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Abstract. With the emergence of location-aware mobile device tech-
nologies, communication technologies and GPS systems, various location-
aware queries have attracted great attentions in the database literature.
In many user recommendation systems, the spatial preference query is
used to suggest the objects based on their spatial proximity to the fa-
cilities. In this paper, we study the problem of general spatial skyline

which can provide a minimal set of candidates that contain optimal so-
lutions for any monotonic distance based spatial preference query. An
efficient algorithm is proposed to significantly reduce the number of non-
promising objects in the computation. The paper also covers a compre-
hensive performance study of the proposed techniques based on both real
and synthetic data.

1 Introduction

With the development of mobile device technologies, communication technologies
and GPS systems in recent years, there has been an increasing number of location
based service systems specialized in providing interesting results through location
based queries which retrieve the desirable candidate objects for users based on
the spatial proximity of the objects and facilities. For instance, as shown in
Figure 1(a), there are a set of apartments, bus stations and supermarkets in
the map, and a user wants to rent an apartment which is close to both a bus
station and a supermarket. In Figure 1(b), each apartment is mapped to a point
in a 2-dimensional space where the distances to the nearest bus station and
supermarket are the coordinate values of an apartment. As shown in Figure 1
the apartment a4 derives its coordinates from the distance to its closest bus
station (b1) and supermarket(s1). Clearly, the smaller value is preferred. As
there is no apartment with both shortest supermarket-distance and bus station-
distance in the example, the user needs to make a trade-off. Suppose the user
has a preference function against the distances of an apartment regarding its
closest bus station and supermarket, the system can return the apartment with
best score regarding the preference function. If the preference function is in the
form of f(o) = 4 × o.d1 + o.d2 where o.d1 and o.d2 represent the distances of
o to the closest supermarket and bus station respectively, then a4 is the best
choice. The answer becomes a3 if we have f(o) = o.d1 + 4 × o.d2. This is the
distance based spatial preference query1, and the problem is studied in [10, 17,

1 See Section 2.2 for the formal definition



12]. However, in many applications users cannot find an appropriate preference
function. Therefore, it is desirable to provide a minimal candidate set for users
so that they can make personal trade-offs without missing any potential optimal
solution.

2


4


6


8


1
0


4
 6
 8
 1
0


(
A
)
 
M
a
p


a
4


a
5


(
B
)
 
D
i
s
t
a
c
e
 
 
S
p
a
c
e


d
i
s
t
a
n
c
e
 
-
 
s
u
p
e
r
m
a
r
k
e
t


d

 i
s
 t
a
 n


 c
 e
  
-
  
b

 u


 s
  
s
 t
a
 t
i
o

 n




b
1


b
2


s
2


s
3


s
1


a
7


1
k
m
 d
1


d
2


a
4


a
6


2


a
2


a
1


a
5


a
3

a
1


a
2


a
3


a
7


a
6


A
p
a
r
t
m
e
n
t


S
u
p
e
r
m
a
k
e
r
t


B
u
s
 
 
s
t
a
t
i
o
n


R
o
a
d


Fig. 1. Motivating Example

Motivated by the above example, in this paper we propose the general spatial
skyline (GSSKY ) operator. Given a set O of objects and a set F of facilities with
m types, an object o can be mapped to a point õ in m-dimensional space, named
distance space, where the coordinate value on i-th dimension is the distance of
o to its nearest facility with type i. We say an object o1 spatially dominates
another object o2 if õ1 dominates õ2 in the mapped distance space. Note that the
dominance relationship in distance space is the same as the traditional skyline
problem [1]; that is, we say õ1 dominates õ2 if õ1 is not larger than õ2 on
any dimension i ∈ [1, m], and õ1 is smaller than õ2 on at least one dimension.
Then the objects which are not spatially dominated by any other object are
general spatial skyline objects. As shown in Section 2.2, the general spatial skyline
objects can provide a minimal set of candidates that contain optimal solutions
for any monotonic distance based spatial preference query. Moreover, we show
theoretically and experimentally that the number of GSSKY objects is usually
much smaller than that of the objects.

Note that although there are some existing works [14, 15] which study the
problem of spatial skyline, they cannot provide a minimal set for the distance
based spatial preference queries studied above due to the essential differences
between the two problems. Please see Section 6 for detailed discussion.

Challenge. A straightforward solution for the GSSKY query is to compute dis-
tance values of all objects and then apply the traditional skyline algorithm. This
is not efficient because the distance computation (i.e., retrieving the distance of
an object to the closest facility regarding a particular type) is expensive and we
have to compute the distance values for all objects. In this paper, we propose
a novel GSSKY computation algorithm which aims to reduce the amount of



distance computations by pruning non-promising objects. Our contributions can
be summarized as follows.

– The general spatial skyline query is formally defined, that provides a minimal
set of candidates which contain optimal solutions for any monotonic distance
based spatial preference query.

– An efficient algorithm is proposed to compute the general spatial skyline.
– Comprehensive experiments demonstrate the efficiency of our techniques.

The remainder of the paper is organized as follows. We formally define the
problem and discuss related techniques in Section 2. Section 3 presents the all
nearest neighbor based algorithm. Section 4 proposes our efficient GSSKY algo-
rithm. Results of a comprehensive performance study are presented in Section 5.
Section 6 presents the related work. Finally, Section 7 concludes the paper.

2 Preliminary

In Section 2.1, we formally define the problem of general spatial skyline com-
putation . In Section 2.2, we show that the general spatial skyline can provide
a minimal set of candidates that contain optimal solutions for any monotonic
spatial preference function. We introduce the incremental nearest neighbor al-
gorithm in Section 2.4. Table 1 below summarizes the mathematical notations
frequently used.

Notation Definition

o (O) object (a set of objects)
f (F) facility (a set of facilities)

m the number of facility types in F
Fi all facilities in F with type i

o.di the distance between o and its closest facility with type i

o ⊳ F o is fully hit by F
ri the maximal hit distance seen so far regarding facilities with type i

o1 ≺F o2 o1 spatially dominates o2 regarding F
GSSKY (O,F) the general spatial skyline of O regarding the facilities F

Table 1. The summary of notations.

2.1 Problem Definition

A point x referred in this paper, by default, is in a d-dimensional numerical
space. Let δ(x, y) denote the Euclidian distance between two points x and y 2.
In the paper, F represents a set of facilities and Fi denotes all facilities in F
with type i. A facility f is a point in the space with a particular facility type.

An object o is a point in a d-dimensional numerical space. The distance of
o to Fi, denoted by o.di, is the distance between o and its closest facility with
type i, i.e., o.di = min ( δ(o, f) for any f ∈ Fi). As shown in Figure 1, given a

2 We focus on Euclidian distance in the paper. Nevertheless, our techniques can be
easily extended to other Lp norm distances.



set F of facilities with m categories, an object o can be mapped to a point in
m-dimensional space. We define the spatial dominance relationship as follows.

Definition 1 (Spatial Dominance). Given two objects o1, o2 and a set F of
facilities, We say object o1 spatially dominates another object o2 regarding F ,
denoted by o1 ≺F o2, if and only if o1.dj ≤ o2.dj for any facility type j, and
there is a facility type i such that o1.di < o2.di.

Example 1. In Figure 1, we have a2 ≺F a1, a3 ≺F a5, and a4 6≺F a5.

Based on the spatial dominance relation, we come up with the definition of
general spatial skyline as follows.

Definition 2 (General Spatial Skyline). Given a set O of objects and a
set F of facilities, the general spatial skyline of O regarding F , denoted by
GSSKY (O,F), are objects which are not spatially dominated by any other ob-
jects regarding F .

Example 2. In Figure 1, we have GSSKY (O,F) = {a2, a3, a4}.

Problem Statement.
In this paper we investigate the problem of efficiently computing general spatial
skyline for a set of objects with respective to multiple types of facilities.

2.2 Minimal Set Property

Given a set O of objects and a set F of facilities with m types, the score of an
object o regarding F , denoted by os, is derived based on its closest facilities.
Following is a formal definition of the distance based spatial preference query.

os = p( o.d1, . . . , o.dm) (1)

Recall that o.di denotes the distance between o and its closest facility with
type i. For presentation simplicity, we use “spatial preference function” to abbre-
viate “distance based spatial preference function” in the paper whenever there
is no ambiguity. The following theorem indicates that the GSSKY provides the
minimal set for all increasing spatial preference functions.

Theorem 1. Let P denote the family of all increasing spatial preference func-
tions regarding F , for any p ∈ P the object with best score is in GSSKY (O,F).
For any object o in GSSKY (o,F), there exists a spatial preference function
p ∈ P such that o has the best score regarding p.

Proof. For any object o2 6∈ GSSKY (O,F), there is an object o1 such that
o1 ∈ GSSKY (O,F) and o1 ≺F o2 according to the definition of GSSKY . We
have o1.dj ≤ o2.dj for any j ∈ [1, m] and there exists i ∈ [1, m] such that
o1.di < o2.di. According to the monotonic property of the functions, we have
p(o1) < p(o2) for any increasing spatial preference function p. With similar
rationale, there is an increasing spatial preference function p for each object
o ∈ GSSKY (O,F) such that p(o) has lowest score among all objects. Therefore,
the theorem holds. �



2.3 Size Estimation

Based on [5], we have the following theorem which estimates the size of GSSKY
objects using an independence assumption.

Theorem 2. Suppose the locations of the facilities and the objects are indepen-

dent to each other, then the expected number of GSSKY object is O( (ln(n))m−1

(m−1)! )

where n is the number of objects in O.

2.4 Incremental Nearest Neighbor Technique

As our general spatial skyline algorithm proposed in Section 4 is based on the
incremental nearest neighbors(INN) computation, we introduce the INN tech-
nique [7] in this subsection. Unlike the k nearest neighbor query where k is known
beforehand, the INN algorithm will incrementally output the next closest neigh-
bor , i.e., the (l +1)-th nearest neighbor where l is the number of neighbors seen
so far, on user’s demand.

Suppose the objects are organized using an R-tree. A priority queue Q is
used to maintain a set of R-tree entries (intermediate entries and data entries)
where the key of an entry is its minimal distance to the query point. The root
of the R-tree is pushed into Q at the beginning of the algorithm. For each
incremental nearest neighbor request, the algorithm outputs the data entry in Q
with smallest key value. Note that we say an object is in Q if its corresponding
data entry or any of its ancestor entries is in Q. Specifically, if the entry with
smallest key value is a data entry which is associated with an object o, o is
output and popped from Q. Otherwise, the intermediate entry (i.e., index or
leaf node ) is popped and expanded, and all its child entries are pushed into
Q. The procedure is repeated until the entry on top of Q is a data entry. The
algorithm can therefore be used to incrementally determine the next nearest
neighbor. [7] has shown the efficiency of the INN algorithm theoretically and
experimentally.

3 All Neareast Neighbor(ANN) based GSSKY Algorithm

Since the GSSKY problem is exactly the same as the traditional skyline prob-
lem if all objects are mapped to the distance space D, a straightforward solution
for the GSSKY computation is to first compute the distances for all objects
regarding F , and then apply the existing skyline algorithm. As the computa-
tion of the distance values of the objects regarding facilities with type i can be
achieved by all nearest neighbor (ANN) queries against O and Fi, in this subsec-
tion, we apply the state-of-the-art ANN technique [2] to compute the GSSKY .
Algorithm 1 outlines the ANN based general spatial skyline computation. Note
that all existing non-index skyline techniques can be applied in Line 3 once the
distance values of all objects are available. As shown in the empirical study, the
dominant cost of Algorithm 1 is the distance computation.



Algorithm 1: ANN based GSSKY (O, F)

Input : O : the objects,
F : the facilities

Output : S : GSSKY( O, F)
for each facility type i in [1..m] do1

Compute the o.di for each object o ∈ O by applying ANN [2] algorithm2

against O and Fi ;

S ← compute skyline on the distances of the objects;3

return S4

4 Efficient GSSKY Algorithm

4.1 Motivation

As shown in the empirical study, the dominant cost of the GSSKY computation
comes from the calculation of the distance values for the objects. Consequently,
even if we apply the state-of-the-art technique to compute the distance values
for all objects, the ANN based GSSKY algorithm is still inefficient in terms of
both I/O and CPU costs. Motivated by this, in this section we aim to reduce
the number of distance computations during the GSSKY query process.

In the paper, we may compute the distance values of the objects in two ways:

Object Oriented Search.
For each object o, we compute the o.di by applying the nearest neighbor(NN)
algorithm [13] where o is the query point. For instance, as shown in Figure 1 o4.d1

and o4.d2 can be derived by issuing two NN queries against F1 = {s1, s2, s3}
and F2 = {b1, b2} respectively, where o4 is the query point. Particularly, the
all nearest neighbor (ANN) algorithm [2] can also be considered as an object
oriented method in which the object distances are computed in a batch fashion.

The advantage of the object oriented search is that, for a given object or a
set of objects, we can directly derive the distances of the objects. However, as
there is no a priori knowledge about the distance values of the unvisited objects,
like Algorithm 1 in Section 3, we have to compute distance values for all objects
to ensure the correctness of GSSKY computations.

Facility Oriented Search.
Instead of computing distance values for each individual object, we can derive
them by applying incremental nearest neighbor(INN) algorithm against facilities
simultaneously where the query point is a facility. As shown in Figure 2, for each
facility f ∈ F , we maintain a radius fr and we say an object o has been hit by
f if δ(f, o) ≤ fr. The distance between o and f is called the hit distance of o

regarding f . Similarly, we say an object o is fully hit by F , denoted by o ⊳F , if
o has been hit by all types of facilities; that is, for any Fi, there exists a facility
f ∈ Fi such that o is hit by f . For each facility type i, we maintain a global
radius ri which is the maximal hit distance seen so far regarding facilities with
type i.

At each iteration, for each type i we find a facility f in Fi to invoke a new
hit by expanding fr such that the increment of ri is minimized. Clearly, the
global radius ri is non-decreasing in the search. Due to the monotonic property
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Fig. 2. Running Example

of ri, we can safely set o.di to the hit distance when it is hit for the first time
by a facility with type i. Recall that an object may be hit multiple times by the
facilities with the same type. Therefore, we say a hit is a redundant hit if the
object has been hit by another facility with the same type.

Example 3. Figure 2 illustrates a snapshot of the facility oriented search in
which we use a circle to record each hit of the objects. Specifically, circles
with thin(bold) line represent the hits from bus stations (supermarkets) and
the number of a circle indicates the accessing order. Moreover, the circle with
solid (dashed) line represents a non-redundant hit (redundant hit). In Figure 2,
a3.d1 and a4.d2 are derived in the first iteration. In the third iteration, the hit
of a7 regarding s3 is a redundant hit because a7 has been hit by s2 in the second
iteration.

Without loss of generality, in the paper we assume the hit distance is distinct
for each facility type. Note that the duplication can be easily handled by visiting
all objects with the same hit distance. Because of the monotonic property of the
hit distance (i.e., ri), the following lemma is immediate, which enables us to
obtain the lower bound of the distance values for the unvisited objects.

Lemma 1. In the facility oriented search, we have o.di > ri if an object o has
not been hit by any facility with type i so far.

Based on Lemma 1, the following theorem implies that we can safely prune
some objects from the GSSKY (O,F) without any distance computation.

Theorem 3. In the facility oriented search, suppose there exists an object o1

which has been hit by all types of facilities, an object o2 can be pruned from
GSSKY (O,F) if o2 has not been hit by any facility.

Proof. We have o1.di ≤ ri for any i ∈ [1, m] since o1 has been hit by all types
of facilities. On the other hand, we have o2.di > ri for any object o2 which has
not been hit by any facility. It is immediate that o1 ≺F o2 and hence o2 can be
pruned from GSSKY (O,F). Therefore, the theorem holds. �



Example 4. In Figure 2, objects {a1, a5, a6} can be pruned from GSSKY (O,F)
without any distance computation because none of them has been hit by any
facility when a3 is fully hit .

Another advantage of the facility oriented search is that, as shown in [7],
the amortized cost for each hit distance computation in INN query is cheaper
than that of a NN query because the INN algorithm can share the computation
by continuously maintain the priority queue. This implies that if the proportion
of the redundant hits is not significant, the facility oriented method is more
efficient. Intuitively, the proportion of the redundant hits will increase with the
global radius ri regarding Fi because the larger the radius, the higher chance an
object is hit by multiple facilities in Fi. Another disadvantage of the the facility
oriented search is that we need to maintain a priority queue for each facility and
it is not space efficient when the number of facilities is very large.

Motivated by the advantages and disadvantages of the object oriented search
and the facility oriented search, we propose an efficient GSSKY algorithm which
combine both methods in an effective way. The algorithm consists of three
phases. In the first phase, we apply the facility oriented search to compute object
distances and prune objects (i.e., remove non-skyline objects) based on lemma 1
and Theorem 3. This is feasible because the number of facilities is usually much
smaller than that of objects in real applications. When we find that the compu-
tation of facility oriented search becomes less efficient due to the large amount
of redundant hits , the algorithm goes to phase two, in which we compute the
distances of the remaining objects based on the object oriented search (i.e., NN
query). Finally, in phase three we apply the existing skyline algorithm to finalize
the GSSKY computation.

4.2 Algorithm

In the paper, we assume a set O of objects are organized using R-Tree, denoted
by RO, and all facilities with type i are also organized using R-Tree RFi

. The
Algorithm 2 illustrates the details of the efficient GSSKY algorithm.

In Line 2-9, we apply the facility oriented search to compute the distances
of the objects until there exists an object which has been fully hit . Particularly,
a local priority queue is employed for each facility f for INN query, i.e., retrieve
the next closest neighbor of f . For each facility type i ∈ [1, m], we use a global
priority queue Qi to maintain the current closest neighbors (i.e., objects) of
the facilities in Fi. The elements global priority queue Qi are prioritized using
distances. In Line 4, the object o on the top of Qi is popped and a INN query
is issued by its associated facility to retrieve the next closest neighbors o2. Then
o2 is pushed into Qi. Line 6 sets o.di to the current hit distance (recorded by ri)
if it is a non-redundant hit . When the loop is terminated (Line 9), o is a GSSKY
object and kept in S, and objects which have been hit at least once are kept
in the candidate set C. According to Theorem 3, all remaining objects can be
pruned. For I/O efficiency, we keep the page ids of the nodes (i.e., intermediate
entries) of the RO visited so far. In the following facility oriented search (Line 10-
21), we do not access a node of RO if its page id is not recorded (i.e., all of its



descendant data entries correspond to the pruned objects) and hence the I/O
cost can be saved.

Algorithm 2: Efficient GSSKY Algorithm (O, F)

Input : O : the objects,
F : the facilities with m types

Output : S : GSSKY( O, F)
S := ∅; C := ∅; ri := 0 for each Fi;1

while true do2

for each facility type i in [1..m] do3

o← next object in facility oriented search regarding Fi;4

if the hit of o is a non-redundant hit then5

odi
:= ri; C := C ∪ o;6

if o is fully hit by F then7

S := o; C := C − o;8

Terminate the while loop;9

while true do10

for each facility type i in [1..m] do11

o← next object in facility oriented search regarding Fi;12

if o is a candidate object and the hit of o is a non-redundant hit then13

odi
:= ri;14

if SkylineTest(S , o) then15

if o is fully hit by F then16

C := C − o; S := S + o;17

else18

C := C − o;19

if #redundant hit is larger than #non-redundant hit then20

Terminate the while loop;21

for each object o ∈ C do22

calculate odi
by NN query if o has not been hit regarding Fi ;23

for each object o ∈ C accessed in non-decreasing order based on
∑m

i=1
odi

do24

if SkylineTest(S , o) then25

S := S ∪ o;26

return S27

In Line 10-21, we continue the facility oriented search and try to identify the
GSSKY objects and prune the non-promising ones. Particularly, if the object o

output in Line 12 is a candidate object (i.e., o ∈ C) and the hit is a non-redundant
hit , Line 15 checks if there exits an object s ∈ S (i.e., GSSKY objects seen so
far) such that s ≺F o. Note that if o has not been hit by any facility with type
i, odi

is temporarily set to ri in the test. We say an object o passes the skyline
test (SkylineTest) if it is not spatially dominated by any object in S. In the
case o passes the test (Line 4.2-17), it is a GSSKY object if o has been fully hit .
Otherwise, we cannot claim that o is a GSSKY object at this moment because
the lower bound of the distance is employed in the skyline test. Line 19 eliminates



the object from C if o fails the test. As discussed in Section 4.1, the facility
oriented seasrch should be stopped when ri becomes large due to the increased
probability of redundant hit . However, it is impossible to find the optimal stop
time without knowing the exact distributions of the following redundant hits and
non-redundant hits are unknown. In the paper, we employ a simple but effective
criteria. The number of non-redundant hits and redundant hits are counted, and
Line 21 terminates the facility oriented search if there are more redundant hits .

Line 22-23 calculate the missing distances for the objects in the candidate
set, where the object oriented search is employed. Recall that the missing of odi

value implies that the object o has not been hit by any facility with type i so
far. The remaining part of the algorithm is similar to the SFS Algorithm [3].
Particularly, we sort all the candidate objects based on the sum of their distance
values (i.e.,

∑m

i=1 odi
) in non-decreasing order (Line 22), and Line 25 checks if

an object is spatially dominated by the GSSKY objects (S) seen so far. The
objects passed the test are GSSKY objects (Line 26).

Correctness. For the correctness of the Algorithm 2, we need the following
properties: (i) any object pruned at Line 15 and Line 25 are not GSSKY object,
(ii) all objects unvisited in Algorithm 2 are not GSSKY objects, and (iii) the
object in S cannot be dominated by any other object in O. Below is a formal
proof.

Proof. The correctness of the property (i) is immediate based on the definition
of GSSKY if o has been fully hit at Line 15 and Line 25. If odi

is replaced by ri

at Line 15 (i.e., o has not been hit by any facility with type i) and o is dominated
by an object s ∈ S, we can claim that s spatially dominates o regarding F due
to the monotonic property of ri (Lemma 1). The correctness of property (ii) is
immediate based on Theorem 3.

We prove the correctness of property (iii) by the contradiction. Suppose the
object s is in S but s is spatially dominated by another object o. We can assume
o is a GSSKY object because of the dominance transitivity property of spatial
dominance, i.e., o1 ≺F o2 and o2 ≺F o3 implies o1 ≺F o3. If s is put in S at
Line 4.2 or Line 17, o should be included in S before s. This is because o ≺F s

implies s is fully hit after o due to the monotonic property in the facility oriented
search. This contradicts the proposition that s is the first object being fully hit
(). Also, s should also fail in the test in and s will not be added into S. We can
come up with similar contradiction if s is put in S at Line 26 because we access
objects based the sum of their distance values. �

Performance Analysis. Upon each hit in Algorithm 2 (Line 2-21), an INN
query is issued to retrieve the next closest neighbor of a facility f ∈ Fi where i ∈
[1, m] and the global priority queue Qi is updated. The cost is Cinn +O(log(nf ))
where Cinn and nf denote the average cost of a INN query and the average
number of facilities for each type respectively. If it is a non-redundant hit , the
skyline test is invoked which costs O(|S|) in the worst case where |S| is the
size of S. In Line 22-23, the cost is O((m − 1) × |C| × Cnn) in the worst case
where Cnn is the average cost for NN query and |C| denotes the candidate set
size. Recall that a candidate object will be hit at least once. The sorting cost



in Line 24 is O(|C| × log(|C|)) and the cost of skyline computation in Line 24-
26 is |S|2 in the worse case. In summary, let nr and ns denote the number of
redundant hits and non-redundant hits , the time complexity of Algorithm 2 is
O((nr+ns)×(Cinn+log(nf )) +ns×|S|+ (m−1)×|C|×Cnn+ |C|×log(|C|)+|S|2).
Note that, in practice |S| and |C| are much smaller than the total number of
objects, and hence the algorithm is quite efficient.

Following theorem estimate the number of objects accessed, i.e., objects have
been hit at least once, in Algorithm 2 based on the uniform and independence
assumption.

Theorem 4. Suppose that (i) objects and facilities are uniformly distributed in
the space [0, 1]2, (ii) there are nf facilities for each type, and (iii) the locations
are independence regarding different types of facilities. The expected number of
objects accessed in Algorithm 2 is n(1 − (1 − πX̄2)m) where n is the number of
objects. Particularly, we have X̄ equals

∫ c

r=0(1 − F (r))′r d(r) where c = 1√
2nf

,

and F (r) = (1 − (nfπr2)m)n.

Proof. Due to the space limitation, we give a brief proof. According to the uni-
form assumption and each type has the same number of facilities, we can assume
ri = rj in each iteration where 1 ≤ i, j ≤ m. Therefore, we use r to denote the ri

for any i ∈ [1, m]. The probability that none of the objects is fully hit for given
r, denoted by F (r), is (1− (nfπr2)m)n due to the uniform and independence as-
sumption. Let X denote the distance r when the first object is fully hit , then its
expected value X̄ equals

∫ c

r=0
(1−F (r))′×r d(r) where c = 1√

2nf

. Consequently,

the expected number of objects accessed is n(1 − (1 − πX̄2)m). �

5 Performance Evaluation

In this section, We present the results of a comprehensive performance study to
evaluate the efficiency and scalability of the proposed techniques in the paper.
The following algorithms were selected for evaluation.

ANN The all nearest neighbor based technique presented in Section 3. The
SFS algorithm [3] is used in Algorithm 1 for skyline computation.

GSSKY The efficient GSSKY algorithm proposed in Section 4.

Both algorithms in this paper are implemented in standard C++ with STL
library support and compiled with GNU GCC. Experiments are run on a PC
with Intel Xeon 2.40GHz dual CPU and 4G memory running Debian Linux. The
disk page size is fixed to 4096 bytes.

Real datasets. Two real spatial datasets, CA and US , are employed in the
experiment3. CA consists of 104, 217 locations of 44 different categories (e.g.,
church, lake and school). Each category corresponds to a facility type. The ob-
jects in CA are constructed as follows. We first normalize the space to [0, 1]2 and

3 CA is available from http://www.cs.fsu.edu/ lifeifei/SpatialDataset.htm. US is avail-
able from http://www.geonames.usgs.gov/.



then for each facility we randomly create 5 objects within distance 0.005. Con-
sequently the number of objects in CA dataset is 521, 085. Similarly, US dataset
is obtained from the U.S. Geological Survey (USGS) and consists of 406, 709
locations with 40 types. The number of objects in US is 2, 033, 545.

Synthetic datasets. To study the scalability of the algorithms, we also create
synthetic dataset, denoted by SYN , in the experiment. The objects and facilities
are randomly generated in 2-dimensional space [0, 1]2. Specifically, the number
of objects varies from 500K to 5M with default value 1M . There are 40 types
of facilities and the number of facilities for each type varies from 500 to 10, 000
with default value 2, 000. SYN is the default dataset in the experiment.

Work load. The work load of each experiment consists of 200 GSSKY queries
and m types are randomly chosen in each query where m varies from 2 to 5 with
default value 3. In the paper, the average processing time, which includes the
CPU time and I/O latency, is used to measure the efficiency of the algorithms.
We also record the average GSSKY size and the average number of nodes loaded.

Table 2 lists parameters which may have an impact on our performance study.
In our experiments, all parameters use default values unless otherwise specified.

Notation Definition (Default Values)
m the number of facility types (3)
n the number of objects (1M)
nf the number of facilities for each type (2000)

Table 2. System Parameters
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In this subsection, we investigate the size of the GSSKY . Figure 3 illustrates
the GSSKY size on SYN , CA and US datasets where m varies from 2 to 5. For
given m, the size difference of the three datasets are not significant. As expected,
the number of GSSKY objects increases quickly towards the number of types
(m). Particularly, for m = 2 the GSSKY size is 13, 15 and 15 for SYN , CA
and US respectively. When m goes to 5, it becomes 2, 666, 5, 508 and 5, 911
respectively.

Figure 4 and Figure 5 investigate the impact of the object size (n) and
facility size (nf ) respectively. Since locations of the facilities with different types
are independent, Theorem 2 can be applied to estimate the GSSKY size , and its
accuracy is verified in both Figures. Moreover, the GSSKY size increases slowly
with the number of objects and is independent to the number of facilities.
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5.2 Efficiency

We first evaluate the efficiency of the algorithms on SYN , CA and US datasets.
Figure 6(a) shows that GSSKY Algorithm significantly outperforms the ANN
Algorithm by at least one order of magnitude. The number on each bar records
the cost for the skyline test, which shows the dominant cost in two algorithms is
the distance computation. We also study the impact of the parameters which may
potentially affect the performance of the algorithms. Specifically, Figure 6(b),
Figure 6(c) and Figure 6(d) investigate the scalability of the algorithms against
the m (#types ), n (#objects) and nf (#facilities each type) respectively. As
expected, the performance of the algorithms degrades against the growth of
these parameters. Nevertheless, GSSKY Algorithm is more scalable than ANN
Algorithm against n and nf . As expected, both algorithms are sensitive to m as
the GSSKY size increases significantly against m.
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In Figure 7, we evaluate the number of R-tree nodes loaded in the main
memory on SYN ,CA and US datasets. It is shown that GSSKY algorithm sig-
nificantly reduces I/O because many objects are pruned. Figure 8 shows the
proportion of the objects involved in distance computation. Clearly, all objects
contribute to the distance calculation in ANN Algorithm. While a significant
number of objects are pruned in GSSKY Algorithm. It also demonstrates the
accuracy of the Theorem 4, where EST represents the estimation of the theorem.
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6 Related Work

Studies on skyline computation have a long history. Börzsönyi et al. [1] first
investigate the skyline computation problem in the context of databases and
propose an SQL syntax for the skyline query. They also develop skyline com-
putation techniques based on block-nested-loop and divide-conquer paradigms,
respectively. Chomicki et al. [3] propose another block-nested-loop based com-
putation technique, SFS (sort-filter-skyline), to take advantages of a pre-sorting.
Papadias et al. [11] propose a branch and bound search technique (BBS) to
progressively output skyline points on dataset indexed by R-tree.

The problem of spatial skyline is first proposed in [14]. Given a set O of ob-
jects and a set Q of query points, each object has |Q| derived spatial attributes
each of which is the distance of the object to a query point in Q, and hence
can be mapped to a point in |Q|-dimensional space where |Q| is the number of
query points in Q. Then the spatial skyline regarding O and Q is the traditional
skyline on |Q|-dimensional space. Efficient algorithms are developed in [14] to
compute spatial skylines by utilizing the R-tree, convex hull, and voronoi dia-
gram techniques. Son et al. [15] further improve the spatial skyline computation
techniques. Recently, in [16] they investigate the problem based on the manhat-
tan distance. In [4], Ke et al. investigate the problem in the road network. Besides
the spatial skyline, there are also some related works in which the skyline is com-
puted based on the derived spatial attributes. In [8], Huang et al. studies the
problem of in-route skyline to find locations which are not dominated by other
candidate locations regarding the network distance to a query location q and the
corresponding detour distance. In [9, 6] spatial distance regarding a query point
q is considered during the skyline computation, in which other dimensions of an
objects are non-spatial attributes.

In many applications, the query points may come from the same category
(e.g., bus stations, supermarkets). For an object o and a particular category (i.e.,
facility type like bus station), users are only interested in the distance between
o and its closest query point (i.e., facility) in that category. Consequently, the
spatial skyline does not make sense in these applications because it considers
the distances of o regarding all facilities in the same category, and hence cannot
provide a minimal set of candidates for the distance based spatial preference
queries [10]. Moreover, the techniques in [14, 16] cannot be applied to the GSSKY
computation because the spatial skyline is a special case of the general spatial
skyline in which there is only one facility for each facility type.



7 Conclusion and Future Work

In this paper, we introduce the general spatial skyline which can provide a min-
imal set of candidates that contain optimal solutions of any monotonic distance
based spatial preference query. Efficient algorithm is proposed in the paper and
comprehensive experiments are conducted to demonstrate the effectiveness and
efficiency of the algorithms. As a possible future work, we will investigate the
problem on the road network in which the network distance is considered.
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