Skip to main content

Recovering Geometric Detail by Octree Normal Maps

  • Conference paper
Transactions on Edutainment VII

Part of the book series: Lecture Notes in Computer Science ((TEDUTAIN,volume 7145))

  • 1095 Accesses

Abstract

This paper presents a new approach for constructing normal maps that capture high-frequency geometric detail from dense models of arbitrary topology and are applied to the simplified version of the same models generated by any simplification method to mimic the same level of detail. A variant of loose octree scheme is used to optimally calculate the mesh normals. A B-spline surface fitting based method is employed to solve the issue of thin plate. A memory saving Breadth-First Search (BFS) order construction is designed. Furthermore, a speedup scheme that exploits access coherence is used to accelerate filtering operation. The proposed method can synthesize good quality images of models with extremely high number of polygons while using much less memory and render at much higher frame rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lacoste, J., Boubekeur, T., Jobard, B., Schlick, C.: Appearance preserving octree-textures. In: Proceedings of the 5th International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia, pp. 87–93. ACM, New York (2007)

    Google Scholar 

  2. Benson, D., Davis, J.: Octree textures. In: Proceedings of ACM SIGGRAPH 2002, pp. 785–790. ACM, New York (2002)

    Google Scholar 

  3. DeBry, D., Gibbs, J., Petty, D.D., Robins, N.: Painting and rendering textures on unparameterized models. In: Proceedings of ACM SIGGRAPH 2002, pp. 763–768. ACM, New York (2002)

    Google Scholar 

  4. Hormann, K., Levy, B., Sheffer, A.: Mesh parameterization: theory and practice. In: Proceedings of ACM SIGGRAPH ASIA 2008 Courses, pp. 1–87. ACM, New York (2008)

    Chapter  Google Scholar 

  5. Krishnamurthy, V., Levoy, M.: Fitting smooth surfaces to dense polygon meshes. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 313–324. ACM, New York (1996)

    Google Scholar 

  6. Cohen, J., Olano, M., Manocha, D.: Appearance-preserving simplification. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 115–122. ACM, New York (1998)

    Google Scholar 

  7. Cignoni, P., Montani, C., Scopigno, R., Rocchini, C.: A general method for preserving attribute values on simplified meshes. In: Proceedings of the Conference on Visualization 1998, pp. 59–66. IEEE Computer Society Press, Los Alamitos (1998)

    Google Scholar 

  8. Cignoni, P., Montani, C., Rocchini, C., Scopigno, R., Tarini, M.: Preserving attribute values on simplified meshes by resampling detail textures. The Visual Computer 15, 519–539 (1999)

    Article  Google Scholar 

  9. Sander, P.V., Gu, X.F., Gortler, S.J., Hoppe, H., Snyder, J.: Silhouette clipping. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 327–334. ACM, New York (2000)

    Google Scholar 

  10. Tarini, M., Cignoni, P., Scopigno, R.: Visibility based methods and assessment for detail-recovery. In: Proceedings of the 14th IEEE Visualization 2003 (VIS 2003), pp. 60–67. IEEE Computer Society, Washington, DC (2003)

    Google Scholar 

  11. Lefohn, A.E., Sengupta, S., Kniss, J., Strzodka, R., Owens, J.D.: Glift: Generic, efficient, random-access GPU data structures. ACM Transactions on Graphics 25, 60–99 (2006)

    Article  Google Scholar 

  12. Lefebvre, S., Hornus, S., Neyret, F.: Octree textures on the GPU. In: Pharr, M. (ed.) GPU Gems 2, pp. 595–613. Addison-Wesley (2005)

    Google Scholar 

  13. Lefebvre, S., Dachsbacher, C.: TileTrees. In: Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games, pp. 25–31. ACM, New York (2007)

    Chapter  Google Scholar 

  14. Boubekeur, T., Heidrich, W., Granier, X., Schlick, C.: Volume-Surface Trees. Computer Graphics Forum 25, 399–406 (2006)

    Article  Google Scholar 

  15. Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. In: Proceedings of ACM SIGGRAPH 2004, pp. 905–914. ACM, New York (2004)

    Chapter  Google Scholar 

  16. Ulrich, T.: Loose octrees. In: DeLoura, M. (ed.) Game Programming Gems, pp. 444–453. Charles River Media, Rockland (2000)

    Google Scholar 

  17. Dierckx, P.J.: Curve and surface fitting with splines. Oxford University Press, New York (1993)

    MATH  Google Scholar 

  18. Lee, S., Wolberg, G., Shin, S.Y.: Scattered Data Interpolation with Multilevel B-Splines. IEEE Transactions on Visualization and Computer Graphics 3, 228–244 (1997)

    Article  Google Scholar 

  19. Hjelle, Φ.: Approximation of scattered data with multilevel B-splines. Technical Report, SINTEF Applied Mathematics, Oslo (2001)

    Google Scholar 

  20. Flory, S.: Fitting curves and surfaces to point clouds in the presence of obstacles. Computer Aided Geometric Design 26, 192–202 (2009)

    Article  MathSciNet  Google Scholar 

  21. Trilinear interpolation, http://en.wikipedia.org/wiki/Trilinear_interpolation

  22. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 209–216. ACM, New York (1997)

    Google Scholar 

  23. Lefebvre, S., Hoppe, H.: Perfect spatial hashing. In: Proceedings of ACM SIGGRAPH 2006, pp. 579–588. ACM, New York (2006)

    Chapter  Google Scholar 

  24. Sundar, H., Sampath, R.S., Biros, G.: Bottom Up Construction and 2:1 Balance Refinement of Linear Octrees in Parallel. SIAM Journal on Scientific Computing 30, 2675–2708 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fan, W., Wang, B., Chan, B., Paul, JC., Sun, J. (2012). Recovering Geometric Detail by Octree Normal Maps. In: Pan, Z., Cheok, A.D., Müller, W., Chang, M., Zhang, M. (eds) Transactions on Edutainment VII. Lecture Notes in Computer Science, vol 7145. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29050-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29050-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29049-7

  • Online ISBN: 978-3-642-29050-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics