Skip to main content

Tracking the Evolution of Cooperation in Complex Networked Populations

  • Conference paper
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EvoBIO 2012)

Abstract

Social networks affect in such a fundamental way the dynamics of the population they support that the global, population-wide behavior that one observes often bears no relation to the agent processes it stems from. Up to now, linking the global networked dynamics to such agent mechanisms has remained elusive. Here we define an observable dynamic and use it to track the self-organization of cooperators when co-evolving with defectors in networked populations interacting via a Prisoner’s Dilemma. Computations on homogeneous networks evolve towards the coexistence between cooperator and defector agents, while computations in heterogeneous networks lead to the coordination between them. We show how the global dynamics co-evolves with the motifs of cooperator agents in the population, the overall emergence of cooperation depending sensitively on this co-evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adar, E., Huberman, B.: Free riding on gnutella. First Monday 5(10-2) (2000)

    Google Scholar 

  2. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Communications Magazine 40(8), 102–114 (2002)

    Article  Google Scholar 

  3. Amaral, L.A., Scala, A., Barthelemy, M., Stanley, H.E.: Classes of small-world networks. Proceedings of the National Academy of Sciences 97, 11149–11152 (2000)

    Article  Google Scholar 

  4. Axelrod, R.: The Evolution of Cooperation. Penguin Books, Harmondsworth (1989)

    Google Scholar 

  5. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  6. Barrat, A., Barthelemy, M., Vespignani, A.: Dynamical processes in complex networks. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  7. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: from natural to artificial systems, vol. (1). Oxford University Press, USA (1999)

    MATH  Google Scholar 

  8. Bonabeau, E., Dorigo, M., Theraulaz, G.: Inspiration for optimization from social insect behaviour. Nature 406(6791), 39–42 (2000)

    Article  Google Scholar 

  9. Borgers, T., Sarin, R.: Learning through reinforcement and replicator dynamics. Journal of Economic Theory 77(1), 1–14 (1997)

    Article  MathSciNet  Google Scholar 

  10. Centola, D.: The spread of behavior in an online social network experiment. Science 329, 1194 (2010)

    Article  Google Scholar 

  11. Christakis, N.A., Fowler, J.H.: The collective dynamics of smoking in a large social network. New England Journal of Medicine 358(21), 2249–2258 (2008)

    Article  Google Scholar 

  12. Dorogovtsev, S.N.: Lectures on Complex Networks. Oxford University Press, USA (2010)

    Book  MATH  Google Scholar 

  13. Fowler, J.H., Christakis, N.A.: Cooperative behavior cascades in human social networks. Proceedings of the National Academy of Sciences 107(12), 5334–5338 (2010)

    Article  Google Scholar 

  14. Gómez-Gardeñes, J., Campillo, M., Floría, L.M., Moreno, Y.: Dynamical organization of cooperation in complex topologies. Physical Review Letters 98(10), 108103 (2007)

    Article  Google Scholar 

  15. Granovetter, M.: The strength of weak ties. American Journal of Sociolgy 78, 1360 (1973)

    Article  Google Scholar 

  16. Hauert, C.: Effects of space in 2x2 games. International Journal Bifurcation Chaos 12, 1531–1548 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hofbauer, J., Sigmund, K.: Evolutionary games and population dynamics. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  18. Johnson, D., Maltz, D., Broch, J., et al.: Dsr: The dynamic source routing protocol for multi-hop wireless ad hoc networks. Ad Hoc Networking 5, 139–172 (2001)

    Google Scholar 

  19. van Kampen, N.: Stochastic processes in physics and chemistry. North-Holland (2007)

    Google Scholar 

  20. Kollock, P.: Social dilemmas: The anatomy of cooperation. Annual Review of Sociology 24, 183–214 (1998)

    Article  Google Scholar 

  21. Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A.L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., Jebara, T., King, G., Macy, M., Roy, D., Alstyne, M.V.: Computational social science. Science 323(5915), 721–723 (2009)

    Article  Google Scholar 

  22. Lloyd, A.L., May, R.M.: How viruses spread among computers and people. Science 292, 1316–1317 (2001)

    Article  Google Scholar 

  23. Nakamaru, M., Matsuda, H., Iwasa, Y.: The evolution of cooperation in a lattice-structured population. Journal of Theoretical Biology 184(1), 65–81 (1997)

    Article  Google Scholar 

  24. Nowak, M.A., May, R.M.: Evolutionary games and spatial chaos. Nature 359, 826–829 (1992)

    Article  Google Scholar 

  25. Ohtsuki, H., Hauert, C., Lieberman, E., Nowak, M.A.: A simple rule for the evolution of cooperation on graphs and social networks. Nature 441(7092), 502–505 (2006)

    Article  Google Scholar 

  26. Onnela, J.P., Reed-Tsochas, F.: Spontaneous emergence of social influence in online systems. Proceedings of the National Academy of Sciences 107(43), 18375–18380 (2010)

    Article  Google Scholar 

  27. Pacheco, J.M., Pinheiro, F.L., Santos, F.C.: Population structure induces a symmetry breaking favoring the emergence of cooperation. PLoS Computational Biology 5(12), e1000596 (2009)

    Article  MathSciNet  Google Scholar 

  28. Pacheco, J.M., Santos, F.C., Souza, M.O., Skyrms, B.: Evolutionary dynamics of collective action in n-person stag hunt dilemmas. Proceedings of the Royal Society B 276(1655), 315–321 (2009)

    Article  Google Scholar 

  29. Perkins, C., Royer, E.: Ad-hoc on-demand distance vector routing. In: Second IEEE Workshop on Mobile Computing Systems and Applications, WMCSA 1999, pp. 90–100 (1999)

    Google Scholar 

  30. Ripeanu, M.: Peer-to-peer architecture case study: Gnutella network. In: Proceedings of First International Conference on Peer-to-Peer Computing, pp. 99–100 (2001)

    Google Scholar 

  31. Santos, F.C., Pacheco, J.M.: Scale-free networks provide a unifying framework for the emergence of cooperation. Physical Review Letters 95(9), 98104 (2005)

    Article  Google Scholar 

  32. Santos, F.C., Pacheco, J.M., Lenaerts, T.: Evolutionary dynamics of social dilemmas in structured heterogeneous populations. Proceedings of the National Academy of Sciences 103(9), 3490–3494 (2006)

    Article  Google Scholar 

  33. Santos, F.C., Rodrigues, J.F., Pacheco, J.M.: Epidemic spreading and cooperation dynamics on homogeneous small-world networks. Physical Review E 72(5), 56128 (2005)

    Article  Google Scholar 

  34. Santos, F., Pacheco, J.: Risk of collective failure provides an escape from the tragedy of the commons. Proceedings of the National Academy of Sciences 108(26), 10421 (2011)

    Article  Google Scholar 

  35. Sigmund, K.: The Calculus of Selfishness. Princeton Series in Theoretical and Computational Biology. Princeton University Press (2010)

    Google Scholar 

  36. Sutton, R., Barto, A.: Reinforcement learning: An introduction, vol. 28. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  37. Szabó, G., Fáth, G.: Evolutionary games on graphs. Physics Reports 446(4-6), 97–216 (2007)

    Article  MathSciNet  Google Scholar 

  38. Taylor, P.D., Day, T., Wild, G.: Evolution of cooperation in a finite homogeneous graph. Nature 447, 469–472 (2007)

    Article  Google Scholar 

  39. Traulsen, A., Hauert, C.: Stochastic evolutionary game dynamics, vol. II. Wiley-VCH (2009)

    Google Scholar 

  40. Traulsen, A., Pacheco, J.M., Nowak, M.A.: Stochastic dynamics of invasion and fixation. Physical Review E 74(1 Pt 1), 11909 (2006)

    Article  Google Scholar 

  41. Van Segbroeck, S., De Jong, S., Nowé, A., Santos, F., Lenaerts, T.: Learning to coordinate in complex networks. Adaptive Behavior 18(5), 416 (2010)

    Article  Google Scholar 

  42. Watts, D.J.: A twenty-first century science. Nature 445(7127), 489 (2007)

    Article  Google Scholar 

  43. Wooldridge, M., Jennings, N.: Intelligent agents: Theory and practice. Knowledge Engineering Review 10(2), 115–152 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pinheiro, F.L., Santos, F.C., Pacheco, J.M. (2012). Tracking the Evolution of Cooperation in Complex Networked Populations. In: Giacobini, M., Vanneschi, L., Bush, W.S. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2012. Lecture Notes in Computer Science, vol 7246. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29066-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29066-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29065-7

  • Online ISBN: 978-3-642-29066-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics