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Abstract. To realize live geoinformation, which is about providing information as 

soon as it is available, new approaches for instant geoprocessing and efficient 

resource utilization are required. Currently, such geoprocessing on the web is 

handled sequentially instead. This article describes a new approach by processing 

geodata streams and thereby enabling a continuous processing for improved 

resource utilization rates. In particular, this work applies HTTP Live Streaming 

for the example of standardized geoprocessing services. The approach is evaluated 

for processing large volume datasets of OpenStreetMap data. The presented 

implementation is based on Free and Open Source software.  
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1 Introduction 

Live geoinformation is considered to be crucial for applications in which decisions 

a) are based on massive volume of data and b) need to be carried out near real-

time (as soon as the data is available). For instance in risk management scenarios, 

live geoinformation can directly support time critical decision making for saving 

human lives and infrastructure. Other examples are near real-time analysis of 

crowd-sourced geodata. All these applications are framed by the idea of the 

Digital Earth (Gore, 1998) which provides an integrated platform for accessing 

different kinds of distributed data in near-real time. We envision that live 

geoinformation will be an integral part of Digital Earth in the future (Craglia et al., 

2008). 

Providing such information and transforming raw data into value-added 

information is supported by geoprocessing. Currently, these processes as well as 

the data are available on the web through web service interfaces. Web service 

interfaces are currently designed along a sequential request-response mechanism, 
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in which the data is sent to the service, processed and then sent back. These 

different phases are handled sequentially, which means, that the service and the 

client remain idle in the meantime and wait for the other party to complete. This is 

not sufficient for live geoinformation which is defined as providing information 

with geographic context to the user as soon as it is available.  

To realize live geoinformation, different aspects need to be addressed. One of 

them is developing an efficient approach for processing geodata streams and 

thereby improving the latency of the service (initial response time) and resource 

utilization. Several approaches for improving the scalability and performance of 

geoprocessing services have been described (e.g. applying Cloud and Grid 

Computing infrastructures (Baranski, Foerster, Schäffer, & Lange, 2011; 

Baranski, 2008; Di, Chen, Yang, & Zhao, 2003; Lanig, Schilling, Stollberg, & 

Zipf, 2008) or the mobile code paradigm (Müller, Bernard, & Brauner, 2010)). 

Scholten, Klamma, & Kiehle (2006) identify caching, network adaptation, data 

granularity and communication modes (synchronous vs. asynchronous) as 

performance criteria. However, an approach for processing geodata streams to 

realize live geoinformation has not been investigated yet. This article presents an 

approach for processing geodata streams over the web using standardized web 

service interfaces and protocols. In particular, the approach is based on HTTP 

Live Streaming as a loss-less format for real-time data streaming and the OGC 

Web Processing Service, which is an established web service interface and de-

facto standard for processing geodata on the web. The presented approach is 

applied to OpenStreetMap data, as an example of a massive volume dataset. 

Section 2 defines live geoinformation and describes relevant concepts such as 

geoprocessing services and web-based media streaming. Section 3 presents the 

proposed approach for processing real-time geodata streams with standardized 

geoprocessing services and Section 4 presents a proof-of-concept implementation 

of the presented concept. The presented approach is evaluated against the classic 

sequential WPS communication pattern in Section 5. Finally, in Section 6 the 

advantages and disadvantages of the presented concept are discussed. 

Furthermore, directions for future research are outlined. 

2 Related Concepts 

This section describes related concepts, such as live geoinformation, 

geoprocessing services and web-based media streaming. Throughout this section, 

it will become evident, that efficient processing of real-time geodata streams for 

live geoinformation has not been achieved yet. 

Live geoinformation is about providing information as soon as it is available to the 

user. This is extremely important for Digital Earth, in which several resources are 

accessible through a common interoperability layer (Grossner, Goodchild, & 

Clarke, 2008). To draw appropriate conclusions in time-critical scenarios (e.g. 

crisis management) from the available data, most up-to-date geoinformation needs 

to be available. Consequently, one of the backbones of live geoinformation is the 
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excessive use of web technologies to provide the user instantly with information 

(anywhere, anytime). Therefore, live geoinformation needs to be developed based 

on current web technologies.  

Overall, live geoinformation imposes requirements to data collection, data 

communication and data integration. These key requirements are high resource 

utilization rates, simplicity, interoperability and usability. For this article, data 

integration and data communication are considered from a computational 

perspective.  

Building blocks of live geoinformation are efficiently creating and handling live 

geodata streams, as applied in this paper. In the context of geoprocessing services, 

the real-time processing of live geodata streams and publishing such streams is 

required. Moreover, detecting and extracting events from such geodata streams is 

highly interesting in the context of Complex Event Processing (Everding, 

Echterhoff, & Jirka, 2009). Finally, live geoinformation requires a scalable event- 

and streaming-based architecture for supporting Digital Earth in the future. 

Regarding the communication within the architecture, we envision a fully push-

based architecture, in which the processes are triggered from the sources (e.g. 

sensors or created by events). This will limit the communication overhead to a 

minimum. Technically, this is realized through notification and call-back methods. 

2.1 Geoprocessing Services 

Geoprocessing services are considered to be one of the building blocks for 

transforming raw data into valuable information on the web (Foerster, Schaeffer, 

Baranski, & Brauner, 2011; Friis-Christensen, Ostlander, Lutz, & Bernard, 2007) 

and are therefore essential for live geoinformation. Geoprocessing services are of 

interest to academia as well as to industry. In Brauner, Foerster, Schaeffer, & 

Baranski (2009) the authors describe related challenges, where among others 

performance is one of them. Currently, geoprocessing services are mainly 

available through the Web Processing Service (WPS) interface as specified by the 

Open Geospatial Consortium (OGC). 

The WPS interface specification defines a standardized way for publishing and 

executing web-based (geo-) processes (OGC, 2007). According to the WPS 

interface specification a process is defined as any calculation operating on 

spatially referenced data. The WPS interface specification describes three 

operations, which are all handled in a stateless manner: GetCapabilities, 

DescribeProcess and Execute. The GetCapabilities operation (Figure 1a) is 

common to any type of OGC Web Service and returns service metadata. In case of 

WPS interface, it also returns a brief description of the processes offered by the 

specific service instance. To get more information about the hosted processes, the 

WPS interface provides detailed process metadata through the DescribeProcess 

operation (Figure 1b). This operation returns a description of all parameters, 
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which are required to run the designated process. Finally, the client sends the 

Execute request to the WPS and triggers the desired process (Figure 1c). The 

described communication with the WPS interface is based on HTTP-GET and 

HTTP-POST using an OGC-specific XML message encoding.  

 

Figure 1. The Web Processing Service (WPS) offers service (a) and process metadata (b). 

By default, synchronous (c) and asynchronous (d) process execution is supported. 

Besides this synchronous communication pattern, the WPS interface provides 

functionality for scalable processing such as asynchronous processing 

implemented using a pull model (Figure 1d) and/or storing of process results at the 

service. First, when executing a process (synchronously or asynchronously) the 

whole input data is sent to the service. Either directly included in the XML–based 

request or via a reference (e.g. URL) to the origin of the data; for instance by 

specifying a GetFeature query to an external OGC Web Feature Service (WFS) 

(OGC, 2005). Second, the client receives (Figure 1c) or downloads (Figure 1d) the 

result - typically complex and large data sets - as a whole bunch as soon as a 

process is finished. The WPS interface specification allows clients to receive basic 

process status information (e.g. the degree of completeness) but no intermediate 

results (e.g. a list of feature objects). Therefore, a WPS temporarily stores the 
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results before the process is completed and is then submitted to or downloaded by 

the client. 

However, two features are missing: continuously processing of real-time data 

streams and publishing of intermediate process results. Implementing these 

features will improve the initial service response time as well as the service round-

trip performance and allows the processing of (potentially continuous) streams of 

geodata with standardized geoprocessing services for the first time.  

2.2 Media Streaming 

Streaming of data is mostly applied for the case of multimedia applications. An 

overview of the foundation for handling data streams is presented in 

Muthukrishnan (2005). Streams can be defined as “…a sequence of digitally 

encoded signals used to represent information in transmission”. A common 

definition of media streaming is not available, but a set of core features of media 

streaming can be deducted. An overview of the history of media streaming and of 

the different features such as compression and variable bit rates is described by 

Conklin, Greenbaum, Lillevold, Lippman, & Reznik (2001). For this article, 

media streaming enables the parallelization of data transfer and portrayal. This 

implies that the data stream is available in an appropriate format, ready to be 

decoded and portrayed. Media streaming reduces the latency, but also reduces the 

volume of data to be available at a certain time, which is important for continuous 

data streams.  

There are specific requirements for media streaming protocols such as continuous 

and reliable data delivery (ensured bit rate) and dynamic compression (Conklin et 

al., 2001). In the context of web-based Geographic Information Systems (GIS), 

the live provision of data needs to be supported by the protocols. Several of these 

requirements are implemented by different protocols for media streaming (such as 

Real-time Transport Protocol (Schulzrinne, Casner, Frederick, & Jacobson, 

1996)). A comparison of these Media format is described in Li, Claypool, Kinicki, 

& Nichols (2005). This article describes HTTP Live Streaming in more detail, as 

it has been applied in this work. 

The Internet Engineering Task Force (IETF) describes a simple protocol for 

transferring continuous streams of multimedia data over the web, called HTTP 

Live Streaming (May & Pantos, 2011). HTTP Live Streaming was originally 

developed by Apple Inc. to distribute live or pre-recorded audio and video in near-

real time over the web. The core idea of HTTP Live Streaming for offering media 

streams over the web is the so-called playlist file, containing an "ordered list of 

media URIs and informational tags. Each media URI refers to a media file that is a 

segment of a single contiguous stream. To play the stream, the client first obtains 

the playlist file and then obtains and plays each media file in the playlist. It reloads 

the playlist file (...) to discover additional segments" (May & Pantos, 2011). The 
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format of the playlist file is aligned to the simple but common M3U Playlist file 

format, used in and developed for current MP3-player software (e.g. Winamp). 

Since HTTP Live Streaming is completely based on HTTP, simple and well 

established mechanisms can be applied for realizing reliable and high performance 

content delivery such as HTTP Caching (Fielding et al., 1999) and for load 

balancing. 

3 Approach for Streaming-based Processing 

This section describes the proposed approach for processing real-time geodata 

streams by the example of the OGC WPS interface. The approach is designed 

regarding the requirements described in Section 3.1. The benefits of streaming-

based processing are highlighted in Section 3.2. The approach is described along a 

walkthrough (Section 3.3 and Section 3.4). 

3.1 Requirements 

To enable live geoinformation, processing of real-time geodata streams is 

essential. The presented approach has been developed along the following 

requirements.  

Loss-less encoding and transfer. GIS analysis relies on complete and accurate 

datasets, to support decision making sufficiently. Consequently, loosing data 

artifacts for continuous data delivery is not desirable. In media streaming 

however, this is a consequence, which is taken most of the time into account for 

ensuring constant data delivery (for instance by dropping video frames, decreasing 

bit rate). For this work we thereby chose a protocol for loss-less encoding and data 

transfer to ensure the delivery of complete datasets. 

Interoperability. One of the key concerns of Web Services is interoperability 

(Alonso, Casati, Kuno, & Machiraju, 2004). It ensures seamless integration into 

new or existing applications. The proposed approach has to be compliant 

regarding existing specifications. This has two consequences, reuse as many 

existing approaches as possible and do not change existing specifications. Meeting 

this requirement will enable to adopt the proposed approach into existing 

architectures with little effort required.  

Handling, processing, creating of geodata streams. The approach needs to support 

decoding of incoming data streams and encoding of process results as a data 

stream according to the specific protocol. Moreover, the process incorporated in 

the service needs to cope with the incoming data streams. It has to be noted, that 

not all kinds of algorithms can be performed efficiently on data streams. 

Especially, algorithms requiring a global knowledge of the data are not suitable 

for continuous data streams. 
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3.2 Benefits of Streaming-Based Geoprocessing 

Streaming-based processing enables live geoinformation and thereby supports 

decision makers especially in the context of Digital Earth. This overall benefit can 

be divided into more specific aspects, which are described in this section. 

Processing of geodata streams over the web has several benefits over existing 

approaches of transferring and processing data sequentially, as designed in the 

WPS interface specification. Sending data to a geoprocessing service can be 

realized through a (potentially continuous) stream of data chunks, instead of 

sending the complete data as a whole at one time to the server. Therefore, a 

geoprocessing service starts a process immediately after receiving the first data 

chunk instead of waiting for the whole dataset to be transferred. Second, 

delivering the process output data from the server to the client can also be realized 

via streaming to realize the on-demand delivery of intermediate process results. 

Third, both mentioned aspects improve the initial service response time and the 

overall service round-trip performance. 

Figure 2 depicts the benefits of streaming-based processing over sequential 

processing regarding the initial service response time and service round-trip 

performance. In the sequential client-service interaction (Figure 2a), only one 

party can be active at a time by sending input, processing the input or sending the 

result. In the streaming case (Figure 2b), the tasks can be performed in parallel. 

The process starts directly after the first piece of input data is transferred (t2). The 

service permanently receives further input data and processes the incoming input 

data at the same time. As soon as the process of a single data chunk is completed, 

the service starts returning the intermediate result immediately to the client (t3), 

while the service receives additional data chunks for processing simultaneously. 

Therefore, the client receives intermediate results shortly after the input data is 

available for processing. Depending on the volume of the data chunks and the 

complexity of the underlying algorithm, the final results are much earlier available 

(t5) than in the sequential case (t6). This is especially true for processing of 

continuous (endless) data streams, where step t4 is never reached. Consequently, 

the idle time for the client is reduced to a minimum and the latency is improved.  
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Figure 2. Comparison of sequential communication (a) and streaming-based processing 

(b). 

It has to be noted, that in real-world scenarios the overall service round-trip 

performance also heavily depends on limiting factors such as the general 

availability of the input data (network upload speed), the computational capacity 

of the server (number of CPU cores, memory size), the general ability to process 

incoming input data in parallel and step-by-step (depends on the type of the 

algorithm) and the ability to offer instantly intermediate process results to the 

executing client (disk read and write speed, network download speed). 

Streaming can be applied at different parts of the communication between client 

and server (Figure 3). In the common case the input data and the output data is 

provided sequentially by sending/downloading the data as a whole at one time 

to/from the server (Figure 3a). In the second case, either sending data to the 

service or retrieving data from the service can be implemented using a streaming-

based approach (Figure 3b and Figure 3c). Both cases cannot realize the 

processing of continuous data streams. However, retrieving the data as a stream 

allows the client to provide intermediate process results to the user. The fully 

streaming-based approach is depicted in Figure 3d, where request and response are 

both handled as streams. This allows the architecture to handle real-time and 

continuous data streams. 

 

Figure 3. Different applications of streaming between client and WPS. 
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Comparing the sequential and the streaming-based approach, it becomes clear that 

streaming-based processing has benefits in cases, where only parts of the data 

need to be available to perform the process (instead of all the data). Consequently 

and with regard to the data structure, streaming-based processes can be applied to 

processes with a local focus, which are applied to single features, or parts of the 

data (such as buffer, simplification). Other data, where the topological context of 

the data is required or where a global optimization has to be achieved, streaming-

based processing is not beneficial over conventional mechanisms. 

3.3 Walkthrough 

This section presents a walkthrough of the streaming-based processing using the 

WPS interface and the HTTP Live Streaming protocol. The walkthrough shows 

how a client can invoke a streaming-based process and how the service creates the 

resulting data stream. For simplicity, Figure 4 depicts the sequence of interaction 

with a WPS that supports the creation of output data streams (Figure 3b). In 

principle, the same interaction pattern can be extended to loading streaming-based 

data (e.g. through WFS interface) for supporting also the comprehensive approach 

(Figure 3d). 
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Figure 4. The communication pattern of the streaming-enabled WPS (instant output of 

intermediate process results). 

In the presented walkthrough, the client and the service are interoperable and the 

client recognizes the streaming capabilities of the service based on specific 

metadata elements (e.g. mimetype). After retrieving service and process metadata 

(Figure 1a, Figure 1b), the client builds an Execute request and triggers a specific 

process via the Execute operation. Since the service offers intermediate process 

results instantly to the client, the client initiates an asynchronous communication 

with the server through an Execute request (Figure 4).  

When the WPS receives an asynchronous Execute request, an Execute response is 

instantly returned to the client and the process execution is scheduled in the 

background (Figure 1d). The Execute response includes a ‘Status’ element that 

contains information about the overall status of the process (‘accepted’, ‘started’, 

‘paused’, ‘succeeded’ or ‘failed’) and an (optional) progress indicator showing the 

percentage rate of process completion. Furthermore, the Execute response 

includes a ‘statusLocation’ element that links another Execute response, which 

always contains the latest status information about a process. As soon as a process 

has completed, this Execute response contains the process result(s). The client can 

constantly pull this Execute response until the final result is available.  

In the proposed approach, the body of the ‘Status’ element includes an URL to a 

playlist file as specified by the HTTP Live Streaming draft specification instead of 
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indicating detailed information about the progress of the process as in current 

WPS implementations (e.g. the amount of features that have been processed). 

Listing 1 demonstrates an example of an Execute response containing a reference 

to a playlist file. The format of the playlist file is described further in Section 3.4. 

 

The playlist file contains a sorted list of URLs that represents previous and current 

intermediate results. When an intermediate result is created and stored by the 

service, the service also updates the playlist file (an URL returning the latest 

intermediate result is attached). Therefore, by frequently calling the playlist file 

URL the client receives the latest intermediate results. As soon as a process is 

completed, the service adds a special tag to the playlist file accordingly. By not 

adding such a tag, the client knows that the process might run continuously. The 

format of the playlist is described further in Section 3.4.  

3.4 Playlist Format 

As presented in the walkthrough (Section 3.3), the playlist plays an important role. 

The actual playlist of an output stream is provided as an URL in an Execute 

response (Listing 1) and it provides access to the intermediate results. To have 

more control over the playlist and the streaming process, the URL returning the 

playlist file has a specific format as exemplified in Listing 2. 

http://host:port/wps/playlist?id=123&pollingRate=10 

Listing  2. An example of the URL returning a playlist file. 

The mandatory parameter id is unique for each process and allows the client to 

retrieve the processed results stored by the service. The optional parameter 

pollingRate allows the client to control the size of each entry in the playlist 

(e.g. the number of feature objects referenced by one entry in the playlist) 

dynamically and thereby to avoid communication bottlenecks.  

The format of the playlist is aligned to the extended M3U playlist format that is 

used by HTTP Live Streaming (Section 2.2). An example playlist file is shown in 

Listing 3.  

<ExecuteResponse service="WPS" version="1.0.0" statusLocation="..."> 

 <Process ns:processVersion="1.0.0"> 

  <Identifier>StreamDouglasPeuckerAlgorithm</Identifier> 

 </Process> 

 <Status creationTime="..."> 

  <ProcessStarted> 

    http://host:port/wps/playlist?id=123&pollingRate=1 

  </ProcessStarted> 

</Status> 

</ExecuteResponse> 

 

Listing 1. Exemplary Execute response with an URL of a playlist that contains real-time 

intermediate results. 
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Each entry in the playlist is again a URL referencing another file stored  by the 

service that contains an intermediate result. The format of that URL is not 

specified further, but has been enhanced to deliver an intermediate result. In 

particular, the URLs (as shown in Listing 3) contain the parameter id for 

identifying the intermediate result of a specific process, and the parameter start 

and stop reflecting the size of each entry in the playlist as indicated by the 

pollingRate parameter within the playlist URL. 

4 Implementation 

This section presents a proof-of-concept implementation of the presented 

approach for processing real-time data streams with standardized geoprocessing 

services (Section 3.2 and Section 3.3). The implementation is demonstrated for a 

real-world scenario that incorporates OpenStreetMap data (Haklay & Weber, 

2008) and the Douglas Peucker algorithm for line simplification (Douglas & 

Peucker, 1973). Generalizing OpenStreetMap data has been investigated by Ying, 

Mooney, Padraig, & Winstanley (2011) for the case of progressive transfer. For 

this article, we use the generalization of OpenStreetMap data to demonstrate our 

approach. Generalizing OpenStreetMap data can be interesting to deliver 

customized data products to specific customers especially for mobile devices with 

low network bandwidth and the intrinsic requirement for instant data display (e.g. 

as in crisis management).  

The extended WPS interface is realized based on the 52°North WPS 

implementation3 which provides a pluggable framework for data and processes. 

Consequently, only a new data handler had to be implemented and a new type of 

algorithm, which supports the creation of data streams. Further modifications of 

the framework were not necessary. The client for handling streaming-based 

processing has been implemented based on OpenLayers and Google Web Toolkit.  

                                                           
3 52°North Geoprocessing community website: http://www.52north.org/wps. 

#EXTM3U 

http://host:port/wps/output?id=123&start=01&stop=10 

http://host:port/wps/output?id=123&start=11&stop=20 

http://host:port/wps/output?id=123&start=21&stop=30 

 

(...) 

 

#EXT-X-ENDLIST 
 

Listing 3. An example playlist document containing a list of URLs referencing 

intermediate process results.  
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The client triggers the generalization functionality available on the service through 

the Execute request of the WPS interface. In particular, the Execute request 

includes a parameter referring the data to be processed and a parameter describing 

the tolerance value, which is required by the Douglas Peucker algorithm. Based on 

the parameter the WPS starts processing the data stream and creates and updates 

the data stream (e.g. the playlist) with the intermediate results continuously (see 

Section 3.3). The client constantly observes the playlist, pulls the results and 

visualizes them. The visualized sequence (Figure 5) shows the different 

intermediate results of generalizing a stream of OpenStreetMap data including the 

final result. 

5 Evaluation 

This section presents an in-depth performance evaluation of the presented 

conceptual approach based on the proof-of-concept implementation (Section 4). 

The overall process runtime and the time for receiving intermediate results are 

analyzed regarding different amounts of input data. 

To evaluate the proposed approach, the response behavior of a classical 52°North 

WPS implementation (synchronous process execution) and the described 

  
t1     t3 

  
t2     t4 

 
Figure 5. An exemplary sequence of retrieving generalized OpenStreetMap data as a 

processed geodata stream at different timepoints (t1 < t2 < t3 < t4).  



14      Live Geoinformation with Standardized Geoprocessing Services 

streaming-enabled extension of the 52°North WPS implementation (posting input 

data and streaming output data; Figure 3b) are analyzed and compared. The 

overall service round-trip performance of the two approaches (sequential and 

streaming-based) is measured by sending Execute requests to the service, each 

with a different amount of input data. Therefore, a sequential and a streaming-

based Douglas Peucker algorithm are performed several times with 100, 1000 and 

10000 features as input data (served through WFS interface).  

Table 1a. The overall response time of a classic WPS implementation mainly depends on 

the time required to process the actual data. 

Number of 
features (file 

size) 

Initial 
response 
time (ms) 

Total 
response 
time (ms) 

Input 
data 
(ms) 

Process 
data 
(ms) 

Output 
data 
 (ms) 

100 (0.1 MB) 1214 1408 415 755 46 

1000 (1MB) 7534 8143 1145 6292 482 

10000 (10MB) 66470 71409 4975 61382 4902 

 

Table 1b. A streaming-enabled WPS implementation produces small overhead for 

managing data streams, but provides intermediate process results shortly after the input data 

is available. 

Number of features 
(file size) 

Intermediate 
Output 

(ms) 

Input 
Data 
(ms) 

Process 
Data 
(ms) 

Output 
Data 
 (ms) 

100 (0.1 MB) 515 408 896 12 

1000 (1MB) 1159 1118 6677 9 

10000 (10 MB) 5755 5689 65256 10 

 

 

NOTE 1: Each use case of the performance evaluation is repeated multiple times and the 

presented measurements are average values. Therefore, the sum of the times for reading 

input data, processing and delivering output data might differ from the total response time. 

The evaluation has been performed on a machine with 2.4 GHz dual core CPU and with 4 

GB RAM installed. The data sent to the WPS is stored on geoserver (www.geoserver.org). 

 

In this article, we chose a tabular view, as the different performance indicators 

cannot be easily accumulated, as depicted in Figure 2. Especially, in the 

streaming-enabled processing, several tasks are performed concurrently (e.g. data 

streaming, processing).  Table 1a shows the results of the performance evaluation 

for the sequential approach. The first column (number of features) indicates the 

number of geometric objects that are processed in the specific test case. The 

second column (initial response time) indicates the latency of the approach, which 

is the elapsed time from sending the request to the WPS until receiving the first 

byte of the response. The overall round trip performance is depicted in the third 

column (total response time). As the performance, also depends on the time 

required to fetch the data by the service from the source, this is depicted in the 

fourth column (input data). The fifth column (process data) indicates the total time 
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required to process all features by the service. The sixth column (output data) 

indicates the time required to deliver the process output over the network to the 

requesting client.  

Table 1b shows the results of the performance evaluation of the streaming-based 

approach, as presented in this article. The second column (intermediate output) 

depicts the latency of the different configurations, which is the time elapsed until 

the first intermediate process result is available. In the sequential approach (Table 

1a), the most relevant indicator is the total service response time which covers the 

time for sending the XML request document, fetching the geometry from the 

source (WFS), processing the actual data and receiving the complete output. The 

streaming-based WPS is based on asynchronous process execution and the execute 

response document (which contains the URL of the playlist) is immediately 

available at the client after the WPS receives the request. Therefore, there are no 

valuable measurements for the initial and total response time of the streaming-

based WPS. Furthermore, the time for sending the Execute response over the 

network to the client is nearly constant independent of the amount of data that 

should be processed. 

The performance evaluation shows that the overall processing time is nearly equal 

in both approaches. The streaming-based WPS produces a small overhead for 

managing the output data stream (approximately 10% of the plain processing 

time). This management overhead could be significantly reduced (down to 0%) for 

production on multi-core systems, if the service delegates the management of the 

playlist file to a separate thread. However, the significant advantage of the 

streaming-enabled WPS is the instant availability of intermediate results (reduced 

latency) due to the utilized streaming protocol. Directly after fetching the input 

data over the network (that takes the same time in both use cases), the streaming-

enabled WPS offers the first intermediate result to the client (e.g. after 5.7 seconds 

for 10000 features). The sequential WPS only provides results after the complete 

process is finished (e.g. after 61.3 seconds for 10000 features).  

This benefit of the streaming-based over the sequential WPS can be augmented by 

implementing the most advanced streaming pattern, in which the input to the 

process as well as the output of the process is constantly streamed (Figure 3d). 

Consequently, the required time for providing the first intermediate process results 

is expected to be constant independently of the amount of input data (even in cases 

of continuous input data streams). 

6 Conclusion 

Enabling live geoinformation on the web is an important aspect to improve 

decision making for applications such as disaster management. Moreover, live 

geoinformation is promising to overcome the data-focused approach of existing 

initiatives and can support the vision of Digital Earth, in which different 

information sources are integrated in near real-time. In this article we identified 

that processing of geodata streams is important to realize live geoinformation. 



16      Live Geoinformation with Standardized Geoprocessing Services 

Processing of geodata streams through standardized web service interfaces such as 

OGC WPS has not been proposed yet.  

In particular, we review existing approaches such as geoprocessing services and 

media streaming (Section 2). It becomes clear, that processing of geodata streams 

has not been considered yet, but is promising to improve the initial service 

response time and the overall round-trip performance of geoprocessing services 

(Section 3.2). Based on the requirements (Section 3.1), we describe an approach 

for enabling geodata streams based on HTTP Live Streaming and the WPS 

interface specification. For simplicity reasons and to demonstrate especially the 

streaming-based processing (handling and creation of data streams), the described 

walkthrough (Section 3.2) excludes the retrieval of streaming-based resources 

(Figure 2b). The other described scenarios (Figure 2c and Figure 2d) could be 

implemented on a conceptual level in a similar way. The proposed approach is 

implemented with Free and Open Source Software and is demonstrated for the use 

case of generalizing OSM data. The presented approach is successfully evaluated 

over the sequential approach demonstrating a significant improvement regarding 

the latency of the service (Section 5). This is an important step to achieve the 

processing of continuous data and thereby enable live geoinformation. 

Overall, the WPS interface specification has proven to be a suitable candidate to 

support streaming-based processing. The combination of asynchronous requests 

and client-based pulling is sufficient to realize an efficient streaming-based 

approach regarding client and service.  

The requirements (Section 3.1) are met regarding several aspects. The presented 

approach uses a loss-less encoding scheme (HTTP Live Streaming). Based on the 

playlists created by the streaming source and HTTP as transportation protocol, it is 

ensured that clients retrieve all the processed data and that no artifact is lost. The 

presented approach is interoperable, as it does not require changes to the OGC 

WPS interface specification, but rather defines a WPS application profile for 

processing and offering (geo-) data streams. Therefore, we propose to include a 

new mime type parameter in the process description to reflect the streaming 

capability of a specific process (e.g. the already existing application/x-

winamp-playlist or the audio/x-mpegurl mime types which are related 

to the HTTP Live Streaming protocol). Furthermore, the implementation shows 

that the requirement of handling input as data streams, as well as processing the 

input stream (e.g. generalization) and creating new data streams as output is 

possible.  

Future research needs to focus on streaming-based protocols for data services such 

as feature services and sensor data services. This would then fully enable a 

streaming-based architecture and provide live geoinformation as a holistic 

approach to Spatial Data Infrastructures (SDIs). Regarding WPS interface, the 

presented approach shows that advanced process management is required to for 

instance terminate continuous processes, which is an anticipated functionality for 

the new version of the WPS interface specification. This will improve the 

flexibility of the framework, as clients can free computational resources on the 
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service, as for instance a process is misconfigured and not used anymore. Further, 

existing approaches for progressive transfer (Bertolotto & Egenhofer, 2001; van 

Oosterom, 2005) should be applied to order the sequence of data chunks being 

included in the data stream and thereby to improve the user experience with such 

geo data streams. Finally, the performance in production environments 

(concurrent requests/massive data sets) and the usability of the proposed approach 

need to be evaluated thoroughly to achieve live geoinformation in real-world 

applications. 
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