
Live Geoinformation with Standardized

Geoprocessing Services

Theodor Foerster, Bastian Baranski & Harald Borsutzky

Institute for Geoinformatics, University of Muenster, Germany

{theodor.foerster, bastian.baranski, h.b}@uni-muenster.de

Abstract. To realize live geoinformation, which is about providing information as

soon as it is available, new approaches for instant geoprocessing and efficient

resource utilization are required. Currently, such geoprocessing on the web is

handled sequentially instead. This article describes a new approach by processing

geodata streams and thereby enabling a continuous processing for improved

resource utilization rates. In particular, this work applies HTTP Live Streaming

for the example of standardized geoprocessing services. The approach is evaluated

for processing large volume datasets of OpenStreetMap data. The presented

implementation is based on Free and Open Source software.

Keywords

Live Geoinformation, Geoprocessing, HTTP Live Streaming, Web Processing

Service.

1 Introduction

Live geoinformation is considered to be crucial for applications in which decisions

a) are based on massive volume of data and b) need to be carried out near real-

time (as soon as the data is available). For instance in risk management scenarios,

live geoinformation can directly support time critical decision making for saving

human lives and infrastructure. Other examples are near real-time analysis of

crowd-sourced geodata. All these applications are framed by the idea of the

Digital Earth (Gore, 1998) which provides an integrated platform for accessing

different kinds of distributed data in near-real time. We envision that live

geoinformation will be an integral part of Digital Earth in the future (Craglia et al.,

2008).

Providing such information and transforming raw data into value-added

information is supported by geoprocessing. Currently, these processes as well as

the data are available on the web through web service interfaces. Web service

interfaces are currently designed along a sequential request-response mechanism,

2 Live Geoinformation with Standardized Geoprocessing Services

in which the data is sent to the service, processed and then sent back. These

different phases are handled sequentially, which means, that the service and the

client remain idle in the meantime and wait for the other party to complete. This is

not sufficient for live geoinformation which is defined as providing information

with geographic context to the user as soon as it is available.

To realize live geoinformation, different aspects need to be addressed. One of

them is developing an efficient approach for processing geodata streams and

thereby improving the latency of the service (initial response time) and resource

utilization. Several approaches for improving the scalability and performance of

geoprocessing services have been described (e.g. applying Cloud and Grid

Computing infrastructures (Baranski, Foerster, Schäffer, & Lange, 2011;

Baranski, 2008; Di, Chen, Yang, & Zhao, 2003; Lanig, Schilling, Stollberg, &

Zipf, 2008) or the mobile code paradigm (Müller, Bernard, & Brauner, 2010)).

Scholten, Klamma, & Kiehle (2006) identify caching, network adaptation, data

granularity and communication modes (synchronous vs. asynchronous) as

performance criteria. However, an approach for processing geodata streams to

realize live geoinformation has not been investigated yet. This article presents an

approach for processing geodata streams over the web using standardized web

service interfaces and protocols. In particular, the approach is based on HTTP

Live Streaming as a loss-less format for real-time data streaming and the OGC

Web Processing Service, which is an established web service interface and de-

facto standard for processing geodata on the web. The presented approach is

applied to OpenStreetMap data, as an example of a massive volume dataset.

Section 2 defines live geoinformation and describes relevant concepts such as

geoprocessing services and web-based media streaming. Section 3 presents the

proposed approach for processing real-time geodata streams with standardized

geoprocessing services and Section 4 presents a proof-of-concept implementation

of the presented concept. The presented approach is evaluated against the classic

sequential WPS communication pattern in Section 5. Finally, in Section 6 the

advantages and disadvantages of the presented concept are discussed.

Furthermore, directions for future research are outlined.

2 Related Concepts

This section describes related concepts, such as live geoinformation,

geoprocessing services and web-based media streaming. Throughout this section,

it will become evident, that efficient processing of real-time geodata streams for

live geoinformation has not been achieved yet.

Live geoinformation is about providing information as soon as it is available to the

user. This is extremely important for Digital Earth, in which several resources are

accessible through a common interoperability layer (Grossner, Goodchild, &

Clarke, 2008). To draw appropriate conclusions in time-critical scenarios (e.g.

crisis management) from the available data, most up-to-date geoinformation needs

to be available. Consequently, one of the backbones of live geoinformation is the

Related Concepts 3

excessive use of web technologies to provide the user instantly with information

(anywhere, anytime). Therefore, live geoinformation needs to be developed based

on current web technologies.

Overall, live geoinformation imposes requirements to data collection, data

communication and data integration. These key requirements are high resource

utilization rates, simplicity, interoperability and usability. For this article, data

integration and data communication are considered from a computational

perspective.

Building blocks of live geoinformation are efficiently creating and handling live

geodata streams, as applied in this paper. In the context of geoprocessing services,

the real-time processing of live geodata streams and publishing such streams is

required. Moreover, detecting and extracting events from such geodata streams is

highly interesting in the context of Complex Event Processing (Everding,

Echterhoff, & Jirka, 2009). Finally, live geoinformation requires a scalable event-

and streaming-based architecture for supporting Digital Earth in the future.

Regarding the communication within the architecture, we envision a fully push-

based architecture, in which the processes are triggered from the sources (e.g.

sensors or created by events). This will limit the communication overhead to a

minimum. Technically, this is realized through notification and call-back methods.

2.1 Geoprocessing Services

Geoprocessing services are considered to be one of the building blocks for

transforming raw data into valuable information on the web (Foerster, Schaeffer,

Baranski, & Brauner, 2011; Friis-Christensen, Ostlander, Lutz, & Bernard, 2007)

and are therefore essential for live geoinformation. Geoprocessing services are of

interest to academia as well as to industry. In Brauner, Foerster, Schaeffer, &

Baranski (2009) the authors describe related challenges, where among others

performance is one of them. Currently, geoprocessing services are mainly

available through the Web Processing Service (WPS) interface as specified by the

Open Geospatial Consortium (OGC).

The WPS interface specification defines a standardized way for publishing and

executing web-based (geo-) processes (OGC, 2007). According to the WPS

interface specification a process is defined as any calculation operating on

spatially referenced data. The WPS interface specification describes three

operations, which are all handled in a stateless manner: GetCapabilities,

DescribeProcess and Execute. The GetCapabilities operation (Figure 1a) is

common to any type of OGC Web Service and returns service metadata. In case of

WPS interface, it also returns a brief description of the processes offered by the

specific service instance. To get more information about the hosted processes, the

WPS interface provides detailed process metadata through the DescribeProcess

operation (Figure 1b). This operation returns a description of all parameters,

4 Live Geoinformation with Standardized Geoprocessing Services

which are required to run the designated process. Finally, the client sends the

Execute request to the WPS and triggers the desired process (Figure 1c). The

described communication with the WPS interface is based on HTTP-GET and

HTTP-POST using an OGC-specific XML message encoding.

Figure 1. The Web Processing Service (WPS) offers service (a) and process metadata (b).

By default, synchronous (c) and asynchronous (d) process execution is supported.

Besides this synchronous communication pattern, the WPS interface provides

functionality for scalable processing such as asynchronous processing

implemented using a pull model (Figure 1d) and/or storing of process results at the

service. First, when executing a process (synchronously or asynchronously) the

whole input data is sent to the service. Either directly included in the XML–based

request or via a reference (e.g. URL) to the origin of the data; for instance by

specifying a GetFeature query to an external OGC Web Feature Service (WFS)

(OGC, 2005). Second, the client receives (Figure 1c) or downloads (Figure 1d) the

result - typically complex and large data sets - as a whole bunch as soon as a

process is finished. The WPS interface specification allows clients to receive basic

process status information (e.g. the degree of completeness) but no intermediate

results (e.g. a list of feature objects). Therefore, a WPS temporarily stores the

Related Concepts 5

results before the process is completed and is then submitted to or downloaded by

the client.

However, two features are missing: continuously processing of real-time data

streams and publishing of intermediate process results. Implementing these

features will improve the initial service response time as well as the service round-

trip performance and allows the processing of (potentially continuous) streams of

geodata with standardized geoprocessing services for the first time.

2.2 Media Streaming

Streaming of data is mostly applied for the case of multimedia applications. An

overview of the foundation for handling data streams is presented in

Muthukrishnan (2005). Streams can be defined as “…a sequence of digitally

encoded signals used to represent information in transmission”. A common

definition of media streaming is not available, but a set of core features of media

streaming can be deducted. An overview of the history of media streaming and of

the different features such as compression and variable bit rates is described by

Conklin, Greenbaum, Lillevold, Lippman, & Reznik (2001). For this article,

media streaming enables the parallelization of data transfer and portrayal. This

implies that the data stream is available in an appropriate format, ready to be

decoded and portrayed. Media streaming reduces the latency, but also reduces the

volume of data to be available at a certain time, which is important for continuous

data streams.

There are specific requirements for media streaming protocols such as continuous

and reliable data delivery (ensured bit rate) and dynamic compression (Conklin et

al., 2001). In the context of web-based Geographic Information Systems (GIS),

the live provision of data needs to be supported by the protocols. Several of these

requirements are implemented by different protocols for media streaming (such as

Real-time Transport Protocol (Schulzrinne, Casner, Frederick, & Jacobson,

1996)). A comparison of these Media format is described in Li, Claypool, Kinicki,

& Nichols (2005). This article describes HTTP Live Streaming in more detail, as

it has been applied in this work.

The Internet Engineering Task Force (IETF) describes a simple protocol for

transferring continuous streams of multimedia data over the web, called HTTP

Live Streaming (May & Pantos, 2011). HTTP Live Streaming was originally

developed by Apple Inc. to distribute live or pre-recorded audio and video in near-

real time over the web. The core idea of HTTP Live Streaming for offering media

streams over the web is the so-called playlist file, containing an "ordered list of

media URIs and informational tags. Each media URI refers to a media file that is a

segment of a single contiguous stream. To play the stream, the client first obtains

the playlist file and then obtains and plays each media file in the playlist. It reloads

the playlist file (...) to discover additional segments" (May & Pantos, 2011). The

6 Live Geoinformation with Standardized Geoprocessing Services

format of the playlist file is aligned to the simple but common M3U Playlist file

format, used in and developed for current MP3-player software (e.g. Winamp).

Since HTTP Live Streaming is completely based on HTTP, simple and well

established mechanisms can be applied for realizing reliable and high performance

content delivery such as HTTP Caching (Fielding et al., 1999) and for load

balancing.

3 Approach for Streaming-based Processing

This section describes the proposed approach for processing real-time geodata

streams by the example of the OGC WPS interface. The approach is designed

regarding the requirements described in Section 3.1. The benefits of streaming-

based processing are highlighted in Section 3.2. The approach is described along a

walkthrough (Section 3.3 and Section 3.4).

3.1 Requirements

To enable live geoinformation, processing of real-time geodata streams is

essential. The presented approach has been developed along the following

requirements.

Loss-less encoding and transfer. GIS analysis relies on complete and accurate

datasets, to support decision making sufficiently. Consequently, loosing data

artifacts for continuous data delivery is not desirable. In media streaming

however, this is a consequence, which is taken most of the time into account for

ensuring constant data delivery (for instance by dropping video frames, decreasing

bit rate). For this work we thereby chose a protocol for loss-less encoding and data

transfer to ensure the delivery of complete datasets.

Interoperability. One of the key concerns of Web Services is interoperability

(Alonso, Casati, Kuno, & Machiraju, 2004). It ensures seamless integration into

new or existing applications. The proposed approach has to be compliant

regarding existing specifications. This has two consequences, reuse as many

existing approaches as possible and do not change existing specifications. Meeting

this requirement will enable to adopt the proposed approach into existing

architectures with little effort required.

Handling, processing, creating of geodata streams. The approach needs to support

decoding of incoming data streams and encoding of process results as a data

stream according to the specific protocol. Moreover, the process incorporated in

the service needs to cope with the incoming data streams. It has to be noted, that

not all kinds of algorithms can be performed efficiently on data streams.

Especially, algorithms requiring a global knowledge of the data are not suitable

for continuous data streams.

Approach for Streaming-based Processing 7

3.2 Benefits of Streaming-Based Geoprocessing

Streaming-based processing enables live geoinformation and thereby supports

decision makers especially in the context of Digital Earth. This overall benefit can

be divided into more specific aspects, which are described in this section.

Processing of geodata streams over the web has several benefits over existing

approaches of transferring and processing data sequentially, as designed in the

WPS interface specification. Sending data to a geoprocessing service can be

realized through a (potentially continuous) stream of data chunks, instead of

sending the complete data as a whole at one time to the server. Therefore, a

geoprocessing service starts a process immediately after receiving the first data

chunk instead of waiting for the whole dataset to be transferred. Second,

delivering the process output data from the server to the client can also be realized

via streaming to realize the on-demand delivery of intermediate process results.

Third, both mentioned aspects improve the initial service response time and the

overall service round-trip performance.

Figure 2 depicts the benefits of streaming-based processing over sequential

processing regarding the initial service response time and service round-trip

performance. In the sequential client-service interaction (Figure 2a), only one

party can be active at a time by sending input, processing the input or sending the

result. In the streaming case (Figure 2b), the tasks can be performed in parallel.

The process starts directly after the first piece of input data is transferred (t2). The

service permanently receives further input data and processes the incoming input

data at the same time. As soon as the process of a single data chunk is completed,

the service starts returning the intermediate result immediately to the client (t3),

while the service receives additional data chunks for processing simultaneously.

Therefore, the client receives intermediate results shortly after the input data is

available for processing. Depending on the volume of the data chunks and the

complexity of the underlying algorithm, the final results are much earlier available

(t5) than in the sequential case (t6). This is especially true for processing of

continuous (endless) data streams, where step t4 is never reached. Consequently,

the idle time for the client is reduced to a minimum and the latency is improved.

8 Live Geoinformation with Standardized Geoprocessing Services

Figure 2. Comparison of sequential communication (a) and streaming-based processing

(b).

It has to be noted, that in real-world scenarios the overall service round-trip

performance also heavily depends on limiting factors such as the general

availability of the input data (network upload speed), the computational capacity

of the server (number of CPU cores, memory size), the general ability to process

incoming input data in parallel and step-by-step (depends on the type of the

algorithm) and the ability to offer instantly intermediate process results to the

executing client (disk read and write speed, network download speed).

Streaming can be applied at different parts of the communication between client

and server (Figure 3). In the common case the input data and the output data is

provided sequentially by sending/downloading the data as a whole at one time

to/from the server (Figure 3a). In the second case, either sending data to the

service or retrieving data from the service can be implemented using a streaming-

based approach (Figure 3b and Figure 3c). Both cases cannot realize the

processing of continuous data streams. However, retrieving the data as a stream

allows the client to provide intermediate process results to the user. The fully

streaming-based approach is depicted in Figure 3d, where request and response are

both handled as streams. This allows the architecture to handle real-time and

continuous data streams.

Figure 3. Different applications of streaming between client and WPS.

Approach for Streaming-based Processing 9

Comparing the sequential and the streaming-based approach, it becomes clear that

streaming-based processing has benefits in cases, where only parts of the data

need to be available to perform the process (instead of all the data). Consequently

and with regard to the data structure, streaming-based processes can be applied to

processes with a local focus, which are applied to single features, or parts of the

data (such as buffer, simplification). Other data, where the topological context of

the data is required or where a global optimization has to be achieved, streaming-

based processing is not beneficial over conventional mechanisms.

3.3 Walkthrough

This section presents a walkthrough of the streaming-based processing using the

WPS interface and the HTTP Live Streaming protocol. The walkthrough shows

how a client can invoke a streaming-based process and how the service creates the

resulting data stream. For simplicity, Figure 4 depicts the sequence of interaction

with a WPS that supports the creation of output data streams (Figure 3b). In

principle, the same interaction pattern can be extended to loading streaming-based

data (e.g. through WFS interface) for supporting also the comprehensive approach

(Figure 3d).

10 Live Geoinformation with Standardized Geoprocessing Services

Figure 4. The communication pattern of the streaming-enabled WPS (instant output of

intermediate process results).

In the presented walkthrough, the client and the service are interoperable and the

client recognizes the streaming capabilities of the service based on specific

metadata elements (e.g. mimetype). After retrieving service and process metadata

(Figure 1a, Figure 1b), the client builds an Execute request and triggers a specific

process via the Execute operation. Since the service offers intermediate process

results instantly to the client, the client initiates an asynchronous communication

with the server through an Execute request (Figure 4).

When the WPS receives an asynchronous Execute request, an Execute response is

instantly returned to the client and the process execution is scheduled in the

background (Figure 1d). The Execute response includes a ‘Status’ element that

contains information about the overall status of the process (‘accepted’, ‘started’,

‘paused’, ‘succeeded’ or ‘failed’) and an (optional) progress indicator showing the

percentage rate of process completion. Furthermore, the Execute response

includes a ‘statusLocation’ element that links another Execute response, which

always contains the latest status information about a process. As soon as a process

has completed, this Execute response contains the process result(s). The client can

constantly pull this Execute response until the final result is available.

In the proposed approach, the body of the ‘Status’ element includes an URL to a

playlist file as specified by the HTTP Live Streaming draft specification instead of

Approach for Streaming-based Processing 11

indicating detailed information about the progress of the process as in current

WPS implementations (e.g. the amount of features that have been processed).

Listing 1 demonstrates an example of an Execute response containing a reference

to a playlist file. The format of the playlist file is described further in Section 3.4.

The playlist file contains a sorted list of URLs that represents previous and current

intermediate results. When an intermediate result is created and stored by the

service, the service also updates the playlist file (an URL returning the latest

intermediate result is attached). Therefore, by frequently calling the playlist file

URL the client receives the latest intermediate results. As soon as a process is

completed, the service adds a special tag to the playlist file accordingly. By not

adding such a tag, the client knows that the process might run continuously. The

format of the playlist is described further in Section 3.4.

3.4 Playlist Format

As presented in the walkthrough (Section 3.3), the playlist plays an important role.

The actual playlist of an output stream is provided as an URL in an Execute

response (Listing 1) and it provides access to the intermediate results. To have

more control over the playlist and the streaming process, the URL returning the

playlist file has a specific format as exemplified in Listing 2.

http://host:port/wps/playlist?id=123&pollingRate=10

Listing 2. An example of the URL returning a playlist file.

The mandatory parameter id is unique for each process and allows the client to

retrieve the processed results stored by the service. The optional parameter

pollingRate allows the client to control the size of each entry in the playlist

(e.g. the number of feature objects referenced by one entry in the playlist)

dynamically and thereby to avoid communication bottlenecks.

The format of the playlist is aligned to the extended M3U playlist format that is

used by HTTP Live Streaming (Section 2.2). An example playlist file is shown in

Listing 3.

<ExecuteResponse service="WPS" version="1.0.0" statusLocation="...">

 <Process ns:processVersion="1.0.0">

 <Identifier>StreamDouglasPeuckerAlgorithm</Identifier>

 </Process>

 <Status creationTime="...">

 <ProcessStarted>

 http://host:port/wps/playlist?id=123&pollingRate=1

 </ProcessStarted>

</Status>

</ExecuteResponse>

Listing 1. Exemplary Execute response with an URL of a playlist that contains real-time

intermediate results.

12 Live Geoinformation with Standardized Geoprocessing Services

Each entry in the playlist is again a URL referencing another file stored by the

service that contains an intermediate result. The format of that URL is not

specified further, but has been enhanced to deliver an intermediate result. In

particular, the URLs (as shown in Listing 3) contain the parameter id for

identifying the intermediate result of a specific process, and the parameter start

and stop reflecting the size of each entry in the playlist as indicated by the

pollingRate parameter within the playlist URL.

4 Implementation

This section presents a proof-of-concept implementation of the presented

approach for processing real-time data streams with standardized geoprocessing

services (Section 3.2 and Section 3.3). The implementation is demonstrated for a

real-world scenario that incorporates OpenStreetMap data (Haklay & Weber,

2008) and the Douglas Peucker algorithm for line simplification (Douglas &

Peucker, 1973). Generalizing OpenStreetMap data has been investigated by Ying,

Mooney, Padraig, & Winstanley (2011) for the case of progressive transfer. For

this article, we use the generalization of OpenStreetMap data to demonstrate our

approach. Generalizing OpenStreetMap data can be interesting to deliver

customized data products to specific customers especially for mobile devices with

low network bandwidth and the intrinsic requirement for instant data display (e.g.

as in crisis management).

The extended WPS interface is realized based on the 52°North WPS

implementation3 which provides a pluggable framework for data and processes.

Consequently, only a new data handler had to be implemented and a new type of

algorithm, which supports the creation of data streams. Further modifications of

the framework were not necessary. The client for handling streaming-based

processing has been implemented based on OpenLayers and Google Web Toolkit.

3 52°North Geoprocessing community website: http://www.52north.org/wps.

#EXTM3U

http://host:port/wps/output?id=123&start=01&stop=10

http://host:port/wps/output?id=123&start=11&stop=20

http://host:port/wps/output?id=123&start=21&stop=30

(...)

#EXT-X-ENDLIST

Listing 3. An example playlist document containing a list of URLs referencing

intermediate process results.

Evaluation 13

The client triggers the generalization functionality available on the service through

the Execute request of the WPS interface. In particular, the Execute request

includes a parameter referring the data to be processed and a parameter describing

the tolerance value, which is required by the Douglas Peucker algorithm. Based on

the parameter the WPS starts processing the data stream and creates and updates

the data stream (e.g. the playlist) with the intermediate results continuously (see

Section 3.3). The client constantly observes the playlist, pulls the results and

visualizes them. The visualized sequence (Figure 5) shows the different

intermediate results of generalizing a stream of OpenStreetMap data including the

final result.

5 Evaluation

This section presents an in-depth performance evaluation of the presented

conceptual approach based on the proof-of-concept implementation (Section 4).

The overall process runtime and the time for receiving intermediate results are

analyzed regarding different amounts of input data.

To evaluate the proposed approach, the response behavior of a classical 52°North

WPS implementation (synchronous process execution) and the described

t1 t3

t2 t4

Figure 5. An exemplary sequence of retrieving generalized OpenStreetMap data as a

processed geodata stream at different timepoints (t1 < t2 < t3 < t4).

14 Live Geoinformation with Standardized Geoprocessing Services

streaming-enabled extension of the 52°North WPS implementation (posting input

data and streaming output data; Figure 3b) are analyzed and compared. The

overall service round-trip performance of the two approaches (sequential and

streaming-based) is measured by sending Execute requests to the service, each

with a different amount of input data. Therefore, a sequential and a streaming-

based Douglas Peucker algorithm are performed several times with 100, 1000 and

10000 features as input data (served through WFS interface).

Table 1a. The overall response time of a classic WPS implementation mainly depends on

the time required to process the actual data.

Number of
features (file

size)

Initial
response
time (ms)

Total
response
time (ms)

Input
data
(ms)

Process
data
(ms)

Output
data
 (ms)

100 (0.1 MB) 1214 1408 415 755 46

1000 (1MB) 7534 8143 1145 6292 482

10000 (10MB) 66470 71409 4975 61382 4902

Table 1b. A streaming-enabled WPS implementation produces small overhead for

managing data streams, but provides intermediate process results shortly after the input data

is available.

Number of features
(file size)

Intermediate
Output

(ms)

Input
Data
(ms)

Process
Data
(ms)

Output
Data
 (ms)

100 (0.1 MB) 515 408 896 12

1000 (1MB) 1159 1118 6677 9

10000 (10 MB) 5755 5689 65256 10

NOTE 1: Each use case of the performance evaluation is repeated multiple times and the

presented measurements are average values. Therefore, the sum of the times for reading

input data, processing and delivering output data might differ from the total response time.

The evaluation has been performed on a machine with 2.4 GHz dual core CPU and with 4

GB RAM installed. The data sent to the WPS is stored on geoserver (www.geoserver.org).

In this article, we chose a tabular view, as the different performance indicators

cannot be easily accumulated, as depicted in Figure 2. Especially, in the

streaming-enabled processing, several tasks are performed concurrently (e.g. data

streaming, processing). Table 1a shows the results of the performance evaluation

for the sequential approach. The first column (number of features) indicates the

number of geometric objects that are processed in the specific test case. The

second column (initial response time) indicates the latency of the approach, which

is the elapsed time from sending the request to the WPS until receiving the first

byte of the response. The overall round trip performance is depicted in the third

column (total response time). As the performance, also depends on the time

required to fetch the data by the service from the source, this is depicted in the

fourth column (input data). The fifth column (process data) indicates the total time

Conclusion 15

required to process all features by the service. The sixth column (output data)

indicates the time required to deliver the process output over the network to the

requesting client.

Table 1b shows the results of the performance evaluation of the streaming-based

approach, as presented in this article. The second column (intermediate output)

depicts the latency of the different configurations, which is the time elapsed until

the first intermediate process result is available. In the sequential approach (Table

1a), the most relevant indicator is the total service response time which covers the

time for sending the XML request document, fetching the geometry from the

source (WFS), processing the actual data and receiving the complete output. The

streaming-based WPS is based on asynchronous process execution and the execute

response document (which contains the URL of the playlist) is immediately

available at the client after the WPS receives the request. Therefore, there are no

valuable measurements for the initial and total response time of the streaming-

based WPS. Furthermore, the time for sending the Execute response over the

network to the client is nearly constant independent of the amount of data that

should be processed.

The performance evaluation shows that the overall processing time is nearly equal

in both approaches. The streaming-based WPS produces a small overhead for

managing the output data stream (approximately 10% of the plain processing

time). This management overhead could be significantly reduced (down to 0%) for

production on multi-core systems, if the service delegates the management of the

playlist file to a separate thread. However, the significant advantage of the

streaming-enabled WPS is the instant availability of intermediate results (reduced

latency) due to the utilized streaming protocol. Directly after fetching the input

data over the network (that takes the same time in both use cases), the streaming-

enabled WPS offers the first intermediate result to the client (e.g. after 5.7 seconds

for 10000 features). The sequential WPS only provides results after the complete

process is finished (e.g. after 61.3 seconds for 10000 features).

This benefit of the streaming-based over the sequential WPS can be augmented by

implementing the most advanced streaming pattern, in which the input to the

process as well as the output of the process is constantly streamed (Figure 3d).

Consequently, the required time for providing the first intermediate process results

is expected to be constant independently of the amount of input data (even in cases

of continuous input data streams).

6 Conclusion

Enabling live geoinformation on the web is an important aspect to improve

decision making for applications such as disaster management. Moreover, live

geoinformation is promising to overcome the data-focused approach of existing

initiatives and can support the vision of Digital Earth, in which different

information sources are integrated in near real-time. In this article we identified

that processing of geodata streams is important to realize live geoinformation.

16 Live Geoinformation with Standardized Geoprocessing Services

Processing of geodata streams through standardized web service interfaces such as

OGC WPS has not been proposed yet.

In particular, we review existing approaches such as geoprocessing services and

media streaming (Section 2). It becomes clear, that processing of geodata streams

has not been considered yet, but is promising to improve the initial service

response time and the overall round-trip performance of geoprocessing services

(Section 3.2). Based on the requirements (Section 3.1), we describe an approach

for enabling geodata streams based on HTTP Live Streaming and the WPS

interface specification. For simplicity reasons and to demonstrate especially the

streaming-based processing (handling and creation of data streams), the described

walkthrough (Section 3.2) excludes the retrieval of streaming-based resources

(Figure 2b). The other described scenarios (Figure 2c and Figure 2d) could be

implemented on a conceptual level in a similar way. The proposed approach is

implemented with Free and Open Source Software and is demonstrated for the use

case of generalizing OSM data. The presented approach is successfully evaluated

over the sequential approach demonstrating a significant improvement regarding

the latency of the service (Section 5). This is an important step to achieve the

processing of continuous data and thereby enable live geoinformation.

Overall, the WPS interface specification has proven to be a suitable candidate to

support streaming-based processing. The combination of asynchronous requests

and client-based pulling is sufficient to realize an efficient streaming-based

approach regarding client and service.

The requirements (Section 3.1) are met regarding several aspects. The presented

approach uses a loss-less encoding scheme (HTTP Live Streaming). Based on the

playlists created by the streaming source and HTTP as transportation protocol, it is

ensured that clients retrieve all the processed data and that no artifact is lost. The

presented approach is interoperable, as it does not require changes to the OGC

WPS interface specification, but rather defines a WPS application profile for

processing and offering (geo-) data streams. Therefore, we propose to include a

new mime type parameter in the process description to reflect the streaming

capability of a specific process (e.g. the already existing application/x-

winamp-playlist or the audio/x-mpegurl mime types which are related

to the HTTP Live Streaming protocol). Furthermore, the implementation shows

that the requirement of handling input as data streams, as well as processing the

input stream (e.g. generalization) and creating new data streams as output is

possible.

Future research needs to focus on streaming-based protocols for data services such

as feature services and sensor data services. This would then fully enable a

streaming-based architecture and provide live geoinformation as a holistic

approach to Spatial Data Infrastructures (SDIs). Regarding WPS interface, the

presented approach shows that advanced process management is required to for

instance terminate continuous processes, which is an anticipated functionality for

the new version of the WPS interface specification. This will improve the

flexibility of the framework, as clients can free computational resources on the

Conclusion 17

service, as for instance a process is misconfigured and not used anymore. Further,

existing approaches for progressive transfer (Bertolotto & Egenhofer, 2001; van

Oosterom, 2005) should be applied to order the sequence of data chunks being

included in the data stream and thereby to improve the user experience with such

geo data streams. Finally, the performance in production environments

(concurrent requests/massive data sets) and the usability of the proposed approach

need to be evaluated thoroughly to achieve live geoinformation in real-world

applications.

Acknowledgements

The presented work has been supported by Raphael Rupprecht from the Institute

for Geoinformatics. We acknowledge the various comments from Bastian Schäffer

and the input from the Geoprocessing Community of 52°North Open Source

initiative. Finally, we are thankful for the valuable comments of the anonymous

reviewers.

References

Alonso, G., Casati, F., Kuno, H., & Machiraju, V. (2004). Web Services (1st ed.). Springer

Verlag.

Schulzrinne, H., Casner, S., Frederick, R., & Jacobson, V. (1996). RTP: A Transport

Protocol for Real-Time Applications (Standards track No. RFC 1889) (p. 74). IETF.

Baranski, B. (2008). Grid Computing Enabled Web Processing Service. In E. Pebesma, M.

Bishr, & T. Bartoschek (Eds.), Proceedings of the 6th Geographic Information Days,

IfGI prints (Vol. 32, pp. 243-256). Presented at the GI-days 2008, Muenster, Germany:

Institute for Geoinformatics. Retrieved from http://www.gi-

tage.de/archive/2008/downloads/acceptedPapers/Papers/Baranski.pdf

Baranski, B., Foerster, T., Schäffer, B., & Lange, K. (2011). Matching INSPIRE Quality of

Service Requirements with Hybrid Clouds. Transactions in GIS, 15(s1), 125-142.

doi:10.1111/j.1467-9671.2011.01265.x

Bertolotto, M., & Egenhofer, M. J. (2001). Progressive Transmission of Vector Map Data

over the World Wide Web. Geoinformatica, 5(4), 345-373.

Brauner, J., Foerster, T., Schaeffer, B., & Baranski, B. (2009). Towards a Research Agenda

for Geoprocessing Services. In J. Haunert, B. Kieler, & J. Milde (Eds.), 12th AGILE

International Conference on Geographic Information Science. Presented at the AGILE

2009, Hanover, Germany: IKG, Leibniz University of Hanover. Retrieved from

http://www.ikg.uni-hannover.de/agile/fileadmin/agile/paper/124.pdf

Conklin, G. J., Greenbaum, G. S., Lillevold, K. O., Lippman, A. F., & Reznik, Y. A.

(2001). Video coding for streaming media delivery on the Internet. IEEE Transactions

on Circuits and Systems for Video Technology, 11(3), 269-281. doi:10.1109/76.911155

Craglia, M., Goodchild, M., Annoni, A., Camara, G., Gould, M., Kuhn, W., Mark, D. M., et

al. (2008). Next-generation Digital Earth. International Journal of Spatial Data

Infrastructure Research, 3, 146-167. doi:10.2902/1725-0463.2008.03.art9

18 Live Geoinformation with Standardized Geoprocessing Services

Di, L., Chen, A., Yang, W., & Zhao, P. (2003). The Integration of Grid Technology with

OGC Web Services (OWS) in NWGISS for NASA EOS Data (pp. 24-27). Presented at

the GGF8 & HPDC12 2003, Seattle, WA, USA: Science Press.

Douglas, D. H., & Peucker, T. K. (1973). Algorithms for the reduction of the number of

points required to represent a digitized line or its caricature. The Canadian

Cartographer, 10(2), 112-122.

Everding, T., Echterhoff, J., & Jirka, S. (2009). Event Processing in Sensor Webs.

Geoinformatik 2009, ifgiPrints (Vol. 35, pp. 11-19). University of Münster.

Fielding, R. T., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., & Berners-Lee,

T. (1999). Hypertext Transfer Protocol (Standards track No. RFC 2616) (p. 176). IETF.

Foerster, T., Schaeffer, B., Baranski, B., & Brauner, J. (2011). Geospatial Web Services for

Distributed Processing - Applications and Scenarios. In P. Zhao & L. Di (Eds.),

Geospatial Web Services: Advances in Information Interoperability (pp. 245-286).

Hershey, PA: IGI Global.

Friis-Christensen, A., Ostlander, N., Lutz, M., & Bernard, L. (2007). Designing Service

Architectures for Distributed Geoprocessing: Challenges and Future Directions.

Transactions in GIS, 11(6), 799-818. doi:10.1111/j.1467-9671.2007.01075.x

Gore, A. (1998). The digital earth: Understanding our planet in the 21st century. Australian

surveyor, 43(2), 89–91.

Grossner, K. E., Goodchild, M. F., & Clarke, K. C. (2008). Defining a Digital Earth

System. Transactions in GIS, 12(1), 145-160. doi:10.1111/j.1467-9671.2008.01090.x

Haklay, M. (Muki), & Weber, P. (2008). OpenStreetMap: User-Generated Street Maps.

IEEE Pervasive Computing, 7(4), 12-18. doi:10.1109/MPRV.2008.80

Lanig, S., Schilling, A., Stollberg, B., & Zipf, A. (2008). Towards Standards-based

Processing of Digital Elevation Models for Grid Computing through Web Processing

Service (WPS). ICCSA, Lecture Notes in Computer Science (Vol. 5073, pp. 191-203).

Presented at the Computational Science and Its Applications - ICCSA 2008, Perugia,

Italy: Springer Verlag. doi:http://dx.doi.org/10.1007/978-3-540-69848-7_17

Li, M., Claypool, M., Kinicki, R., & Nichols, J. (2005). Characteristics of streaming media

stored on the Web. ACM Trans. Internet Technol., 5(4), 601–626.

doi:http://doi.acm.org/10.1145/1111627.1111629

May, W., & Pantos, R. (2011). HTTP Live Streaming (Internet Draft No. draft-pantos-http-

live-streaming-06) (p. 24). Cupertino, CA: IETF.

Müller, M., Bernard, L., & Brauner, J. (2010). Moving Code in Spatial Data Infrastructures

- Web Service Based Deployment of Geoprocessing Algorithms. Transactions in GIS,

14, 101-118. doi:10.1111/j.1467-9671.2010.01205.x

Muthukrishnan, S. (2005). Data streams: Algorithms and applications. Now Publishers Inc.

OGC. (2005). Web Feature Service Implementation Specification (Implementation

specification No. OGC 04-094). Retrieved from

http://www.opengeospatial.org/standards/wfs

OGC. (2007). OpenGIS Web Processing Service (OGC implementation specification No.

OGC 05-007r7). Open Geospatial Consortium. Retrieved from

http://www.opengeospatial.org/standards/wps

Scholten, M., Klamma, R., & Kiehle, C. (2006). Evaluating performance in spatial data

infrastructures for geoprocessing. IEEE Internet Computing, 10(5), 34-41.

van Oosterom, P. (2005). Variable-scale Topological Data Structures Suitable for

Progressive Data Transfer: The GAP-face Tree and GAP-edge Forest. Cartography and

Geographic Information Science, 32(4), 331-346.

Ying, F., Mooney, P., Padraig, C., & Winstanley, A. (2011). Selective progressive

transmission of vector data. Presented at the GeoComputation 2011, London, UK.

