Skip to main content

Inferring Disease-Related Metabolite Dependencies with a Bayesian Optimization Algorithm

  • Conference paper
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EvoBIO 2012)

Abstract

Understanding disease-related metabolite interactions is a key issue in computational biology. We apply a modified Bayesian Optimization Algorithm to targeted metabolomics data from plasma samples of insulin-sensitive and -resistant subjects both suffering from non-alcoholic fatty liver disease. In addition to improving the classification accuracy by selecting relevant features, we extract the information that led to their selection and reconstruct networks from detected feature dependencies. We compare the influence of a variety of classifiers and different scoring metrics and examine whether the reconstructed networks represent physiological metabolite interconnections. We find that the presented method is capable of significantly improving the classification accuracy of otherwise hardly classifiable metabolomics data and that the detected metabolite dependencies can be mapped to physiological pathways, which in turn were affirmed by literature from the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, A., Colburn, W., DeGruttola, V., DeMets, D., Downing, G., Hoth, D., Oates, J., Peck, C., Schooley, R., Spilker, B., et al.: Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clinical Pharmacology & Therapeutics 69(3), 89–95 (2001)

    Article  Google Scholar 

  2. Bang, J., Crockford, D., Holmes, E., Pazos, F., Sternberg, M., Muggleton, S., Nicholson, J.: Integrative top-down system metabolic modeling in experimental disease states via data-driven Bayesian methods. The Journal of Proteome Research 7(2), 497–503 (2008)

    Article  Google Scholar 

  3. Ben-Gal, I.: Bayesian networks. Encyclopedia of Statistics in Quality and Reliability (2007)

    Google Scholar 

  4. Chickering, D.: Learning Bayesian networks is NP-complete. Learning from data: Artificial intelligence and statistics 112, 121–130 (1996)

    MathSciNet  Google Scholar 

  5. Cleary, J., Trigg, L.: K*: An Instance-based Learner Using an Entropic Distance Measure. In: Proceedings of the 12th International Conference on Machine Learning, pp. 108–114 (1995)

    Google Scholar 

  6. Doak, J.: An evaluation of feature-selection methods and their application to computer security (Technical Report CSE-92-18). Davis: University of California, Department of Computer Science (1992)

    Google Scholar 

  7. Echegoyen, C., Lozano, J., Santana, R., Larranaga, P.: Exact Bayesian network learning in estimation of distribution algorithms. In: IEEE Congress on Evolutionary Computation, CEC 2007, pp. 1051–1058. IEEE (2007)

    Google Scholar 

  8. Franken, H., Lehmann, R., Häring, H., Fritsche, A., Stefan, N., Zell, A.: Wrapper-and Ensemble-Based Feature Subset Selection Methods for Biomarker Discovery in Targeted Metabolomics. Pattern Recognition in Bioinformatics, 121–132 (2011)

    Google Scholar 

  9. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter 11(1), 10–18 (2009)

    Article  Google Scholar 

  10. Hall, M.: Correlation-based Feature Selection for Machine Learning. Ph.D. thesis, The University of Waikato (1999)

    Google Scholar 

  11. Huffman, K., Shah, S., Stevens, R., Bain, J., Muehlbauer, M., Slentz, C., Tanner, C., Kuchibhatla, M., Houmard, J., Newgard, C., et al.: Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care 32(9), 1678 (2009)

    Article  Google Scholar 

  12. Inza, I., Larranaga, P., Etxeberria, R., Sierra, B.: Feature subset selection by Bayesian network-based optimization. Artificial Intelligence 123(1-2), 157–184 (2000)

    Article  MATH  Google Scholar 

  13. Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M., Hirakawa, M.: Kegg for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Research 38(Database issue), D355–D360 (2010)

    Article  Google Scholar 

  14. Kira, K., Rendell, L.: The feature selection problem: traditional methods and a new algorithm. In: Proceedings of the Tenth National Conference on Artificial Intelligence, pp. 129–134. AAAI Press (1992)

    Google Scholar 

  15. Kronfeld, M., Planatscher, H., Zell, A.: The EvA2 optimization framework. Learning and Intelligent Optimization, 247–250 (2010)

    Google Scholar 

  16. Krumsiek, J., Suhre, K., Illig, T., Adamski, J., Theis, F.: Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data. BMC Systems Biology 5, 21 (2011)

    Article  Google Scholar 

  17. Lim, T.: A Comparison of Prediction Accuracy, Complexity, and Training Time of Thirty-Three Old and New Classification Algorithms. Machine Learning 40, 203–228 (2000)

    Article  MATH  Google Scholar 

  18. Masseglia, F., Poncelet, P., Teisseire, M.: Successes and new directions in data mining. Information Science Publishing (2008)

    Google Scholar 

  19. Newgard, C., An, J., Bain, J., Muehlbauer, M., Stevens, R., Lien, L., Haqq, A., Shah, S., Arlotto, M., Slentz, C., et al.: A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metabolism 9(4), 311–326 (2009)

    Article  Google Scholar 

  20. Pelikan, M., Goldberg, D.: Hierarchical bayesian optimization algorithm, vol. 33, p. 63. Springer, Heidelberg (2006)

    Google Scholar 

  21. Pelikan, M., Goldberg, D., Cantu-Paz, E.: BOA: The Bayesian optimization algorithm (IlliGAL Report No. 99003). University of Illinois at Urbana-Champaign, Urbana (1999)

    Google Scholar 

  22. Petersen, K., Dufour, S., Befroy, D., Lehrke, M., Hendler, R., Shulman, G.: Reversal of Nonalcoholic Hepatic Steatosis, Hepatic Insulin Resistance, and Hyperglycemia by Moderate Weight Reduction in Patients With Type 2 Diabetes. Metabolism 54, 603–608 (2005)

    Google Scholar 

  23. Puri, P., Baillie, R.A., Wiest, M.M., Mirshahi, F., Choudhury, J., Cheung, O., Sargeant, C., Contos, M.J., Sanyal, A.J.: A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 46(4), 1081–1090 (2007)

    Article  Google Scholar 

  24. Saeys, Y., Inza, I.N., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)

    Article  Google Scholar 

  25. Schölkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Adaptive Computation and Machine Learning, 1st edn. The MIT Press (2001)

    Google Scholar 

  26. Stefan, N., Kantartzis, K., Häring, H.U.: Causes and metabolic consequences of Fatty liver. Endocrine Reviews 29(7), 939–960 (2008)

    Article  Google Scholar 

  27. Zou, W., Tolstikov, V.: Probing genetic algorithms for feature selection in comprehensive metabolic profiling approach. Rapid Communications in Mass Spectrometry 22(8), 1312–1324 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Franken, H., Seitz, A., Lehmann, R., Häring, HU., Stefan, N., Zell, A. (2012). Inferring Disease-Related Metabolite Dependencies with a Bayesian Optimization Algorithm. In: Giacobini, M., Vanneschi, L., Bush, W.S. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2012. Lecture Notes in Computer Science, vol 7246. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29066-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29066-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29065-7

  • Online ISBN: 978-3-642-29066-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics