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Abstract. How the information diffuses over a large social network depends on
both the model employed to simulate the diffusion and the network structure over
which the information diffuses. We analyzed both theoretically and empirically
how the two contrasting most fundamental diffusion models, Independent Cas-
cade (IC) and Linear Threshold (LT) behave differently or similarly over dif-
ferent network structures. We devised two rewiring structures, one preserving
in/out-degree correlation and the other changing in/out-degree correlation while
both preserving their in/out-degree distributions, and analyzed how co-link rate
and in/out-degree correlation affect the influence degree of each diffusion model
using two real world networks, each as the base network on which rewiring is
imposed. The results of the theoretical analysis qualitatively explain the empiri-
cal results, and the findings help deepen the understanding of complex diffusion
phenomena.

Keywords: Information diffusion, network structure, influence degree, node de-
gree distribution

1 Introduction

The emergence of Social Media such as Facebook, Digg and Twitter has provided us
with the opportunity to create large social networks, which are becoming an important
medium for spreading information. Recently, substantial attention has been devoted to
analyzing and mining social networks from the point of information diffusion [14, 15,
11, 19, 2, 1, 16]. One of the most well studied problems is the influence maximization
problem, i.e., the problem of finding a limited number of influential nodes that are
effective for the spread of information. Many algorithms have been proposed to solve
the problem using probabilistic information diffusion models on a network [8, 12, 5,
9, 6, 4]. In order to investigate diffusion phenomena using probabilistic models, it is
indispensable to understand the behavioral differences among models, and provide an
effective method for selecting the most appropriate model for a particular task we want
to analyze.
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There are two contrasting fundamental probabilistic models that have been widely
used by many researchers. One is theindependent cascade (IC)model [7, 8] and the
other is thelinear threshold (LT)model [18, 8]. The IC model takes a sender-centered
approach such that each information sender independently influences its neighbors with
some probability (information push style model). The LT model is a receiver-centered
approach such that each information receiver adopts the information if and only if the
number of its neighbors that have adopted the information exceeds some threshold,
where the threshold is treated as a random variable (information pull style model). We
analyze how the IC and the LT models differ from or similar to each other in terms of
information diffusion for a wide range of social networks with different structures.

In this paper, we compareinfluence degreeobtained by the IC and the LT models
from the network structure perspective. Here, the influence degree of a nodev under a
probabilistic diffusion model in a network is defined to be the expected number ofactive
nodes at the end of the information diffusion process that starts from the initial active
nodev, where nodes that have been influenced with the information are referred to as
being active. First, we theoretically analyze the properties of the IC and the LT models
on scale-free networks, and derive the following two properties: 1) as the in/out-degree
correlation decreases, the influence degree decreases for the IC model but it does not
change for the LT model and 2) as the co-link (bidirectional link) rate decreases, the
influence degree increases for both the IC and the LT models, but the IC model is
much less sensitive than the LT model. To verify these properties, we systematically
generated a series of scale-free networks with varying in/out-degree correlation and co-
link rate, applying two rewiring strategies, one preserving in/out-degree correlation and
the other changing in/out-degree correlation while both preserving their in/out-degree
distributions. We used two real world scale free networks as the bases to apply these
strategies, and experimentally confirmed that the above two properties indeed hold.

2 Diffusion Models

Let G = (V,E) be a directed network, whereV andE (⊂ V × V) are the sets of all the
nodes and links, respectively, and|V| ≤ |E| can be naturally assumed for commonly-
seen social networks. We recall the definition of the IC and the LT models according
to the literatures [8, 9]. In these models, the diffusion process proceeds from an initial
active node in discrete time-stept ≥ 0, and it is assumed that nodes can switch their
states only from inactive to active (i.e., the SIR setting).

The IC model has adiffusion probability pu,v with 0 < pu,v < 1 for each link (u, v) as
a parameter. Suppose that a nodeu first becomes active at time-stept, it is given a single
chance to activate each currently inactive child nodev, and succeeds with probability
pu,v. If u succeeds, thenv will become active at time-stept + 1. If multiple parent nodes
of v first become active at time-stept, then their activation trials are sequenced in an
arbitrary order, but all performed at time-stept. Whetheru succeeds or not, it cannot
make any further trials to activatev in subsequent rounds. The process terminates if no
more activations are possible.

The LT model has aweight qu,v (> 0) with
∑

u∈B(v) qu,v ≤ 1 for each link (u, v) as a
parameter, whereB(v) = {u ∈ V; (u, v) ∈ E} is the set of parent nodes of nodev. First,
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for any nodev∈ V, athresholdθv is chosen uniformly at random from the interval [0,1].
An inactive nodev is influenced by its active parent nodes. If the total weight fromv’s
active parent nodes at time-stept is no less thanθv, i.e.,

∑
u∈Bt(v) qu,v ≥ θv, thenv will

get activated at time-stept + 1. Here,Bt(v) is the set of all the parent nodes ofv that are
active at time-stept. The process terminates if no more activations are possible.

3 Analysis of Local Influence Degree

We first define local influence degree of nodeu, denoted byσL(u), as the expected
number ofu’s child nodes directly activated byu. For the IC model,σIC

L (u) is given by
σIC

L (u) =
∑

v∈F(u) pu,v, whereF(u) stands for the set ofu’s child nodes defined byF(u) =
{v ∈ V; (u, v) ∈ E}. For the LT modelσLT

L (u) is given byσLT
L (u) =

∑
v∈F(u) qu,v because

each weightqu,v is regarded to be the probability that the thresholdθv is chosen from
the interval [0,qu,v]. Then, we can calculate the average local influence degree over all
nodes, denoted by ¯σL(G). For the LT model, if we impose the condition

∑
u∈B(v) qu,v = 1

for any nodev ∈ V, we can prove ¯σLT
L (G) = 1 from the following relations.

σ̄LT
L (G) =

1
|V|
∑
u∈V
σLT

L (u) =
1
|V|
∑
u∈V

∑
v∈F(u)

qu,v =
1
|V|
∑

(u,v)∈E
qu,v =

1
|V|
∑
v∈V

∑
u∈B(v)

qu,v = 1.

For the IC model, if we impose the uniform diffusion probability setting, i.e.,pu,v = p
for any link (u, v) ∈ E, which has been employed in many previous studies (e.g., [8]),
we can calculate ¯σIC

L (G) as follows:

σ̄IC
L (G) =

1
|V|
∑
u∈V
σIC

L (u) =
1
|V|
∑
u∈V

∑
v∈F(u)

pu,v =
1
|V|
∑

(u,v)∈E
p =

|E|
|V| p,

where|E||V| is equal to the average degreed = 1
|V|
∑

u∈V |B(u)| = 1
|V|
∑

u∈V |F(u)| = |E||V| , and is
no less than 1 as we assume|V| ≤ |E|. Thus, by setting the uniform diffusion probability
to the inverse of average degree, i.e.,p = 1

d =
|V|
|E| , we obtainσ̄IC

L (G) = 1. This makes the
IC and LT models equivalent in terms of the average local influence degree. Hereafter,
we impose these settings to evaluate the influence degree. Note that local influence
degree of nodeu for the IC model becomesσIC

L (u) =
∑

v∈F(u) pu,v = p|F(u)|.
So far we focused on local influence degree of nodeu ∈ V under the condition that

the nodeu has become active. However, when considering the cascade of information
diffusion, we need to consider the probabilityr(u) that the nodeu is activated by its par-
ent nodes. Namely, we consider cascading local influence degree defined byσCL(u) =
r(u)σL(u). As the simplest case, we employ the probabilityr(u) that the nodeu is acti-
vated at the next time step by some active node selected uniformly at random from the
node setV. For the IC model,r IC(u) is given byr IC(u) = 1

|V|
∑

s∈B(u) ps,u =
p|B(u)|
|V| , and

for the LT model,rLT(u) is given byrLT(u) = 1
|V|
∑

s∈B(u) qs,u =
1
|V| . Thus we obtain the

average cascading local influence degree ¯σCL for the IC and LT models as follows:

σ̄IC
CL(G) =

1
|V|
∑
u∈V

r IC(u)σIC
L (u) =

p2

|V|2
∑
u∈V
|B(u)||F(u)|, (1)

σ̄LT
CL(G) =

1
|V|
∑
u∈V

rLT(u)σLT
L (u) =

1
|V|2
∑
u∈V
σLT

L (u) =
1
|V| . (2)
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Therefore, by noting that the in/out-degree correlationdcI/O(G) is quantified by

dcI/O(G) =
1
|V|
∑

u∈V |B(u)||F(u)| − d2√
1
|V|
∑

u∈V |B(u)|2 − d2
√

1
|V|
∑

u∈V |F(u)|2 − d2
,

and the denominator ofdcI/O(G) is determined by the standard deviations of in/out-
degree distributions, we can see that the average cascading local influence degree of
the IC model is affected by the in/out-degree correlationdcI/O(G) when the standard
deviations are fixed, as shown in Eq. (1), while that of the LT model is not affected, as
shown in Eq. (2). Namely, we can conjecture that influence degree of the IC model also
decreases when the in/out-degree correlation decreases.

Another important factor affecting influence degree is the co-link ratecr(G) which
is defined bycr(G) = 1

|E|
∑

u∈V |B(u)∩F(u)|. Evidently, for a bidirectional networkG, we
obtaincr(G) = 1 becauseB(u) = F(u) for anyu ∈ V. Assume a nodev ∈ B(u) ∩ F(u);
if v succeeds activatingu, then the reverse link (u, v) never contributes to increasing
an active node, conversely, ifu succeeds activatingv, then the reverse link (v,u) never
does so. Thus, we conjecture that influence degree of the IC and LT model increases
when the co-link ratecr(G) decreases. However, there is a subtle difference between
the IC and the LT models. Think of the network with co-link rate close to 1. Evidently
the in/out-degree correlation is also close to 1. Assume thatk parents of a nodev which
has a large degreeD = |F(v)| = |B(v)| get activated. The expected probability that the
nodev becomes activated is 1− (1− 1/d)k for the IC model andk/D for the LT model
whered is the average node degree. For the IC model the probability is large for a small
number ofk and insensitive to|D|. Thus, once it gets activated, the reversek links which
do not contribute further activation is small. On the other hand, for the LT model the
nodev is not activated unlessk is large. Thus, once it gets activated, the reversek links
do not contribute further activation is also large. This implies that the IC model is less
sensitive to the change of co-link rate than the LT model.

4 Experiments

To confirm our conjectures in Section 3, we conducted extensive experiments using
both synthetic and real world large networks, rewiring their links according to the two
strategies presented in this section. However, due to the page limitation, we show only
the results for the two real world networks: one bidirectional and the other directional1.

4.1 Rewiring Strategies

We devised two rewiring strategies. Both preserve the in/out-degree distribution. The
first one rewires links of a given networkG preserving the in/out-degrees of each node,
which is equivalent to the method of generating randomized networks presented in [13].
We implemented this strategy by swapping the two destination nodesv andv′ of links

1 The networks we omitted here include synthetic networks generated by the BA model [3] and
the CNN model [17], and four other networks derived from the real world data.
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e = (u, v) and e′ = (u′, v′) from two starting nodesu and u′. The links are chosen
uniformly at random. Obviously, this never changesdcI/O(G), but does changecr(G).
We refer to this rewiring strategy as the DCP (in/out-Degree Correlation Preserved)
method, and denote the networkG rewired by this method bydcpα(G), whereα is the
link rewiring probability,i.e., v of eandv′ of e′ are swapped with the probabilityα. The
largerα is, the smallercr(G) is. Thus, the DCP method allows us to investigate how the
co-link rate affects the influence degree of the IC and the LT models. The second one
rewires links changing the in/out-degree correlation. This is to confirm our conjecture
that the in/out-degree correlation affects the influence degrees of the IC model. We
implemented this by swappingEI (v), all the incoming links to a nodev, andEI (v′),
all the incoming links to a nodev′ with a probabilityα. Nodesv andv′ are randomly
chosen. Namely,EI (v) becomes{(u, v); u ∈ B(v′)}, andEI (v′) becomes{(s, v′); s ∈ B(v)}
after swapping. This method changes the in-degree of chosen nodes without changing
their out-degree while preserving the in/out-degree distributions of the networkG. We
refer to this method as the DCU (in/out-Degree Correlation Unpreserved) method, and
denote the networkG rewired by the DCU method with a link rewiring probabilityα
by dcuα(G). The largerα is, the smaller the in/out-degree correlation is.

4.2 Datasets and Network Structure

In this section, we explain the two real world networks for which we present the exper-
imental results. The first one is a bidirectional network derived from the Enron Email
Dataset [10]. We regarded each email address as a node, and constructed a bidirectional
link between two email addressesu andv only if u sent an email tov and received an
email fromv. After that, we extracted the maximal strongly connected component. We
refer to this bidirectional network as the Enron network, which has 4,254 nodes and
44,314 directed links. The second one is a directional network derived from a Japanese
word-of-mouth communication site for cosmetics, “@cosme”2, where each user page is
associated withfan links. A fan link from useru to userv is generated if userv registers
useru as his/her favorite user. We extracted a fan network from @cosme by tracing up
to ten steps in the fan links starting from a randomly chosen user in December 2009.
The resulting network has 45, 024 nodes and 351,299 directed links. We refer to this
network as the Cosme network.

For these networks, we investigated the influence degreeσ(v) of each nodev of the
networksdcpα(G) anddcuα(G) under the IC and the LT models, varyingα from 0.0
to 1.0 by 0.1. Note thatdcp0.0(G) = dcu0.0(G) = G. The influence degreeσ(v) was
estimated by the empirical mean of the number of active nodes obtained from 10,000
independent runs of information diffusion based on the bond percolation technique [9].
According to the discussion in Section 3, we set a unique valuep = 1/d to everypu,v

for the IC model. Namely,p was set to 0.10 for the Enron network, and 0.13 for the
Cosme network.

2 http://www.cosme.net/
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Fig. 1: Experimental results for the Enron network.
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Fig. 2: Experimental results for the Cosme network.

4.3 Experimental Results

Figures 1a and 2a show how the in/out-degree correlationdcI/O(G) and the co-link rate
cr(G) of a given networkG change with the two rewiring methods, DCP and DCU, for
the Enron and the Cosme networks, respectively. We see that both methods work just
as we intended:cr(G) decreases in a similar fashion for both the DCP and the DCU
methods, as the rewiring probabilityα becomes larger, whiledcI/O(G) does not change
with the DCP method, but it does decrease similarly tocr(G) with the DCU method.
Note that bothdcI/O(G) andcr(G) of the Enron network are 1.0 for α = 0.0 because it
is bidirectional.

Figure 1b illustrates how the DCP method affects the best and the average influence
degrees over all the nodes of the Enron network. As we expected, both influence degrees
of the LT model become larger as the rewiring probability becomes larger, and the co-
link rate becomes smaller. The influence degrees of the IC model does not seem to
increase, but indeed they slightly increase within the range ofα = 0.0 to 0.6 where the
co-link rate drastically decreased. This qualitatively supports the analysis in Section 3.
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The same tendencies can be found in the result for the Cosme network as shown in
Fig. 2b. We also observed the same tendencies for the other networks we omitted here.

Figures. 1c and 2c show how the DCU method affects the best and the average
influence degrees of the IC and the LT models. BothdcI/O(G) andcr(G) decrease with
α. This imposes two conflicting factors for the IC model, but the effect of dcI/O(G)
surpasses and the influence degrees of the IC model decrease for both the Enron and
the Cosme networks. On the other hand, the influence degrees of the LT model are
affected by onlycr(G). Thus, they increase in the same way as in Figs. 1b and 2b. The
same observation is obtained for the other networks. This also qualitatively supports the
analysis in Section 3.

5 Conclusion

Understanding how information diffuses over a large social network is important to do
any kind of social network analysis, but it is difficult because actual diffusion depends
on both the diffusion model employed and the properties of the network structure over
which the information diffuses. Independent Cascade (IC) and Linear Threshold (LT)
models have been used widely by many researchers. Both are probabilistic models but
have contrasting properties,i.e., information push (IC) and information pull (LT). So-
cial networks have common characteristics. The most important one would be the scale
free property. There can be many structures that hold this property. We devised two
rewiring strategies that can systematically transform one network structure to another
structure preserving the scale free property, one preserving in/out-degree correlation
(DCP method) and the other changing in/out-degree correlation (DCU method). Each
strategy was successively applied with different probabilities to two real world social
networks, generating a series of networks, each with a gradually changing structure. We
chose co-link rate and in/out-degree correlation as the two parameters that characterize
the network structure, and investigated how these parameters affects the influence de-
gree of the two models (IC and LT). The major new findings are 1) the IC model is
sensitive to in/out-degree correlation and the influence degree is positively correlated
to it, whereas the LT model is insensitive to it and 2) Both the IC and the LT models
are negatively correlated to co-link rate, but its dependency is much less sensitive in the
IC model. These properties can be qualitatively derived by the theoretical analysis and
verified by the extensive experiments using the above networks as well as others not
reported in this paper. These findings are useful in deepening our understanding of the
complex information diffusion phenomena over a social network.
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