Skip to main content

Abstract

Genetic mutation is an essential factor in the evolution of biological organisms and a driving force of phenotypical innovation. On rare occasions, nature takes a major evolutionary leap during which an organism’s gene repertoire suddenly doubled. Genetic mutation affects both the whole genome duplication as it happens, and also during all the subsequent evolutionary steps. We develop a Boolean model of gene regulatory networks that simulates the duplication event and subsequent Darwinian evolution using an evolutionary algorithm. We analyze the role of these two different types of mutations on synthetic systems. Our results show that high duplication mutation rate triggers the development of new phenotypes, advantageous in a changing environment, to the detriment of environmental robustness. Additionally, our research highlights the necessity of a low evolutionary mutation rate for the survival of duplicated individuals within a mixed population, ensuring the spreading novel phenotype. We conclude that both types of mutations play complementary roles in determining the successful propagation of organisms with duplicated genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, R.: Scale-free networks in cell biology. Journal of Cell Science 118, 4947–4957 (2005)

    Article  Google Scholar 

  2. Aldana, M., Balleza, E., Kauffman, S., Resendiz, O.: Robustness and evolvability in genetic regulatory networks. Journal of Theoretical Biology 245, 433–448 (2007)

    Article  MathSciNet  Google Scholar 

  3. Aldana, M., Cluzel, P.: A natural class of robust networks. Proceedings of the National Academy of Sciences 100, 8710–8714 (2003)

    Article  Google Scholar 

  4. Brunet, F.G., Crollius, H.R., Paris, M., Aury, J.M., Gibert, P., Jaillon, O., Laudet, V., Robinson-Rechavi, M.: Gene loss and evolutionary rates following whole-genome duplication in teleost fishes. Molecular Biology and Evolution 23(9), 1808–1816 (2006)

    Article  Google Scholar 

  5. Darabos, C., Tomassini, M., Giacobini, M.: Dynamics of unperturbed and noisy generalized Boolean networks. Journal of Theoretical Biology 260, 531–544 (2009)

    Article  Google Scholar 

  6. De Bodt, S., Maere, S., Van de Peer, Y.: Genome duplication and the origin of the angiosperms. TRENDS in Ecology and Evolution 20, 591–597 (2005)

    Article  Google Scholar 

  7. Ferrada, E., Wagner, A.: Protein robustness promotes evolutionary innovations on large evolutionary time-scales. Proceedings of the Royal Society London B 275, 1595–1602 (2008)

    Article  Google Scholar 

  8. Isalan, M., Lemerle, C., Michalodimitrakis, K., Horn, C., Beltrao, P., Raineri, E., Garriga-Canut, M., Serrano, L.: Evolvability and hierarchy in rewired bacterial gene networks. Nature 452, 840–846 (2008)

    Article  Google Scholar 

  9. Kafri, R., Bar-Even, A., Pilpel, Y.: Transcription control reprogramming in genetic backup circuits. Nature Genetics 37, 295–299 (2005)

    Article  Google Scholar 

  10. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology 22, 437–467 (1969)

    Article  MathSciNet  Google Scholar 

  11. Kellis, M., Birren, B.W., Lander, E.S.: Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428, 617–624 (2004)

    Article  Google Scholar 

  12. Ohno, S.: Evolution by Gene Duplication. George Allen and Unwin, London (1970)

    Google Scholar 

  13. Oikonomou, P., Cluzel, P.: Effects of topology on network evolution. Nature Physics 2, 532–536 (2006)

    Article  Google Scholar 

  14. Pan, Q., Darabos, C., Tyler, A.L., Moore, J.H., Payne, J.L.: The influence of whole genome duplication and subsequent diversification on environmental robustness and evolutionary innovation in gene regulatory networks. In: Proceedings of the European Conference on Artificial Life, pp. 614–621 (2011)

    Google Scholar 

  15. Piškur, J.: Origin of the duplicated regions in the yeast genomes. Trends in Genetics 17, 302–303 (2001)

    Article  Google Scholar 

  16. Sémon, M., Wolfe, K.H.: Consequences of genome duplication. Current Opinion in Genetics and Development 17, 505–512 (2007)

    Article  Google Scholar 

  17. Taylor, J.S., Braasch, I., Frickey, T., Meyer, A., Van de Peer, Y.: Genome duplication, a trait shared by 22,000 species of ray-finned fish. Genome Research 13, 382–390 (2003)

    Article  Google Scholar 

  18. Thakar, J., Pilione, M., Kirimanjeswara, G., Harvill, E.T., Albert, R.: Modeling systems-level regulation of host immune responses. PLoS Comput. Biol. 3(6), e109 (2007)

    Article  Google Scholar 

  19. van Hoek, M.J.A., Hogeweg, P.: Metabolic adaptation after whole genome duplication. Molecular Biology and Evolution 26, 2441–2453 (2009)

    Article  Google Scholar 

  20. Wagner, A.: Robustness and evolvability: a paradox resolved. Proc. Biol. Sci. 275(1630), 91–100 (2008)

    Article  Google Scholar 

  21. Wilke, C.O., Wang, J.L., Ofria, C., Lenski, R.E., Adami, C.: Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature 412, 331–333 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pan, Q., Darabos, C., Moore, J.H. (2012). The Role of Mutations in Whole Genome Duplication. In: Giacobini, M., Vanneschi, L., Bush, W.S. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2012. Lecture Notes in Computer Science, vol 7246. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29066-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29066-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29065-7

  • Online ISBN: 978-3-642-29066-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics