the iris movement in the radial direction will remain unknown the 

attempt of matching irides in the radial direction will also remain an 

insurmountable source of errors, especially inconsistent (insufficiently motivated) 

False Reject errors. Consequently, the Log-Gabor filter used in this paper is a 

single-scale, fast, one-dimensional variant of the encoder used in [28], it encodes 

the phase of iris texture only in the angular direction and has the following form: 

G(f) = exp[-0.5log
2
(f/f0)/log

2
(σ/f0)], 

where f0 is the center frequency, σ is the bandwidth of the filter.  
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Fig. 1. Displaying the Log-Gabor filter in the 

frequency domain for an iris line of 512 

pixels: the highest 256 FFT frequencies and 

the DC component are neglected all together 

(see the left-side and the right-side of the 

graphic), whereas the other components 

(those corresponding to the remaining 

frequency bands which are not neglected) are 

rescaled through an affine combination 

whose components draw a Gaussian when 

represented against a logarithmically scaled 

abscise.  

 

The same encoder is used in [38], [39] and [44] which, together with [29] and 

the IREX Report [13], are taken as references for the iris recognition results 

further presented in this paper and obtained for the same iris database [52].  

The Matlab implementation of the above one-dimensional single-scale Log-

Gabor encoder uses the Fast Fourier Transform (FFT) and its inverse and is 

available for download within the toolbox [39]. It encodes the polar unwrapped 

and normalized iris segment line by line, in the angular direction. 
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The Log-Gabor encoder presented above compress the lines of the normalized 

iris segment in the frequency domain in a lossy manner, by neglecting the highest 

128 FFT frequencies together with the DC component. It also enhances those 

frequency bands that store the discriminative information on which intra-class 

matching and inter-class rejection are both based on.  

4.2. The Haar-Hilbert iris texture encoder 

The Haar-Hilbert encoder was introduced in [44] and [38]. It encodes the iris 

texture as a binary matrix and has two operations:  

– The first one consists in a single-level 2-dimensional Discrete Haar 

Wavelet decomposition applied on the normalized iris segment in order to 

smooth it by removing a 2-dimensional noise signal involuntarily and 

artificially introduced there during the image acquisition and during the 

preprocessing stages which took place while transforming the initial iris 

image into the normalized rectangular iris segment. The existence of this 

noise was for the first time assumed, experimentally verified and 

documented in [44]. Our iris recognition results that follow to be presented 

here also confirm this hypothesis. This denoising operation is an operation 

at the global scale of the normalized iris segment and produces a denoised 

iris segment of dimension 128x8 in our case. 
 

– In the second step, the Hilbert transform is applied to the denoised iris 

segment block-wise (locally) in the angular direction. The result is a block-

wise strong analytic signal [36] whose phase is further encoded as a binary 

iris code. Generally, in this paper, each time when a block-wise operation 

is performed, the dimension of the processing block is mentioned within 

the table where the experimental data are reported. 

Summarizing, the Haar-Hilbert filter consists in a global denoising of the 

normalized iris segment followed by a local (block-wise computed) binary phase-

based very lossy compression of the strong analytic signal generated locally by 

block-wise computing the Hilbert Transform of the denoised iris segment. 
 

One of the most intuitive ways to introduce the Hilbert Transform and to take a 

meaningful view over the related topics was described by M. Johansson in [17] 

where he drew an imaginary path from the exponential form of the complex 

numbers (Euler, [9]): 

e
jz
 = cos(z)+j·sin(z), 

to the complex notation of harmonic waves (generalized Moivre’s formula written 

for the exponential form of the complex numbers): 
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e
jωt

 = cos(ωt)+j·sin(ωt), 

and to the basic property of the Hilbert Transform - namely that relative to the 

input signal, it shifts the phase of all frequency components by π/2 radians, 

property proved by Hilbert as a consequence of the fact that sin(ωt) is the Hilbert 

Transform of cos(ωt). For a given initial signal x it follows then very naturally the 

introduction of Gabor analytic signal y, defined in [12] as:  

y = x + j·H(x). 

where the Hilbert Transform of a continuous time-domain signal f is defined as: 

∫
∞+

∞− −
= dτ

τt

f(t)
P

π

1
H(f(t)) , 

whenever the integral exists.  

According to [36], the reason for which the Hilbert Transform is suitable to be 

used in iris recognition is that the energy of a signal is an invariant of the Hilbert 

Transform. Other properties of Hilbert Transform can be found in [19] whereas 

Fig. 1 from [35] shows an intuitive depiction of the binary phase encoding based 

on the Hilbert Transform, encoding defined by the following relation: 

BIC = logical( phase(y) > 0 ), 

which defines the Gabor Analytic Iris Texture Encoder [35] and establishes that 

the k-th bit of the binary iris code BIC has a value of 1 if and only if the 

corresponding component y(k) of the Gabor analytic signal y has a positive phase. 

4.3. Combined Haar-Hilbert & Log-Gabor encoder. Classifier 

fusion strategy 

The fact that the Log-Gabor filter encodes the normalized iris segment in the 

angular direction, line by line on their full length, means that the phase features 

detected with the Log-Gabor encoder are relevant at the scale of the iris circles 

concentric to the pupil, or in other words, they are meaningful at the global scale 

of the circular iris segment. On the contrary, the phase features encoded by the 

Haar-Hilbert filter are computed block-wise, meaning that they are locally 

relevant in the first place, instead of being meaningful at the global scale of the 

circular iris segment.  

However, each encoder defines a fuzzy binary classifier (or a binary-modal 

classifier – we could say) which organizes the set of all iris code pairs within the 

test database into two (modal) classes, namely the genuine and the imposter pairs 
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respectively, classes that expose to each other statistically confused sparse fuzzy 

boundaries. From this perspective, to improve the quality of iris recognition 

should mean to move these boundaries away from each other and toward their 

own classes. On the other hand, the sparsity of these fuzzy boundaries tells us that 

in an exhaustive test of iris recognition made by following the single eye 

enrollment scenario, obtaining a similarity score situated in the confusion zone is a 

rare event. Hence, it makes sense asking how much correlation it is between these 

rare events produced on the two different processing channels of the combined 

Haar-Hilbert & Log Gabor (HH&LG) classifier illustrated in Fig. 2, how much 

correlation it is between two rare events occurring on two different channels of 

information from which one encodes global features and the other encodes 

localized features within the phase of the iris texture. The experimental work 

underlying this paper shown us there is a certain degree of independence between 

these rare events occurring on the two processing channels, not very high, but high 

enough to ensure an improvement of iris recognition when the two classifiers are 

fused.  

 

 Haar-Hilbert channel  

→ HH → IC1 → S1 → 

      

 
 

Initial 

iris 

image → LG → IC2 → S2 → 

 

Fused 

similarity 

score 

 Log-Gabor channel  

Fig. 2. Iris recognition based on classifier fusion and single eye enrollment scenario 

 Haar-Hilbert channel  

→ HH → LIC1, RIC1 → LS1, RS1 →

      

 

 

Initial left 

and right 

iris images 
 → LG → LIC2, RIC2 → LS2, RS2 →

 

Fused 

similarity 

score 

 Log-Gabor channel  

Fig. 3. Iris recognition based on classifier fusion and dual iris approach 

The combined Haar-Hilbert & Log-Gabor classifier is illustrated in Fig. 2: an iris 

image I is acquired for the current candidate C and two candidate iris codes IC1 

and IC2 are generated from the image I using the Haar-Hilbert and Log-Gabor 

encoders. Then the candidate iris codes IC1 and IC2 are matched against two 

binary templates stored under a certain claimed identity E using the Hamming 

distance and two similarity scores S1 and S2 are computed as the results of these 

comparisons. The membership degree of the current candidate C to the claimed 

identity E is further computed as a fused similarity score:  

S = (S1*S2)
1/ 2

. 
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In the dual iris approach (Fig. 3), four binary iris codes (LIC1, LIC2, RIC1, 

RIC2) and four similarity scores are generated as described above for the two eyes 

of the current candidate C: LS1, LS2 (for the left eye of the candidate), RS1 and 

RS2 (for the right eye). The membership degree of the current candidate C to the 

claimed identity E is then computed as:  

S = (LS1*LS2*RS1*RS2)
1/ 4

.  

5. Performance criteria 

The results of the experimental iris recognition tests that follow to be presented 

here will be compared using classical performance criteria such as the decidability 

index, Fisher’s ratio, the False Accept Rates (FAR), the False Reject Rates (FRR) 

and the Equal Error Rate (EER), but also using non-standard criteria recently 

introduced in [44], [42] and [43] such as the Pessimistic Odds of False Accepts 

(POFA), Pessimistic Odds of False Rejects (POFR), Pessimistic Odds of Equal 

Error (POEE), the overlap between the imposter and genuine experimental 

distribution of scores, the safety interval ([42], [44]), the compatibility with a 

Fuzzy 3-Valent Disambiguated Model (F3VDM, [42], [44]) of iris recognition and 

the type of iris recognition theory ([43], [44]) exhibited by the recognition system 

during the tests.  

5.1. Decidability index and Fisher’s ratio 

In iris recognition, Daugman ([4], [5]) introduced the decidability index in 

order to express the degree of separation (the statistical bimodal separation) 

between the inter- and intra-class score distribution as being the number d’ 

computed as follows: 

d’ = |µI-µG| / [(σI
2
+σG

2
)/2]

1/2
. 

where µI, µG, σI and σG
 
are the means and the standard deviations computed for the 

imposter and genuine experimental score distributions. Nevertheless, we traced 

the use of such formulas (with little variations, but with the same meaning) back 

to 1954 in the writings of Peterson, Birdsall & Fox - [32] and Tanner & Swets - 

[58].  

Within the same family of separation measures is also the Fisher’s ratio whose 

use in iris recognition was suggested by Wildes in [61]: 

FR = (µI - µG)
2
 / (vI + vG), 
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where µI and µG are defined above, whereas vI and vG are the variances of the two 

experimental distributions of imposter and genuine scores, respectively. The 

decidability index d’ and the Fisher’s ratio FR are both estimated (optimistically) 

from data, their relevance being based on the hypothesis that the volumes of 

experimental imposter and genuine data have exceeded already some (a priori 

unknown) critical values above which the statistics of the two classes of scores 

become stationary. Since the test database used here is very small ([52], 1000 

images) when compared to the world population, we have not found reasons to 

assume that the above hypothesis is satisfied, and therefore, as a precaution, we 

will prefer here to make a distinction between the data objectively measured 

during our iris recognition tests and the statistical measures optimistically or 

pessimistically estimated based on the actual experimental data. This explains the 

distinction that we make here between the actual Rates measured for the numerical 

results of our tests and the optimistically or pessimistically estimated Odds that 

some event to occur or not in the future exploitation of an iris recognition system 

that could hypothetically prolong a given recognition test undertaken here. The 

same distinction between Rates and Odds was practiced also in [38] and [44]. 

5.2. FAR, FRR, EER, OFA, OFR, OEE, POFA, POFR and POEE  

For any given recognition threshold t, the False Accept Rate - FAR(t) - is 

defined here as in [36], as being the experimentally determined “ratio between the 

number of imposter scores exceeding the threshold and the total number of 

imposter scores”, i.e. the cumulative of the actual experimentally determined 

imposter probability density function form the threshold t to the maximum 

imposter similarity score.  

By analogy, for any given recognition threshold t, the False Reject Rate –FRR - 

is the experimentally determined as the “ratio between the number of genuine 

scores not exceeding the threshold and the total number of genuine scores” [36], 

i.e. the cumulative of the actual experimentally determined genuine probability 

density function form the minimum genuine similarity score to that threshold t. 

The theoretical concept of EER point is then defined by the common value of 

the FAR and FRR curves at the threshold tEER where they equal each other. If the 

experimentally determined genuine and imposter probability density functions 

(pdf-s) are overlapping each other then the EER value is strictly positive.  

Still, it could happen that the experimentally determined pdf-s are not 

overlapping each other. In this case, the EER value is null and it makes sense 

trying to predict an EER value for future exploitation of the system in terms of 

Odds of Equal Error (OEE) and Pessimistic Odds of Equal Error (POEE). Unlike 

the FAR and FRR, the Odds of False Accept (OFA), the Odds of False Reject 

(OFR) [36], the Pessimistic Odds of False Accept (POFA, [38]) and the 

Pessimistic Odds of False Reject (POFR) [44] are estimated from data.  
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The OFA and OFR are optimistically estimated from data by fitting the actual 

score distributions with theoretical ones, determined by their means and their 

standard deviations. However, these theoretical pdf-s are not necessary pessimistic 

envelopes (see such pessimistic envelopes in Fig. 7.a, Fig. 7.b and Fig. 7.c) for the 

actual experimental pdf-s and this is what makes them optimistic approximations 

of the actual pdf-s.  
 

For any given recognition threshold t, OFA(t) is defined [36] as being:  

∫ ττ=
1

t pdf d)(I)t(OFA , 

i.e. the cumulative of the theoretical optimistically estimated imposter pdf (Ipdf) on 

the interval [t, 1], whereas OFR(t) is defined [36] as: 

∫ ττ=
t

0 pdf d)(G)t(OFR , 

i.e. the cumulative of the theoretical optimistically estimated genuine pdf (Gpdf) on 

the interval [0, t].  
 

By analogy with EER, the Odds of Equal Error (OEE) are defined by the 

common value of the curves OFA and OFR at the threshold tOEE where they equal 

each other. Unlike EER value, which may be null sometimes, in the paradigm of 

bimodal iris recognition ([4], [5], [7], [36], [38]) the OEE value is always strictly 

positive (even when the EER value is null).  
 

The pessimistic estimations of the actual genuine and imposter pdf-s (denoted 

PIpdf and PGpdf) may be obtained from these theoretical (optimistically 

determined) pdf-s described above (Ipdf and Gpdf) by scaling up their standard 

deviations with a certain (supra-unitary) factor (i.e. by accepting the pessimistic 

hypothesis that, over the time, the intraclass variability - encoded through the 

standard deviations of each class - would or could increase) or by slightly 

increasing/decreasing the mean of imposter/genuine distribution with a certain 

additive positive/negative shift [38], respectively (i.e. by accepting the pessimistic 

hypothesis that, over the time, the intraclass/genuine score distribution would 

slightly slide to the right/left toward the distribution of genuine/imposter similarity 

scores) or by combining the sliding of the genuine and imposter similarity score 

distributions toward each other with a growth of their variability. For any given 

recognition threshold t, POFA(t), POFR (t) ([44]) and Pessimistic Odds of Equal 

Error (POEE) are defined by analogy with OFA(t), OFR(t) and OEE: 

∫ ττ=
1

t pdf d)(PI)t(POFA ,  

∫ ττ=
t

0 pdf d)(PG)t(POFR . 
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Evidently, the POEE will be always greater (i.e. more pessimistic) than the 

OEE. As a precaution, such pessimistic evaluation measures will be used further 

in this paper (see Table 1 and Table 2).  

5.3. The compatibility with a Fuzzy 3-Valent Disambiguated Model 

We recall that when the statistical / bimodal decisional model (introduced by 

Daugman, [4]-[7]) is implemented and practiced on an iris recognition system, the 

two concepts ‘genuine’ and ‘imposter’ are artificially perceived in the system as 

being not quite mutually exclusive despite that they are actually distinct, mutually 

exclusive and even complementary concepts, fact which can be verified during a 

Turing test of iris recognition (see Fig. 1.a from [42]). The confusion zone is 

defined by the minimum genuine and maximum imposter similarity scores 

whenever the former is smaller than the later. Let us call the imposter interval as 

being the interval determined by the extreme imposter values experimentally 

determined during an exhaustive test of iris recognition, and the genuine interval 

defined by analogy.  
 

The confusion zone is the intersection of these two intervals whenever they 

overlap each other. In a favorable scenario, the genuine and the imposter interval 

are disjoint and the confusion zone is undefined. Hence, in these cases it makes 

sense to talk about the confusion zone in terms of Odds. The only problem is that 

the theoretical OFA, OFR, POFA and POFR have positive values anywhere in (0, 

1) interval. It happens this way because, for example, as it is said in [44] there is 

no theorem to guarantee that all imposter scores belong naturally to a certain 

interval centered in 0.5. Hence, for the moment, the existence of such a crisp right 

boundary (a crisp majorant) for all imposter similarity scores is inevitably 

assumed as a pure hypothesis, based on the experimental data, which implicitly 

means to accept that the experimentally determined imposter pdf should possess a 

vertical asymptote [44] on its right side.  
 

However, the existence of a vertical asymptotic behavior at the left side of the 

experimentally determined pdf of the genuine similarity scores is any but possible 

because, as it is exemplified in [41] and [44], the index of the genuine 

comparisons may be accidentally corrupted by comparing a wrong segmented iris 

segment taken from an image of a given eye to an iris segment correctly extracted 

from other image of the same eye, or in general, by comparing two very different 

hypostases of the same iris captured in very different acquisition conditions (for 

example, one with a very contracted pupil and the other slightly rotated and 

showing a very dilated pupil of the same eye – in this case the two images 

illustrate two configurations of the same physical iris, configurations which are so 

different that their matching is indeed impossible). The influence of pupil dilation 

on the iris biometric performance is also documented in [18].  
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Let us consider now an exhaustive iris recognition test in which the 

experimentally determined imposter and genuine intervals are statistically 

confused on their tails, or in other words, the separation between the two classes 

of scores is fuzzy. In this case, the size of the overlap is defined as the length of 

the interval on which the two classes of scores are overlapping each other, i.e. the 

difference between the maximum imposter score (MIS) and the minimum genuine 

score (mGS): 

O1 = MIS - mGS. 

I [a, 1] 
Genuine  

Pairs 

Imposed Odds of False Accept: POFA(a)  

True Accept Safety: 1-POFA(a) 
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----------------------------------------------------(+)- 
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Imposed Odds of False Reject: POFR(r)  

False Reject Safety: 1-POFR(r). 
 

S
E
C
U
R
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T
Y
 

Fig. 4. A Fuzzy 3-Valent Disambiguated Model obtained by imposing the following two security 

restrictions: r = POFR
-1

(v1) and a = POFA
-1

(v2), where v1 and v2 are imposed values.  

 

Fig. 5. (a) Crisp binary human understanding of the input space certified in a Turing test of iris 

recognition undertaken for the test database [52]. (b) Hierarchical binary classification of the 

input space associated to a Fuzzy 3-Valent Disambiguated Model of iris recognition when 

practicing the iris recognition within the limits of (logically) Consistent Biometry [40].  

The results of an iris recognition test are better if the overlap size is smaller. 

Negative values of this parameter are desirable meaning that the two 

(a) Human understanding of iris recognition certified in a Turing test: 

(b) Artificial understanding of  

iris recognition in a F3VDM: 

Iris Pairs 

(Comparisons) 

Artificially Decidable Pairs  

(Relevant Comparisons) 
GENA  

IMPA  

Artificially Undecidable Pairs  

(Irrelevant Comparisons) 

Actual Imposter Pairs: IMPH   

Actual Genuine Pairs: GENH   
Iris Comparisons 

(all decidable) 

v2 v1 
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experimentally determined distributions of scores are separated by a safety 

interval whose width, as it is said in [44], negotiates between system security and 

user comfort. Regardless the overlap size, the similarity scores belonging in the 

safety interval are considered inconclusive for taking a biometric decision. This is 

the main feature of a Fuzzy 3-Valent Disambiguated Model (F3VDM): the fuzzy 

separation between the two classes of similarity scores is enforced to become a 

crisp one by introducing the safety interval in-between them. 
 

The Fuzzy 3-Valent Disambiguated Models (F3VDM) of iris recognition are 

proposed in [44] and [41] as solutions to the following type of problems: given the 

results of an exhaustive iris recognition test, find a partition {[0, r], (r, a), [a, 1]} 

of [0, 1] (as in Fig. 4) satisfying an imposed functioning regime specified in terms 

of system security or in terms of user (dis)comfort.  
 

A F3VDM reveals the contrast between the human and artificial understanding 

of iris recognition where the later is achieved by an artificial hardware-software 

agent (an artificial iris recognition system): as certified by the Turing tests of iris 

recognition (see Fig. 1.a in [42]) and as illustrated in Fig. 5.a from above, the 

human understanding classifies the pairs of iris codes in two distinct, mutually 

exclusive and complementary classes, namely the set of all imposter pairs IMPH 

and the set of all genuine pairs GENH, whereas in a F3VDM, the artificially 

perceived concepts IMPA and GENA are mutually exclusive but no longer 

complementary. In other words, for any artificial iris recognition system, 

practicing the iris recognition within the limits of (logically) Consistent Biometry 

[40] means to achieve a hierarchical binary classification of the input space (the 

space of all iris code pairs) in four classes: undecidable/unenrollable pairs, 

decidable/enrollable pairs, decidable-imposter pairs and decidable-genuine pairs, 

as illustrated in Fig. 5.b from above.  
 

Fig. 5.b describes the behavior of an artificial unsupervised iris recognition 

system. Its artificial understanding is described below as a Qualitative Sugeno 

Model [44] defined by the following three fuzzy if-then (Sugeno, [53]) rules 

written in Cognitive Dialect [37], as in [44]: 
 

i) (!:) {{(!:)[ t → (C∈ IMPA) ]}↔{(!:)[ t → ((d◦S)(C) = D) ]}}, 

ii) (!:) {{(!:)[ t → (C∈ UNDA) ]}↔{(!:)[ t → ((d◦S)(C) = O) ]}}, 

iii) (!:) {{(!:)[ t → (C∈ GENA) ]}↔{(!:)[ t → ((d◦S)(C) = I) ]}}, 
 

where: 

- the values D, I and O encode Different irides (a decidable-imposter pair), 

Identical irides (a decidable-genuine pair) and Otherwise (an undecidable 

pair), respectively; 

- C denotes the current pair of irides; 

- S(C) is the similarity scores computed for the pair C; 

- d is a defuzzification / decision function defined by the following three 

relations:  
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d(S(C)) = I if and only if S(C) ∈ [a, 1]; 

d(S(C)) = D if and only if S(C) ∈ [0, r]; 

d(S(C)) = O if and only if S(C) ∈ (r, a); 
 

- UNDA is the set of those iris pairs which are undecidable in the artificial 

understanding of the iris recognition system; 
 

Fig. 5.a illustrates the human understanding of iris recognition (which is crisp 

and binary) certified through a Turing test, which is also summarized below as a 

Qualitative Sugeno Model [44] defined by the following two fuzzy if-then 

(Sugeno, [53]) rules written in Cognitive Dialect [37], as in [44]: 
 

i) (!:) {{(!:)[ t → (C∈ IMPH) ]}↔{(!:)[ t → (d’(C) = 0) ]}}, 

ii) (!:) {{(!:)[ t → (C∈ GENH) ]}↔{(!:)[ t → (d’(C) = 1) ]}}, 
 

where all symbols have the above defined meanings excepting d’ which is an ad 

hoc unspecified decision function specific to the human agent. 
 

Fig. 5.a and Fig. 5.b taken together describe a partially supervised iris 

recognition system in which the human agent (the supervisor) partially corrects 

the automated artificial understanding of iris recognition by taking the correct 

biometric decision for all iris pairs within the set of pairs artificially detected and 

labeled as undecidable (UNDA). The left-side dashed arrow marks these 

corrections in the figure showing that the human agent decides correctly even for 

the iris pairs whose similarity scores are irrelevant to the artificial agent. Unlike 

the errors associated to the pairs within the set UNDA, which are visible and 

correctable, the errors that the artificial agent could make when forming the sets 

IMPA and GENA are not (they are impossible to correct without exhaustive 

supervision, but exhaustive supervision is also impractical). The right-side dashed 

arrows mark these insurmountable and hidden errors in the figure.  
 

When compared to the actual set of imposter and genuine pairs (IMPH and 

GENH), even during the exhaustive iris recognition test the sets IMPA and GENA 

are correctly determined, the pessimistic predictions assumed when defining the 

F3VDM (Fig. 4) show that in the future exploitation of the supervised iris 

recognition system (Fig. 5.a and Fig. 5.b) the biometric decisions are expected to 

be almost correct accordingly to the values v1 and v2 which both define the 

F3VDM. This is why the two calibration values v1 and v2 must be chosen as low 

as possible.  
 

Of course, such a detailed investigation on the recognition errors is not possible 

when the exhaustive test of iris recognition produces results that are incompatible 

with designing a performant F3VDM. For example, if the overlap between the 

experimental genuine and imposter score distributions stretches between their 

means, the recognition results are incompatible with designing a performant 

F3VDM defined by imposing high safety conditions. Smaller the overlap, greater 

the chances to define a performant F3VDM satisfying higher safety conditions and 

supporting a wider safety band between the two distribution of scores. 
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6. Experimental results 

This section presents the results of six exhaustive iris recognition tests 

undertaken for the database [52], the comparison to the results previously obtained 

in [38] on the same database and some insightful comments regarding the results 

and the comparison. Three of these tests assume the single eye enrollment 

scenario (each eye defines an identity), whereas the other three adopt the dual iris 

approach proposed in [45] and [46] in which the digital identity is defined using 

both eyes of an individual.  

We consider that all experimentally results presented here are especially 

relevant in the context of the newly proposed AFKD (Automatic Formal 

Knowledge Discovery) technique for iris recognition defined in [44] as being an 

informed or uninformed search within the meta-theory of iris recognition whose 

goal is to identify a better iris recognition theory (and a better practice of iris 

recognition) based on genetic mutations, on logical and intelligent evolution. 

Nothing prevents us from considering that the paper [38] - for example, presents a 

formal theory of iris recognition in which all processing steps (from iris 

segmentation to the computation of the similarity score) are the genes of that 

formal theory of iris recognition, the genes of an individual (‘point’) belonging in 

the meta-theory of iris recognition which, on its turn, it is a virtual population 

space of virtually possible individuals that the evolution process could produce. In 

this context, we analyze how much stability the iris recognition results presented 

in [38] can prove when a simulated evolution process slightly changes the genes 

of the given formal theory of iris recognition. The first three tests assume changes 

in the pupil segmentation procedure (initially proposed in [36] and later reused in 

[38]) by adding a correction to the pupil radius as specified in the Section 4 and 

also adopt changes when the Haar Hilbert encoders used in [38] are replaced by 

the simplest Haar-Hilbert encoder described above (Section 4.2) or by the 

Combined Log-Gabor & Haar-Hilbert encoder (see Section 4.3). Another kind of 

mutation is simulated within the last three tests of iris recognition in which the 

similarity score fuses the information from four channels (see Fig. 3 and the 

subsequent comments in Section 4.3), two channels for each eye of an individual.  

The experimental results presented along this section indicate that all of these 

simulated mutations are possible steps within a natural evolution process able to 

minimize the recognition errors in terms of EER, OEE or POEE. However, 

detecting these logical, intelligent, adequate and meaningful changes 

automatically, without the human supervision is an open problem. In our view, it 

is a huge difference between what we would call a meaningful search and a 

randomized search which is very often meaningless (just a lucky guess) even 

when it is effective. On the other hand, in our case, regardless the procedure by 

which it is discovered, a meaningful mutation causes the decrease of iris 

recognition error. Therefore, it is clear for us that the above stated open problem 

is a small facet of the bigger problem of understanding and formalizing the 
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causality, which on its turn is considered by many (starting with Zadeh) to be 

another important and open problem.  

Summarizing, in the context of AFKD techniques introduced in [44], the iris 

recognition tests undertaken here just exemplify the concept of meaningful 

mutations for the formal theory of iris recognition presented in [38] and rise a 

question on the open problem of their automated and unsupervised detection, 

which is classified here as a problem of causal structure/relation automated and 

unsupervised discovery / learning.  

6.1 Experimental results obtained for the single eye enrollment 

scenario 

Table 1 and Fig. 6 present the results of three exhaustive iris recognition tests 

(T1, T2 and T3) undertaken in the single eye enrollment scenario on the database 

[52]. The tests are labeled according to the encoder that they make use of: Haar-

Hilbert (HH), Log-Gabor (LG) and combined Haar-Hilbert & Log-Gabor 

(HH&LG). Each time when a test uses HH encoder, Table 1 displays the 

corresponding size of the Hilbert filter.  

The upper half of Table 1 shows the statistics of imposter and genuine scores 

(in terms of mean, standard deviation, degrees of freedom) obtained in each test 

and also the values corresponding to the evaluation criteria such as decidability 

index (d’), Fisher ratio(FR), overlap (O1), the value of Equal Error Rate (EER), 

Maximum Imposter Score (MIS), minimum Genuine Score (mGS), the False 

Reject Rates (FRR) and the False Accept Rates (FAR) at MIS and mGS. 

The bottom half of Table 1 illustrates (in terms of recognition threshold, FAR, 

FRR, OFA and OFR values) the behavior of the biometric system considered in 

some functioning regimes defined by imposing certain ranges for the FAR (1E-3, 

1E-4, 1E-5) and FRR (2E-2, 1E-2, 1E-3) values. 

Daugman said in [5] that combining two biometric tests, a weaker and a 

stronger one, the result could be a test with an average performance that “will lie 

somewhere between that of the two tests conducted individually” [5], but he also 

said that there are cases in which the recognition results can improve. Such a case 

is observed here in the third column of Table 1 for the test that makes use of 

combined HH&LG encoder. The statistics of the two distributions of scores, the 

overlap, the EER value and FAR(mGS), all of them certify an improvement in the 

iris recognition performance.  

When compared to the results presented in Fig. 1, Fig. 2 and Fig. 3 from [38], 

the results of exhaustive iris recognition tests T1, T2, T3 illustrated here in 

Table 1, and Fig. 6 show an important improvement in the iris recognition 

performance. Since the test T1 from here produces 1Kb iris codes, it is 

comparable to the tests T1-T6 from [38] that produce 1Kb or even 4Kb iris codes. 

There are two easy  ways to notice  the  differences  between  the  recognition tests  
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Table 1 Three exhaustive iris recognition tests on [52] in single eye enrollment scenario  

Encoder: Haar-Hilbert (T1) Log-Gabor (T2) HH&LG encoder (T3) 

System parameters: 

   Iris code size 

   Hilbert filter size 

 

8x128 

8 

 

16x256 

Not applicable 

 

8x128, 16x256 

8 

Inter-class distribution: 

   Mean/Standard deviation 

   Degrees-of-freedom 

 

0.5060 / 0.0222 

508 

 

0.5024 / 0.0196 

650 

 

0.5041 / 0.0187 

712 

Intra-class distribution: 

   Mean/Standard deviation 

   Degrees-of-freedom 

 

0.7804 / 0.0564 

54 

 

0.7748 / 0.0598 

49 

 

0.7775 / 0.0574 

52 

Evaluation criteria: 

   Decidability / Fisher’s ratio 

   Overlap / EER 

   MIS / mGS 

   FAR(MIS) / FRR(MIS) 

   FAR(mGS) / FRR(mGS) 

 

6.4022 / 20.494 

3.8085E-2 / 2.7836E-4 

0.6143 / 0.5761 

2.0531E-6 / 1.9340E-2 

1.1045E-3 / 1.0589E-4 

 

6.1186 / 18.7187 

5.2734E-2 / 1.4021E-4 

0.5967 / 0.5439 

2.0531E-6 / 1.9367E-2 

1.0795E-2 / 1.0589E-4 

 

6.4004 / 20.4824 

2.3250E-2 / 8.8879E-5 

0.5892 / 0.5659 

2.0531E-6 / 1.9381E-2 

4.9890E-4 / 1.0589E-4 

FUNCTIONING REGIMES    

FRR near 0.02: 

   threshold (t) / FRR(t) 

   FAR(t) / POFA(t) 

 

0.6602 / 1.9485E-2 

0 / 8.7549E-12 

 

0.64568 / 1.9379E-2 

0 / 8.8696E-13 

 

0.65821 / 1.9168E-2 

0 / 8.8818E-16 

FRR near 0.01: 

   threshold (t) / FRR(t) 

   FAR(t) / POFA(t) 

 

0.64726 / 9.9545E-3 

0 / 4.1368E-10 

 

0.63168 / 9.3668E-3 

0 / 1.169E-10 

 

0.64221 / 9.8486E-3 

0 / 6.028E-13 

FRR near 1E-3: 

   threshold (t) / FRR(t) 

   FAR(t) / POFA(t) 

 

0.60126 / 9.5309E-4 

2.4637E-5 / 3.9319E-1 

 

0.59368 / 9.5309E-4 

4.1062E-6 / 4.5138E-1 

 

0.59721 / 9.5306E-4 

0 / 4.1306E-1 

FAR near 1E-3: 

   threshold (t) / FRR(t) 

   FAR(t) / POFA(t) 

 

0.57626 / 1.059E-4 

9.7523E-4 / 1.6406E-3 

 

0.56268 / 1.059E-4 

1.0409E-3 / 2.409E-3 

 

0.56271 / 0 

0.9547E-3 / 2.1117E-3 

FAR near 1E-4: 

   threshold (t) / FRR(t) 

   FAR(t) / POFA(t) 

 

0.59226 / 5.2942E-4 

1.0676E-4 / 1.2556E-4 

 

0.57618 / 2.118E-4 

9.4444E-5 / 2.2631E-4 

 

0.57471 / 1.059E-4 

9.6497E-5 / 2.3129E-4 

FAR near 1E-5: 

   threshold (t) / FRR(t) 

   FAR(t) / POFA(t) 

 

0.60776 / 1.9062E-3 

8.2125E-6 / 6.5154E-6 

 

0.59268 / 8.4719E-4 

1.0266E-5 / 6.8479E-6 

 

0.58471 / 3.177E-4 

8.2125E-6 / 2.7262E-5 

 

T1-T6 from [38] and the test T1 from here:  

The first one is to compare the evaluation criteria (especially the EER) and the 

functioning regimes near a FRR of 1E-2 presented in the Table 1 from [38] for the 

former tests to the similar values computed for the latter test and presented in 

Table 1 from here. For example, the EER in the latter test is better (smaller) than 

all EER values of the former tests (T1-T6 from [38]), despite the fact that some of 

these tests (namely the tests T1-T3 from [38]) use 4Kb binary iris codes.  

The second one is to compare the ROC curves obtained for the tests T1-T3 

from [38] (see Fig. 3.a in [38]) to those obtained for the tests T1-T3 from here and 

presented in Fig. 6.e. Despite the former tests use 4Kb iris codes whereas the latter 

tests use 1Kb iris codes, the ROC curves for the former tests (see Fig. 3.a in [38]) 

are weaker  than  those  of  the latter tests (Fig. 6.e): the best ROC curve in Fig.3.a  
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Fig. 6. The experimental imposter and genuine 

similarity score distributions obtained during 

the recognition tests undertaken on database 

[52] in single eye enrollment scenario when 

using different iris texture encoders: (a) Haar-

Hilbert encoder / test T1, (b) Log-Gabor 

encoder / test T2, (c) Haar-Hilbert & Log-

Gabor combined encoder / test T3; (d) The 

Equal Error Rate obtained in all three iris 

recognition tests undertaken in the single eye 

enrollment scenario; (e) Receiver Operating 

Characteristic (ROC) curves for the tests T1, 

T2 and T3.  

 

from [38] (which starts its descent from a value close to 3E-3) is weaker than the 

weakest ROC curve in Fig. 6.e (which starts its descent from a value close to 

2E-3), and the best EER value in Fig. 3.a from [38] (5.4397E-4) is also weaker 

than the weakest EER value in Fig. 6.e (2.7836E-4). Hence, the simulated 

mutations discussed in the beginning of Section 6 are indeed meaningful whereas 

the evolution simulated through these mutations is a natural evolution that 

changes the genes of the iris recognition theory illustrated in [38] toward the error 

minimization. 
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6.2. Experimental results obtained for the dual iris approach 

Table 2 and Fig. 7 present the results of three exhaustive iris recognition tests 

(T4, T5 and T6) undertaken in the dual iris enrollment scenario (dual iris approach 

[45], [46]) on the database [52]. The tests are labeled according to the encoder that 

they make use of: Haar-Hilbert (HH), Log-Gabor (LG) and combined Haar-

Hilbert & Log-Gabor (HH&LG). Each time when a test uses HH encoder, Table 2 

displays the corresponding size of the Hilbert filter. These three iris recognition 

tests assume that each person is enrolled with both eyes and any recognition 

request is treated using the both eye of the candidate. 

The upper half of Table 2 shows the statistics of imposter and genuine scores 

(in terms of mean, standard deviation, degrees of freedom) obtained in each test 

and also the values corresponding to the evaluation criteria such as decidability 

index (d’), Fisher ratio(FR), overlap, the value of Equal Error Rate (EER), 

Maximum Imposter Score (MIS), minimum Genuine Score (mGS), the 

Pessimistic Odds of False Reject (POFR) and of the False Accept (POFA) at MIS 

and mGS.  

The bottom half of Table 2 illustrates (in terms of recognition threshold, FAR, 

FRR, POFA and POFR values) the behavior of the biometric system considered in 

some functioning regimes defined by imposing certain ranges for the pessimistic 

odds POFA and POFR (2E-2, 1E-2, 1E-3, 1E-4, 1E-5, 1E-6).  

The statistics of the two distributions of scores obtained for the sixth test (last 

column in Table 2), but especially the overlap, EER, POEE, POFR(MIS) and 

POFA(mGS) values, all of them confirm the improvement in the iris recognition 

performance. 

Comparing the results obtained for the single eye enrollment scenario (T1-T3) 

to those obtained  for  the  dual iris approach (T4-T6) is easy if we look at the data  

Table 2 The differences between the two encoders and the combination between them 

Encoder Haar-Hilbert (T4) Log-Gabor (T5) HH&LG encoder (T6) 

System parameters: 

   Iris code size 

   Hilbert filter size 

 

8x128 

8 

 

16x256 

 -  

 

8x128, 16x256 

8 

Inter-class distribution: 

   Mean / Standard deviation 

   Degrees-of-freedom 

 

0.5118 / 0.0161 

958 

 

0.5039 / 0.0144 

1211 

 

0.5078 / 0.0138 

1307 

Intra-class distribution: 

   Mean / Standard deviation 

   Degrees-of-freedom 

 

0.7795 / 0.0462 

80 

 

0.7737 / 0.0491 

73 

 

0.7766 / 0.0472 

78 

Evaluation criteria: 

   Decidability index 

   Fisher’s ratio 

   Overlap 

   EER / POEE 

   MIS / mGS 

   POFA(mGS) / POFR(MIS) 

 

7.7312 

29.8857 

-3.6935E-2 

0 / 6.2979E-5 

0.5843 / 0.6212 

8.0974E-10 / 9.2260E-5 

 

7.4585 

27.8148 

-5.0329E-2 

0 / 7.9905E-5 

0.5581 / 0.6083 

1.4427E-11 / 5.5616E-5 

 

7.7205 

29.8031 

-6.1464E-2 

0 / 5.1609E-5 

0.5645 / 0.6259 

1.2357E-11 / 3.5077E-5 
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Table 2 (continued)    

Encoder Haar-Hilbert (T4) Log-Gabor (T5) HH&LG encoder (T6) 

FUNCTIONING REGIMES    

POFA near 2E-2: 

   threshold (t) 

   FRR(t) / POFR(t) 

   FAR(t) / POFA(t) 

 

0.545 

0 / 3.4197E-6 

2.4258E-2 / 2.5854E-2 

 

0.540 

0 / 1.2097E-5 

1.3450E-2 / 1.9864E-2 

 

0.540 

0 / 4.4961E-6 

1.1866E-2 / 1.3561E-2 

POFA near 1E-2: 

   threshold (t) 

   FRR(t) / POFR(t) 

   FAR(t) / POFA(t) 

 

0.550 

0 / 5.3208E-6 

1.2866E-2 / 1.3277E-2 

 

0.540 

0 / 1.2097E-5 

4.5916E-3 / 9.0645E-3 

 

0.540 

0 / 4.4961E-6 

1.1866E-2 / 1.3561E-2 

POFA near 1E-3: 

   threshold (t) 

   FRR(t) / POFR(t) 

   FAR(t) / POFA(t) 

 

0.565 

0 / 1.5028E-5 

9.4166E-4 / 1.2013E-3 

 

0.550 

0 / 1.6337E-5 

2.4166E-4 / 1.4610E-3 

 

0.555 

0 / 1.5808E-5 

3.5E-4 / 7.7472E-4 

POFA near 1E-4: 

   threshold (t) 

   FRR(t) / POFR(t) 

   FAR(t) / POFA(t) 

 

0.580 

0 / 6.2979E-5 

8.3333E-6 / 5.8429E-5 

 

0.565 

0 / 7.9905E-5 

0 / 4.9093E-5 

 

0.565 

0 / 3.5077E-5 

0 / 7.1695E-5 

POFA near 1E-5: 

   threshold (t) 

   FRR(t) / POFR(t) 

   FAR(t) / POFA(t) 

 

0.590 

0 / 1.34E-4 

0 / 5.4750E-6 

 

0.570 

0 / 1.1393E-4 

0 / 1.3262E-5 

 

0.575 

0 / 7.5313E-5 

0 / 4.5147E-6 

POFA near 1E-6: 

   threshold (t) 

   FRR(t) / POFR(t) 

   FAR(t) / POFA(t) 

 

0.595 

0 / 1.9298E-4 

0 / 1.5065E-6 

 

0.580 

0 / 2.2644E-4 

0 / 7.3899E-7 

 

0.580 

0 / 1.09E-4 

0 / 9.7924E-7 

POFR near 0.02: 

   threshold (t) 

   FRR(t) / POFR(t) 

   FAR(t) / POFA(t) 

 

0.675 

1.5789E-2 / 2.1133E-2 

0 / 8.7330E-20 

 

0.660 

1.3684E-2 / 1.8893E-2 

0 / 1.3005E-22 

 

0.670 

1.7052E-2 / 2.1403E-2 

0 / 4.9003E-26 

POFR near 1E-2: 

   threshold (t) 

   FRR(t) / POFR(t) 

   FAR(t) / POFA(t) 

 

0.660 

4.6315E-3 / 1.0289E-2 

0 / 1.0962E-16 

 

0.645 

5.2631E-3 / 9.5060E-3 

0 / 7.0675E-19 

 

0.655 

4.6315E-3 / 1.0605E-2 

0 / 7.6187E-22 

POFR  near 1E-3: 

   threshold (t) 

   FRR(t) / POFR(t) 

   FAR(t) / POFA(t) 

 

0.620 

0 / 1.0527E-3 

0 / 8.0974E-10 

 

0.605 

0 / 1.1055E-3 

0 / 1.1051E-10 

 

0.610 

0 / 8.4480E-4 

0 / 1.2945E-11 

POFR near 1E-4: 

   threshold (t) 

   FRR(t) / POFR(t) 

   FAR(t) / POFA(t) 

 

0.585 

0 / 9.2260E-5 

0 / 1.8530E-5 

 

0.570 

0 / 1.1393E-4 

0 / 1.3262E-5 

 

0.580 

0 / 1.09E-4 

0 / 9.7924E-7 

POFR near 1E-5: 

   threshold (t) 

   FRR(t) / POFR(t) 

   FAR(t) / POFA(t) 

 

0.555 

0 / 8.2073E-6 

6.05E-3 / 6.3790E-3 

 

0.535 

0 / 8.1053E-6 

1.3450E-2 / 1.9864E-2 

 

0.550 

0 / 1.0482E-5 

1.2166E-3 / 2.2083E-3 

POFR near 1E-6: 

   threshold (t) 

   FRR(t) / POFR(t) 

   FAR(t) / POFA(t) 

 

0.530 

0 / 8.6194E-7 

1.2725E-2 / 1.2961E-2 

 

0.510 

0 / 9.7548E-7 

3.4185E-1 / 3E-1 

 

0.525 

0 / 1.1868E-6 

1.0679E-1 / 1.0489E-1 

 



22      V.E. Balas, I.M. Motoc, A. Barbulescu 

0.4 0.5 0.6 0.7 0.8 0.9 1
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0 HAAR−HILBERT: SCORES DISTRIBUTIONS AND THEIR

PESSIMISTIC ENVELOPES (T4)  

 

 

imposter score

genuine score

pessimistic imposter envelope

pessimistic genuine envelope

 

(a) 

0.4 0.5 0.6 0.7 0.8 0.9 1
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0 LOG−GABOR: SCORES DISTRIBUTIONS AND THEIR 

PESSIMISTIC ENVELOPES (T5)   

 

 

imposter score

genuine score

pessimistic imposter envelope

pessimistic genuine envelope

 
(b) 

0.4 0.5 0.6 0.7 0.8 0.9 1
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0 HH & LG COMBINED ENCODER: SCORES DISTRIBUTIONS

AND THEIR PESSIMISTIC ENVELOPES (T6)

 

 

imposter score

genuine score

pessimistic imposter envelope

pessimistic genuine envelope

 
(c) 

0.5 0.52 0.54 0.56 0.58 0.6

10
−4

10
−3

10
−2

10
−1

10
0

POEE FOR HH & LG ENCODER: 5.1609E−5

 

 

POFA

POFR

POEE in test T6

 

(d) 
Fig. 7. The genuine and imposter score distributions and their pessimistic approximations for 

each iris recognition test undertaken on [52] in the dual iris approach ([45], [46]) when using: (a) 

Haar-Hilbert, (b) Log-Gabor, (c) Combined Haar-Hilbert & Log-Gabor iris texture encoders. 

(d) - The Pessimistic Odds of Equal Error (POEE) obtained for the third iris recognition tests 

presented in Table 2 (dual iris approach, combined HH&LG iris encoder). 

displayed in Table 1 and Table 2 for the functioning regimes in which the value of 

POFR is near 1E-2 or 1E-3 and also for the functioning regimes in which the 

value of POFA is near 1E-3 or 1E-4.  

The values POFA(mGS) / POFR(MIS) within Table 2 allow us to define very 

safe Fuzzy 3-Valent Disambiguated Models (F3VDM-s) [42] of iris recognition in 

which the safety band is determined by MIS and mGS. Alternatively, one could 

define the extremities of the safety band as preimages of two imposed values for 

POFA and POFR. Fig. 8.a and Fig. 8.b illustrate such F3VDM-s obtained for the 

dual iris approach by imposing pairs of security restrictions. Another way to 

define a F3VDM is to target a certain value for POFA (limiting the odds of false 

accepts) and a certain discomfort rate cumulated over the safety interval – see 

Fig. 8.c.  

From an experimental point of view, the importance of defining F3VDM-s for 

the exhaustive iris recognition tests T1-T6 resides in selecting those pairs of irides 

for which the artificial understanding of their similarity or non-similarity is the 

weakest, i.e. the pairs of irides that support and prove the fuzzy separation 
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between the artificially perceived concepts of genuine and imposter comparisons. 

The defuzzification is achieved by classifying these pairs as artificially 

undecidable (see Fig. 5.a and Fig. 5.b) and by producing a controlled loss in user’s 

comfort quantifiable through the total discomfort rate cumulated over the safety 

interval (as described in Fig. 8.a, Fig. 8.b and Fig. 8.c).  

The pairs labeled as being artificially undecidable could be forwarded to the 

human agent for analyzing and verifying the quality of iris recognition during a 

Turing test. Another possibility is to use these problematic pairs for training 

discriminant and witness directions ([43], [44]) as robust digital identities or to 

decide  the  similarity  of  their  components  using previously trained discriminant  
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Fig. 8. Three fuzzy 3-valent disambiguated decisional models (F3VDM) obtained for the dual 

iris approach by imposing the following pairs of security restrictions: (a) r = 0.58 ≈ 

POFR
-1

(1E-5) and a = 0.6050 ≈ POFA
-1

(1E-10), (b) r = 0.55 ≈ POFR
-1

(1E-5) and a = 0.6050 ≈ 

POFA
-1

(1E-10), (c) a = 0.6050 ≈ POFA
-1

(1E-10) and r = 0.5450 is determined such that the total 

discomfort rate on the safety interval (r,a) to be near 1E-2.  
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and witness directions (which belong to the category of soft-biometric memories / 

information, [2]). Any such pair of irides corresponds to a pair formed with the 

identity of the current candidate (representing the individual who claims an 

enrolled identity) and with the claimed enrolled identity, a pair of identities for 

which the comparison between the corresponding irides is not relevant enough for 

predicting the relation between the two identities, a pair of identities whose 

relation can not be decided accurately using a single-biometric system based on 

iris recognition. This explains why we consider that the undecidable pairs are 

perfect candidates for combining hard- and soft-biometric information [2] or for 

fusing single-biometrics into cascaded multi-biometrics systems [50] based on iris 

recognition, palm-vein [20], face [21], fingerprint [26] or ear [48] recognition. All 

of these came into our attention for future multi-biometrics joint studies and 

works. We do not exclude the possibility of simulating a parallel multi-biometrics 

system in our future works, but the cascaded multi-biometrics architecture [50] 

looks more promising now. 

7. Instead of conclusion - F3VDM-s for the dual iris approaches: 

safety vs. comfort, visible vs. hidden recognition errors 

In any single-biometric system based on bimodal iris recognition, any 

recognition threshold t determines a statistically predicted level of comfort 

associated to the honest users that claim their actual identities - encoded as 

FRR(t), OFR(t) or POFR(t), and a statistically predicted level of safety associated 

to the honest users that reject identities that are associated to other users – safety 

level encoded as FAR(t), OFA(t) or POFA(t). This fact occurs regardless if the 

system is based on single-eye enrollment scenario or on the dual eyes enrollment 

scenario (dual iris approach, [45], [46]), but because the recognition results are 

better in the latter case, we choose to continue our investigation for this case only. 

However, the safety requirements for a biometric system could be other than the 

pairs (POFA(t), POFR(t)). Fig. 8 presents such cases in which the safety 

restrictions define the safety interval instead of a recognition threshold. 

Let us imagine a biometric world-wide network like that presented in [41] in 

which the candidate iris code CIC is extracted on a biometric terminal and carried 

to a central server through a safe communication protocol, without any other 

additional data. Hypothetically, the central server practice the bimodal (statistical) 

iris recognition in the dual iris approach described above in this chapter (Table 2, 

Fig. 7 and Fig. 8) and it is supposed to be able to classify the candidate iris code 

CIC to the appropriate enrolled identity or to infer that the candidate iris code CIC 

represents for sure an identity which has not been enrolled yet in the biometric 

network. Instead any of these, let us suppose that the similarity score measuring 

the proximity of the candidate iris code CIC to a certain enrolled identity belongs 

to the safety band (or even matches the threshold corresponding to the POEE 
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value). What is the decision that the server should take? Is there a good decision 

that the system could take? It is easy to verify that any decision the system could 

take, other than requesting a new iris code sample from the same candidate, is 

associated with a minimum (null) level of confidence, hence by doing otherwise, 

the system would deliver the correct decision only by pure chance (by flipping a 

coin). Of course, if we choose a recognition threshold and allow the system to 

classify the current claim accordingly, still the level of confidence of any 

biometric decision that system would take in this case stays (fuzzy) null, despite 

the arbitrary position of the chosen threshold. The case described above is a case 

of recognition error. Narrowing the safety band of a F3VDM up to a recognition 

threshold could hide such recognition errors from the view of inexperienced eye, 

but will never change the nature of these errors and will never prevent them for 

happening. When these errors are hidden, the safety of the system is (in fact) low 

and user’s comfort is high. The importance of the Fuzzy 3-Valent Disambiguated 

Models of iris recognition (recently proposed in [44] and [42]) is that they unveil a 

certain proportion of recognition errors, accordingly to the imposed safety 

restrictions specified as in Fig. 5 and Fig. 8 by two thresholds t1=POFR
-1

(v1) and 

t2=POFA
-1

(v2) which together define the safety interval. The recognition errors 

unveiled by a F3VDM could be corrected in a logical consistent manner by 

forwarding the appropriate cases to a human agent, to an artificial intelligent agent 

using soft-biometric data or even to the next level of a cascaded hard or soft multi-

biometrics recognition system. However, the recognition errors hidden outside the 

safety interval will stay hidden indefinitely.  
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