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Synthesis Problem for Petri Nets with Localities
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Abstract. There is a growing need to introduce and develop computa-
tional models capable of faithfully modelling systems whose behaviour
combines synchrony with asynchrony in a variety of complicated ways.
Examples of such real-life systems can be found from VLSI hardware to
systems of cells within which biochemical reactions happen in synchro-
nised pulses. One way of capturing the resulting intricate behaviours is to
use Petri nets with localities partitioning transitions into disjoint groups
within which execution is synchronous and maximally concurrent. In this
paper, we generalise this type of nets by allowing each transition to be-
long to several localities. Moreover, we define this extension in a generic
way for all classes of nets defined by net-types.
The semantics of nets with overlapping localities can be defined in dif-
ferent ways, and we here discuss four fundamental interpretations, each
of which turns out to be an instance of the general model of nets with
policies. Thanks to this fact, it is possible to automatically synthesise
nets with localities from behavioural specifications given in terms of fi-
nite transition systems. We end the paper outlining some initial ideas
concerning net synthesis when the association of transitions to localities
is not given and has to be determined by the synthesis algorithm.
Keywords: theory of concurrency, Petri net, locality, analysis and syn-
thesis, step sequence semantics, conflict, theory of regions, transition
system, step firing policy, net-type.

1 Introduction

In the formal modelling of computational systems there is a growing need to
faithfully capture real-life systems exhibiting behaviour which can be described
as ‘globally asynchronous locally (maximally) synchronous’ (GALS). Examples
can be found in hardware design, where a VLSI chip may contain multiple clocks
responsible for synchronising different subsets of gates [5], and in biologically
inspired membrane systems representing cells within which biochemical reac-
tions happen in synchronised pulses [15]. To capture such systems in a formal
manner, [8] introduced Place/Transition-nets with localities (PTL-nets), where
each locality identifies a distinct set of transitions which must be executed syn-
chronously, i.e., in a maximally concurrent manner (akin to local maximal con-
currency).
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The modelling power of PTL-nets (even after enhancing them with inhibitor
and activator arcs in [7]) was constrained by the fact that each transition be-
longed to a unique locality, and therefore localities were all non-overlapping. In
this paper, we drop this restriction aiming at a net model which we feel could
provide a greater scope for faithful (or direct) modelling features implied by the
complex nature of, for example, modern VLSI systems or biological systems.
The paper deals with theoretical underpinnings of such an approach.

ti−2 ti−1 ti ti+1 ti+2

lociloci−1 loci+1

Fig. 1. Transitions with multiple overlapping localities.

To explain the basic idea behind nets with overlapping localities, let us con-
sider transitions t0, t1, . . . , tn−1 arranged in a circular manner, i.e., ti is adjacent
to t(i+n−1)mod n and t(i+1)mod n which are transitions forming its ‘neighbour-
hood’. Figure 1 shows the overlapping of the localities

loci−1 = {ti−2, ti−1, ti} loci = {ti−1, ti, ti+1} loci+1 = {ti, ti+1, ti+2}

to which a transition ti belongs (note that in the diagrams localities are depicted
as shaded diamonds encompassing the transitions they contain). Each of the
transitions belongs to some subsystem which is left unspecified apart from the
fact that, in the initial marking, all the ti’s are concurrently enabled.

One can consider at least two different interpretations of the meaning of the
localities as in Figure 1 from the point of view of transitions’ executability.

1st Interpretation: The execution is triggered by the stimulation of
localities, and at each stimulated locality one executes as many (enabled)
transitions as possible.

For example, the following would be examples of legal steps:

{t2, t3, t4} loc3 stimulated
{t2, t3, t4, t5, t8, t9, t10} loc3, loc4 and loc9 stimulated

and {t3} would be example of an illegal step. According to the first interpreta-
tion, a transition can be forced to fire if at least one of its localities has been
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stimulated. This changes in the second interpretation when this happens only if
all of its localities have been stimulated.

2nd Interpretation: To be executed, transition ti needs all the local-
ities it belongs to be stimulated.

For example, the following would be examples of legal steps:

{t3} loc2, loc3 and loc4 stimulated
{t0, t1, . . . , tn−1} loc0, loc1, . . . , locn−1 stimulated

and {t2, t4} would be example of an illegal step. The above will be two out of
the four fundamental interpretations of nets with overlapping localities which we
will introduce and investigate in this paper. It is not our intention in this paper
to make a judgement as to which of these four interpretations is more useful or
reasonable. Instead, our aim is to investigate and compare their key properties,
in particular, those relating to the net synthesis problem.

In this paper, rather than introducing overlapping localities for PT-nets or
their standard extensions, we will move straight to the general case of τ -nets [2]
which encapsulate a majority of Petri net classes for which the synthesis prob-
lem has been investigated and solved. In fact, the task of defining τ -nets with
(potentially) overlapping localities is straightforward, as the resulting model of
τ-nets with localities turns out to be an instance of the general framework of
τ -nets with policies introduced in [4].

After introducing the new model of nets, we turn our attention to their auto-
matic synthesis from behavioural specifications given in terms of step transition
systems. Since τ -nets with localities are an instance of a more general scheme
treated in [4], we directly import synthesis results presented there which are
based on the regions of a transition system studied in other contexts, in partic-
ular, in [1–3, 6, 9, 10, 13, 14, 16].

The results in [4] assume that policies are given which, in our case, means
that we know exactly the localities associated with all the net transitions. This
may be difficult to guarantee in practice, and we end the paper outlining some
initial ideas concerning net synthesis when this is not the case.

The paper is organised in the following way. In the next section, in order
to make the paper self-contained, we recall the notions and results relating to
the general theory of the synthesis of nets with policies. After that, we define
four semantic interpretations of nets with overlapping localities, and prove that
in each case the resulting model defines nets with policies. We also discuss and
compare some basic properties of the new policies, in particular, we formulate a
main result concerning the synthesis of nets with overlapping localities. In the
last section, we outline some initial ideas concerning the synthesis problem when
not only the net, but also the localities need to be constructed. The appendix
presents proofs of results omitted from the main body of the paper.
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2 Preliminaries

In this section, we recall some basic notions concerning general Petri nets, policies
and the synthesis problem as presented in [4].

Abelian monoids and multisets. An abelian monoid is a set S with a com-
mutative and associative binary (composition) operation + on S, and a neutral
element 0. The monoid element resulting from composing n copies of s ∈ S will
be denoted by n · s, and so 0 = 0 · s and s = 1 · s. As we will see, weighted arcs
between places and transitions in PT-nets can be expressed using the abelian
monoid SPT which is the product N×N with the pointwise arithmetic addition
operation and 0 = (0, 0).

Steps of transitions. Potential steps of a Petri net with transition set T can
be captured by the free abelian monoid 〈T 〉 generated by T . Note that 〈T 〉 can
be seen as the set of all the multisets over T ; for example, aaab = {a, a, a, b}.
We will use α, β, γ, . . . to range over the elements of 〈T 〉. Moreover, for all t ∈ T
and α ∈ 〈T 〉, we will use α(t) to denote the multiplicity of t in α.

The sum of two multisets, α and β, will be denoted by α+β, and a singleton
multiset {t} simply by t. We will then write t ∈ α whenever α(t) > 0, and use
supp(α) to denote the set of all t ∈ α. We denote α ≤ β whenever α(t) ≤ β(t)
for all t ∈ T (and α < β if α ≤ β and α 6= β). Whenever α = β + γ, we denote
the multiset γ by α − β. For X ⊆ 〈T 〉, we denote by max≤(X) the set of all
≤-maximal elements of X .

Transition systems. A transition system over an abelian monoid S is a triple
(Q,S, δ) such that Q is a set of states, and δ : Q × S → Q a partial transition
function1 satisfying δ(q,0) = q for all q ∈ Q. An initialised transition system

T
df

= (Q,S, δ, q0) has in addition an initial state q0 ∈ Q from which every other
state is reachable. For every state q of a (non-initialised or initialised) transition

system TS , enbldTS (q)
df

= {s ∈ S | δ(q, s) is defined}.
Initialised transition systems T over free abelian monoids — called step

transition systems — will represent concurrent behaviours of Petri nets. Non-
initialised transition systems τ over arbitrary abelian monoids — called net-types
— will provide ways to define various classes of nets. Throughout the paper, we
will assume that:

– T is a fixed finite set (of net transitions);
– T = (Q,S, δ, q0) is a fixed step transition system over S = 〈T 〉.
– τ = (Q, S, ∆) is a fixed net-type over an abelian monoid S.

Assumption 1 In this paper, we will assume that τ is sub-step closed which
means that, for every state q ∈ Q, if α+ β ∈ enbldτ (q) then also α ∈ enbldτ (q).

1 Transition functions and net transitions are unrelated notions.
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The above assumption will imply that sub-steps of resource enabled steps (i.e.,
steps enabled by the standard token game) are also resource enabled which is a
condition usually satisfied in practice.

Petri nets defined by net-types. The net-type τ = (Q, S, ∆) may be con-
veniently used as a parameter in the definition of a class of nets, called τ-nets.
The net-type specifies the values (markings) that can be stored within net places
(Q), the operations and tests (inscriptions on the arcs) that a net transition may
perform on these values (S), and the enabling condition and the newly generated
values for steps of transitions (∆).

Definition 1 (τ-net). A τ -net is a bi-partite graph (P, T, F ), where P and T
are respectively disjoint sets of places and transitions, and F : (P × T ) → S is
a (generalised) flow mapping. A marking of the τ-net is a map M : P → Q. A
τ -net system N is a τ-net with an initial marking M0.

In what follows, for each place p ∈ P and step α ∈ 〈T 〉 we will denote the
cumulative flow between α and p by F (p, α) =

∑
t∈T α(t) · F (p, t).

Definition 2 (step semantics). Given a τ-net system N = (P, T, F,M0), a
step α ∈ 〈T 〉 is (resource) enabled at a marking M if, for every place p ∈ P :

F (p, α) ∈ enbldτ (M(p)) .

We denote this by α ∈ enbldN (M). The firing of such a step produces the mark-
ing M ′ such that M ′(p) = ∆(M(p), F (p, α)), for every place p ∈ P . We denote
the fact that α is enabled at M and its firing leads to M ′ by M [α〉M ′, and then
define the concurrent reachability graph CRG(N ) of N as the step transition
system formed by firing inductively from M0 all possible (resource) enabled steps
of N .

Note that a step α is resource enabled at a marking M in a τ -net system if
for every place p there is an F (p, α)-labelled arc outgoing from the node M(p)
in τ , and the firing of such a step leads to the new marking M ′, where M ′(p) is
simply the target node of such an arc in τ .

PT-nets are τ -nets. A PT-net is a triple N = (P, T,W ), where P and T are
disjoint sets of places and transitions, and W : (P × T ) ∪ (T × P ) → N specifies
directed edges with integer weights. Its markings are mappings M : P → N,
and a PT-net system is N together with an initial marking M0, as illustrated in
Figure 2(a). Figure 2(b) shows the concurrent reachability graph of the PT-net
system in Figure 2(a).

As we will shortly see, it is possible to render PT-nets as τ -nets. Crucially,
one can encode the PT-net system’s arc weights, W (p, t) and W (t, p), by setting
F (p, t) = (W (p, t),W (t, p)) ∈ SPT . The resulting change of notation, for the
net from Figure 2(a), is represented graphically in Figure 2(c). Notice that, in
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p 7→ 0
q 7→ 2

p 7→ 1
q 7→ 1

p 7→ 2
q 7→ 0
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q 7→ 0
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(b)
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(c)
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(0, 0)
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(d)

0
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0

(0, 2)

(2, 0)

(2, 0)

(0, 1)

(1, 0)

(0, 1)

(1, 0)

(1, 1)
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2
1

0
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(2, 0)

(0, 2)

(0, 0)

(1, 0)

(0, 1)

(1, 0)

(0, 1)

(1, 1)

(f)

Fig. 2. A PT-net system (a); its concurrent reachability graph (b) with the initial
state represented by a small square and the trivial 0-labelled arcs being omitted; and
its rendering as a τPT -net system (c). A fragment of the net-type τPT is shown in (d).
In (e) and (f) we re-trace in (b) the behaviour of places p and q, respectively, in terms
of the net-type τPT .

particular, F (q, b) = (0, 0) means that q and b in Figure 2(a) are disconnected.
The markings are represented so that the lack of tokens is indicated by 0 , one
token by 1 , two tokens by 2 , etc.

To show that a PT-net can indeed be seen as a τ -net, we define a suitable
(infinite) net-type, τPT = (N, SPT , ∆PT ) over SPT , a fragment of which is shown
in Figure 2(d). In general, for every n ∈ N and (in, out) ∈ SPT , (in , out) ∈
enbldτPT

(n) ⇔ in ≤ n. Moreover, in such a case∆PT (n, (in , out)) = n−in+out .
Then, in order to transform a PT-net into an equivalent τPT -net, all one needs
to do is to insert integers, representing the number of tokens, in each place and
set F (p, t) = (W (p, t),W (t, p)), for all places p and transitions t, as already
mentioned. In other words, F (p, t) = (in, out) means that in is the weight of



Synthesis Problem for Petri Nets with Localities 7

the arc from p to t, and out the weight of the arc in the opposite direction, see
Figure 2(a, c).

Although we talked about a single transition t, the graph of τPT provides
equally accurate information about the enabling and firing of a step of transi-
tions α. Indeed, all one needs to do is calculate

(in , out) = F (p, α) = (W (p, α),W (α, p)) .

For the net in Figure 2(a), we obtain F (p, {a, c}) = (1, 0) + (0, 1) = (1, 1) and
F (q, {a, c}) = (0, 1) + (1, 0) = (1, 1) which, together with ∆PT (1, (1, 1)) = 1,
means that: (i) the net in Figure 2(a) enables the step {a, c} at the initial
marking; and (ii) its firing results in the same marking.

Any evolution of a PT-net system can be ‘re-traced’ from the point of view
of an individual place. Consider again the PT-net system in Figure 2(a) and
its concurrent reachability graph in Figure 2(b). For the latter, let us consider
the local markings of the place p as well as the ‘connections’ which effected the
changes of those local markings. We can do this by labelling each state with
the corresponding marking of p, and each arc with the cumulative arc weights
between p and the step α labelling that arc, i.e., F (p, α). The result is shown in
Figure 2(e).

The graph in Figure 2(e) can be ‘re-discovered’ in the graph of the net-type
τPT . This can be achieved by mapping any node labelled n in the former graph to
the node n in the latter, and then all the arcs in the former graph are instances
of arcs in the latter. We call the graph in Figure 2(e) a τPT -labelling of the
graph in Figure 2(b). Clearly, we may repeat the same procedure for the place
q, obtaining another τPT -labelling depicted in Figure 2(f).

τ -nets with policies. Step firing policies are means of controlling and con-
straining the huge number of execution paths resulting from the highly concur-
rent nature of many computing systems.

Let Xτ be the family of all sets of steps enabled at some reachable marking
M of some τ -net N with the set of transitions T .

Definition 3 (bounded step firing policy). A bounded step firing policy for
τ-nets over 〈T 〉 is given by a control disabled steps mapping cds : 2〈T 〉 → 2〈T 〉\{0}

such that, for all X ⊆ 〈T 〉, the following hold:

1. If X is infinite then cds(X) = ∅.
2. If X is finite then, for every Y ⊆ X:

(a) cds(X) ⊆ X;
(b) cds(Y ) ⊆ cds(X); and
(c) X ∈ Xτ and X \ cds(X) ⊆ Y imply cds(X) ∩ Y ⊆ cds(Y ).

Intuitively, Definition 3(2.c) captures a kind of monotonicity in control disabling
resource enabled steps. If control disabling a step in X is due to the (resource)
enabling of some steps included inX , then if these disabling steps are also present
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in Y , any α ∈ Y which is control disabled in X will also be control disabled in
Y .

Step firing policies constrain the behaviour of nets by blocking some of the
resource enabled steps.

Definition 4 (τ-net system with policy). A τ -net system with policy is a

tuple NP
df

= (P, T, F,M0, cds) such that N = (P, T, F,M0) is a τ-net system and
cds is a bounded step firing policy for τ-nets over 〈T 〉.

The notions of marking and execution of enabled steps in NP are inherited
from N . Moreover, the resource enabled and control enabled steps of NP at a
marking M are given, respectively, by:

enbldNP(M)
df

= enbldN (M)

EnbldNP(M)
df

= enbldN (M) \ cds(enbldN (M)).

We will denote by CRG(NP) the step transition system with the initial state M0

formed by firing inductively from M0 all possible control enabled steps of NP,
and call it the concurrent reachability graph of NP.

Step firing policies can often be defined by pre-orders on step sequences. More
precisely a bounded step firing policy given by cds : 2〈T 〉 → 2〈T 〉\{0} is pre-order
based if there is a pre-order � on 〈T 〉 such that, for all finite X ⊆ 〈T 〉,

cds(X) = {α ∈ X | α 6= ∅ ∧ ∃β ∈ X : α ≺ β} .

In such a case we denote cds by cds�. For example, the maximally concurrent
execution semantics of a PT-net can be captured by the bounded step firing

policy cdsmax such that, for every non-empty set of steps X , cdsmax(X)
df

= {α ∈
X | α 6= ∅ ∧ α /∈ max≤(X)}. Such a policy is in fact pre-order based (it suffices
to take � to be sub-multiset order ≤).

Synthesis of τ -net systems with policies. In this paper, by solving a syn-
thesis problem we mean finding a procedure for building a net of a certain class
with a given concurrent reachability graph, as follows.

synthesis problem

Let T be a given finite step transition system, τ a net-type, and cds a
control disabled steps mapping for τ -nets over 〈T 〉. Provide necessary and
sufficient conditions for T to be realised by some τ -net system with policy
NP = (P, T, F,M0, cds) (i.e., T ∼= CRG(NP) where ∼= is transition
system isomorphism preserving the initial states and transition labels).

The solution of the synthesis problem we seek is based on the idea of a region
of a transition system.

Definition 5 (τ-region). A τ -region of T is a pair of mappings

(σ : Q → Q , η : 〈T 〉 → S)



Synthesis Problem for Petri Nets with Localities 9

such that η is a morphism of monoids and, for all q ∈ Q and α ∈ enbldT (q):

η(α) ∈ enbldτ (σ(q)) and ∆(σ(q), η(α)) = σ(δ(q, α)) .

For every state q of Q, we denote by enbldT ,τ (q) the set of all steps α such that
η(α) ∈ enbldτ (σ(q)), for all τ-regions (σ, η) of T .

Intuitively, for PT-net systems, τPT -regions correspond to the τPT -labellings
of the concurrent reachability graph like those depicted in Figure 2(e, f). We then
obtain a general net synthesis result [4].

Theorem 1. T can be realised by a τ-net system with a (bounded step firing)
policy cds iff the following two regional axioms are satisfied:

axiom i: state separation

For any pair of states q 6= r of T , there is a τ-region (σ, η) of T such
that σ(q) 6= σ(r).

axiom ii: forward closure with policies

For every state q of T , enbldT (q) = enbldT ,τ (q) \ cds(enbldT ,τ (q)). ⊓⊔

A net solution to the synthesis problem is obtained if one can compute a finite
set WR of τ -regions of T witnessing the satisfaction of all instances of axioms i

and ii [6]. A suitable τ -net system with policy cds , NPWR = (P, T, F,M0, cds),
can be then constructed with P = WR and, for any place p = (σ, η) in P and
every t ∈ T , F (p, t) = η(t) and M0(p) = σ(q0) (recall that q0 is the initial state
of T , and T ⊆ 〈T 〉).

3 Nets with general localities

We will now introduce a general class of Petri nets with localities, and then
introduce four fundamental ways of interpreting the semantics of such nets based
on specific kinds of cds mappings.

A locality set for the transition set T is any finite family L of non-empty
sets of transitions — called localities — covering T , i.e.,

⋃
L = T . Below we

will denote by Lt the set of all localities to which a given transition t belongs.

Moreover, Lα
df

=
⋃

t∈α Lt is the set of localities involved in a step α. Note that if
we additionally assume that the sets in L are disjoint, then we obtain the model
of transition localities considered in [9–11].

Policies based on localities. We consider four policy mappings based on
localities, cdszL , where z ∈ {∃, ∀, ∃ ⊆, ∀ ⊆}. Each of these four is a mapping
cdszL : 2〈T 〉 → 2〈T 〉\{0} such that, for every infinite set of steps X ⊆ 〈T 〉, we
have cdszL (X) = ∅, and for every finite set of steps X ⊆ 〈T 〉:

cds∃L(X)
df

= {α ∈ X | ∃v ∈ α ∃ℓoc ∈ Lv ∃α+ t ∈ X : t ∈ ℓoc}

cds∃⊆L (X)
df

= {α ∈ X | ∃v ∈ α ∃ℓoc ∈ Lv ∃α+ t ∈ X : t ∈ ℓoc ∧ Lt ⊆ Lα}

cds∀L(X)
df

= {α ∈ X | ∃v ∈ α ∀ℓoc ∈ Lv ∃α+ t ∈ X : t ∈ ℓoc}

cds∀⊆L (X)
df

= {α ∈ X | ∃v ∈ α ∀ℓoc ∈ Lv ∃α+ t ∈ X : t ∈ ℓoc ∧ Lt ⊆ Lα}

(1)
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a b c

loc2loc1

(a) (b) cds
∀⊆
L (X)

cds
∃
L(X)

cds
∀
L(X)cds

∃⊆

L (X)

Fig. 3. Comparing different policies based on localities (a), and relationships between
different policy mappings (b).

Consider, for example, a PT-net with two localities, loc1 = {a, b} and loc2 =
{b, c}, depicted in Figure 3(a). In its initial marking, the set X of resource enabled
steps is:

X = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} .

Thus, according to the definitions of the four policy mappings, we have:

cds∃L(X) = {{a}, {b}, {c}, {a, b}, {a, c}, {b, c}}

cds∃⊆L (X) = {{b}, {a, b}, {a, c}, {b, c}}

cds∀L(X) = {{a}, {b}, {c}, {a, c}}

cds∀⊆L (X) = {{b}, {a, c}} .

(2)

Our main result is that the cds mappings we have just introduced give rise
to bounded step firing policies.

Theorem 2. cdszL is a bounded step firing policy, for each z ∈ {∃, ∀, ∃ ⊆, ∀ ⊆}.

As to the direct relationships between the policy mappings based on localities,
Figure 3(b) shows an inclusion diagram with arrows indicating set inclusions
which hold in all cases. No other arrows (i.e., set inclusions) can be added as
can be seen by inspecting the PT-net with localities depicted in Figure 3(a) and
the sets returned by each of the four policy mappings shown in (2). Hence, in
general, the four cds mappings induce different control policies for nets with
localities.

In the papers [9–11], localities L formed a partition of T . In such a case, the
four policy mappings collapse to:

cdsL(X)
df

= {α ∈ X | ∃v ∈ α ∃α+ t ∈ X : ℓoct = ℓocv}

where, for every transition u, ℓocu denotes the unique locality belonging to Lu.
Thus all four policies introduced in this paper are conservative extensions of that
investigated previously.

It is interesting to observe that in the (previously considered) case of non-
overlapping localities, cdsL can be defined through a pre-order on steps. This is



Synthesis Problem for Petri Nets with Localities 11

a b c

loc1 loc2 loc3 loc4

(a)

a b c

loc1 loc2

(b)

Fig. 4. cds∀L and cds
∀⊆
L are not pre-order based policies.

no longer the case for the general locality mappings. In the proof of Theorem 2
we established that both cds∃L and cds∃⊆L are pre-order based policies. This,
however, does not extend to the remaining two mappings, as we show next.

Proposition 1. cds∀L and cds∀⊆L are not pre-order based policies.

Proof. To show the result in the first case, let us assume that cds∀L for the PT-
net system with localities in Figure 4(a) can be captured by a suitable pre-order
� on steps. In the initial marking M0, the resource enabled steps are: {a}, {b},
{c}, {a, b} and {b, c}. Since one of them, {b}, is not control enabled there must
be a resource enabled step α such that {b} � α. As the net is symmetric w.r.t.
transitions a and c, we can suppose w.l.o.g. that {b} � {a, b} or {b} � {a}
holds. We then consider the marking M obtained by firing the control enabled
step {c}, i.e., M0[{c}〉M . At such a marking, the steps {a}, {b} and {a, b} are
both resource enabled and control enabled. But this contradicts the assumption
that {b} � {a, b} or {b} � {a} holds.

The result can also be shown for cds∀⊆L by taking the PT-net system with
localities in Figure 4(b) and applying exactly the same reasoning as above. ⊓⊔

Net systems with general localities. For each z ∈ {∃, ∀, ∃ ⊆, ∀ ⊆}, we will
call a τ -net system with the bounded step firing policy cdszL a τzL -net system.
Moreover, we will call T a τzL -transition system if axiom i and axiom ii are

satisfied for T with the policy cds = cdszL . Below, for z ∈ {∃, ∀, ∃ ⊆, ∀ ⊆}, we
denote:

Enbldz

NP(M)
df

= enbldNP (M) \ cdszL (enbldNP (M)) . (3)

The above equation defines the set of control enabled steps at a given marking
M of a τzL -net system NP .
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For τ∃L-net system, the control enabled steps at a given marking are those
which cannot be extended within any of their localities any further as resource
enabled steps. Looking at the example from Figure 3(a), we can see that this
policy is very restrictive, leaving the step {a, b, c} as the only non-empty step
control enabled at the initial marking. The second policy, defined by the policy
mapping cds∃⊆L , is less restrictive. It takes into consideration, when extending a
resource enabled step, not only localities of this step, but as well the new ones
that might be introduced when the step is extended. This time control enabled
steps are not only the steps that are ‘maximal’ within their existing localities,
but as well those which can be extended to other resource enabled steps only
at the cost of introducing some new localities. This allows, in the example of
Figure 3(a), steps {a} and {c} to join the set of control enabled steps at the
initial marking. Although they both can be extended to resource enabled steps,
{a, b} and {b, c}, respectively, the extension has a new locality (loc2 in the
first case, and loc1 in the second). So, this policy treats steps {a} and {c} as
‘maximal’ within the sets of their existing localities.

The third policy, defined by the policy mapping cds∀L, is looking only at the
possibility of extending resource enabled steps within their existing localities (no
matter whether the extension brings new localities or not), and this time the
requirement for being a control enabled step is less demanding. Any resource
enabled step that is already ‘maximal’ within at least one locality per step’s
transition is considered control enabled. So, {a} and {c} are not control enabled
under this policy. They can be extended to bigger resource enabled steps, {a, b}
and {b, c}, respectively. However, {a, b} and {b, c}, that were excluded by the
previous policy, are control enabled under this policy, as the first one is ‘maximal’
within locality loc1 (for both a and b) and the second one within locality loc2

(for both b and c).

The last policy, defined by the policy mapping cds∀⊆L , is the least restrictive
and considers a step to be control enabled if it is ‘maximal’ within at least
one locality per step’s transition, or if any extension would introduce some new
localities. These permissive conditions mean that only {b} and {a, c} fail to
satisfy them as both can be extended to resource enabled steps {a, b} or {b, c}
(in the case of {b}), and {a, b, c} (in the case of {a, c}) within their existing
localities.

Synthesis of nets with localities

We obtain an immediate solution of the synthesis problem for all proposed poli-
cies based on possibly overlapping localities.

Theorem 3. For each z ∈ {∃, ∀, ∃ ⊆, ∀ ⊆}, a finite step transition system T
can be realised by a τzL -net system iff T is a τzL -transition system.

Proof. Follows from Theorems 1 and 2. ⊓⊔

As to the effective construction of synthesised net, it has been demonstrated
in [9–11] that this can be easily done for non-overlapping localities in the case of
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PT-nets and EN-systems with localities (and with or without inhibitor and read
arcs). Similar argument can be applied also in the general setting of overlapping
localities and τ -nets corresponding to PT-nets and EN-systems with localities.
We omit fairly straightforward details.

4 Saturated localities

In this section, we will look closely at the relationship between control enabled
steps and the degree of activation exhibited by different localities involved.

Given a step α which is resource enabled at some marking M of a net with
localities NP , a locality ℓoc ∈ Lα is globally saturated if

α+ u /∈ enbldNP(M) ,

for every transition u ∈ ℓoc. We denote this by ℓoc ∈ gsatlocM (α). Similarly, we
say that a locality ℓoc ∈ Lα is locally saturated if

Lu ⊆ Lα =⇒ α+ u /∈ enbldNP (M) ,

for every transition u ∈ ℓoc. We denote this by ℓoc ∈ lsatlocM (α). Consider, for
example, the net in Figure 4(a) in the initial marking M0. Then we have:

gsatlocM0
({a, b}) = {loc1, loc2, loc3}

gsatlocM0
({a}) = {loc1}

gsatlocM0
({b}) = ∅ .

Intuitively, globally saturated localities of a step α are those which have been
‘fully active’ during the execution of α. They made α control enabled or con-
tributed to its control enabledness. The relationship between control enabledness
and global saturation of localities is given by the following result.

Proposition 2. Let M be a marking of a τ∀L-net (τ
∃
L-net) system NP such that

the set enbldNP(M) is finite. Then

(a) Enbld∀
NP(M) = {α ∈ enbldNP(M) | supp(α) ⊆

⋃
gsatlocM (α)}.

(b) Enbld∃
NP(M) = {α ∈ enbldNP(M) | Lα = gsatlocM (α)}.

Locally saturated localities of a step α are the localities that cannot ‘con-
tribute’ any more transitions to the extension of the step α (as a resource enabled
step) without introducing localities that are not present in α. For the net in Fig-
ure 4(a), in the initial marking M0, we have:

lsatlocM0
({a, b}) = {loc1, loc2, loc3}

lsatlocM0
({a}) = {loc1, loc2}

lsatlocM0
({b}) = {loc2, loc3} .

The difference between locally saturated localities and globally saturated lo-
calities is most visible in the case of ‘small’ steps. Some of their localities can
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be locally saturated, but not yet globally saturated (see the steps {a} and {b}
considered above).

The relationship between control enabledness and local saturation of locali-
ties is clarified by the next result.

Proposition 3. Let M be a marking of a τ∀⊆L -net (τ∃⊆L -net) system NP such
that the set enbldNP (M) is finite. Then

(a) Enbld∀⊆
NP(M) = {α ∈ enbldNP(M) | supp(α) ⊆

⋃
lsatlocM (α)}.

(b) Enbld∃⊆
NP(M) = {α ∈ enbldNP(M) | Lα = lsatlocM (α)}.

Consider now the net discussed in the introduction together with its initial
marking M0. It can be checked that:

gsatlocM0
({t2, t3, t4}) = {loc3}

gsatlocM0
({t2, t3, t4, t5, t8, t9, t10}) = {loc3, loc4, loc9}

gsatlocM0
({t3}) = ∅ (∗)

lsatlocM0
({t3}) = {loc2, loc3, loc4} (∗∗)

lsatlocM0
({t0, t1, . . . , tn−1}) = {loc0, loc1, . . . , locn−1}

lsatlocM0
({t2, t4}) = {loc1, loc2, loc4, loc5} .

Hence the first interpretation of the overlapping localities in Figure 1 conforms
to the rules of τ∀L-net systems (but not τ∃⊆L -net systems, on account of (∗∗)),

and the second interpretation conforms to the rules of τ∃⊆L -net systems (but not
τ∀L-net systems, on account of (∗)).

5 Towards synthesis with unknown localities

The synthesis result presented in the previous section, Theorem 3, has been
obtained assuming that the locality set L was given. However, localities might be
(partially) unknown, and part of the outcome of a successful synthesis procedure
would be a suitable or, in the terminology used below, good locality set. Clearly,
as there are only finitely many different locality sets, the synthesis procedure
could simply enumerate them and check each one in turn using Theorem 3.
This, however, would be impractical as the number of locality sets is double
exponential in the number of transitions. We will now present our initial findings
concerning possible reductions of the number of potentially good locality sets. It
is worth noting that, in general, for a given τ -net there can be different locality
sets yielding the same reachability graph. The example in Figure 5 shows that
this holds for all the locality based policies considered in this paper as it is based
on disjoint localities.

In what follows, we assume that T is finite. We also assume that we have
checked that, for every state q of T , the set of steps enbldT ,τ (q) is finite; otherwise
T could not be isomorphic to the concurrent reachability graph of any τ -net
with localities (see axiom ii and Theorem 3). For a set Y and a finite set of sets
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{a, b} {a, d}{c, b}{c, d}

(a)

a b c d

(b)

a b c d

(c)

Fig. 5. Two different sets of localities, (b) and (c), for a PT-net system giving rise to
the same concurrent reachability graph (a).

Z = {Z1, . . . , Zk} we denote by Y ∩ Z the set of all non-empty intersections of
Y and the Zi’s, i.e., the set {Y ∩ Zi | i ≤ k ∧ Y ∩ Zi 6= ∅}.

In the rest of this section, for every state q of the step transition system T ,
and any two locality sets, L and L′:

– allStepsq is the set of all steps labelling arcs outgoing from q.
– Tq is the set of all net transitions occurring in the steps of allStepsq.

– clustersLq is the set of (locality) clusters at q, defined as Tq ∩ L.

– L and L′ are node-consistent if clustersLq = clustersL
′

q , for every state q of
the transition system T .

Note that the clusters are all the non-empty projections of the localities onto
the transitions fired at an individual state.

A major result concerning locality sets is that they are equally suitable for
being good locality sets whenever they induce the same clusters in each node of
the step transition system.

Theorem 4. Let L0 and L1 be two node-consistent locality sets. Then T is τzL0-
transition system iff T is τzL1-transition system, for every z ∈ {∃, ∀, ∃ ⊆, ∀ ⊆}.

The above theorem implies that a good locality set can be arbitrarily modified
to yield another good locality set as long as both are node-consistent (there is no
need to re-check the two axioms involved in Theorem 3). This should facilitate
searching for an optimal good locality set starting from some initial choice (for
example, one might prefer to have as few localities per transition as possible, or
as many transitions per locality as possible, or as few localities as possible, etc).

Theorem 4 leads to another important observation, namely that in order to
be a good locality set, all that matters are the projections of the localities onto
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transition sets enabled at the states of the transition system T . As a consequence,
the construction of a good locality set can be turned into modular process, in
the following way.

First, for each state q and z ∈ {∃, ∀, ∃ ⊆, ∀ ⊆}, we identify possible cluster-
sets ClSetszq of transitions in Tq induced by hypothetical good locality sets. Each

such cluster-set clSet = {C1, . . . , Ck} ∈ ClSetszq is a cover of Tq and:

enbldz

T (q) = enbldT ,τ (q) \ cds
z

clSet (enbldT ,τ (q))

where we have the following (below clSet t
df

= {Ci ∈ clSet | t ∈ Ci} and clSetα
df

=
{Ci ∈ clSet | ∃t ∈ α : t ∈ Ci}):

cds∃clSet(X)
df

= {α ∈ X | ∃Ci ∈ clSetα ∃α+ t ∈ X : t ∈ Ci}

cds∃⊆clSet(X)
df

= {α ∈ X | ∃Ci ∈ clSetα ∃α+ t ∈ X : t ∈ Ci ∧ clSett ⊆ clSetα}

cds∀clSet(X)
df

= {α ∈ X | ∃v ∈ α ∀Ci ∈ clSetv ∃α+ t ∈ X : t ∈ Ci}

cds∀⊆clSet(X)
df

= {α ∈ X | ∃v ∈ α ∀Ci ∈ clSetv ∃α+ t ∈ X :
t ∈ Ci ∧ clSet t ⊆ clSetα} .

We can then select different cluster-sets (one per each state of the step transition
system) and check whether combining them together yields a good locality set.
Such a procedure was used in [11] to construct ‘canonical’ locality sets for the
case of non-overlapping localities (and the combining of cluster-sets was based
on the operation of transitive closure). This effort can be reduced by observing
that some cluster-sets cannot be combined to yield a good locality set. A simple
check is provided by the following result.

Proposition 4. Let q and q′ be two states of the transition system T and z ∈
{∃, ∀, ∃ ⊆, ∀ ⊆}. Moreover, let clSet ∈ ClSetszq and clSet ′ ∈ ClSetszq′ be cluster-

sets such that Tq ∩ clSet ′ 6= Tq′ ∩ clSet. Then there is no locality set L which is
good w.r.t. z as well as satisfying Tq ∩ L = clSet and Tq′ ∩ L = clSet ′.

It is, in general, difficult to estimate how many combinations of cluster-sets
one needs to consider or how many of these yield good locality sets. One can,
however, obtain important insights if one looks for solutions in a specific class of
nets, or if the locality set is partially known or constrained (for example, if two
specific transitions cannot share a locality).

6 Concluding remarks

In this paper, we introduced four different semantics of nets based on transition
localities. In the future research, we plan to work on an efficient synthesis pro-
cedure of PT-nets with localities with unknown locality sets. The problem has
been investigated in [11] for non-overlapping localities, and some initial results
have been obtained in [12] for the case of cds∀L.
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Appendix

Proof of Theorem 2

We first show that cds∃L is a pre-order based bounded step firing policy.
In what follows, we denote γ <1 γ′ if there is a transition t such that γ′ =

γ+ t. For all steps α and β, we define α �∃
L β if α = β or if α < β and there are

steps α = α1 <1 . . . <1 αk = β such that, for all 1 ≤ i < k, Lαi
∩Lαi+1−αi

6= ∅.
Clearly, �∃

L is both transitive and reflexive, and so it is a pre-order.
We therefore have, for every finite set of steps X :

cds�∃
L
(X) = {α ∈ X | α 6= ∅ ∧ ∃β ∈ X : α ≺∃

L β}

= {α ∈ X | α 6= ∅ ∧ ∃β ∈ X : α < β ∧ ∃α = α1 <1 . . . <1 αk = β
∀1 ≤ i < k : Lαi

∩ Lαi+1−αi
6= ∅} .

What we need to show is that:

α ∈ cds�∃
L
(X) ⇐⇒ α ∈ {α ∈ X | ∃v ∈ α ∃ℓoc ∈ Lv ∃α+ t ∈ X : t ∈ ℓoc} .

(⇐=) Suppose that v ∈ α, ℓoc ∈ Lv and α+ t ∈ X are such that t ∈ ℓoc. Since
v ∈ α, we have α 6= ∅. We can take α1 = α and α2 = β = α + t ∈ X . Then
Lα ∩ Lβ−α 6= ∅ because β − α = t and t ∈ ℓoc and ℓoc ∈ Lα (as v ∈ α and
ℓoc ∈ Lv).

(=⇒) Suppose that α, β ∈ X and α = α1 <1 . . . <1 αk = β are such that
Lαi

∩ Lαi+1−αi
6= ∅, for 1 ≤ i < k. Hence there is t such that α2 = α1 + t and

Lα1
∩Lα2−α1

6= ∅. This means that there is v ∈ α (α 6= ∅)such that Lv∩Lt 6= ∅.
So, there are v ∈ α and ℓoc ∈ Lv such that t ∈ ℓoc. All we still need to show is
that α+ t ∈ X which follows from α+ t ≤ β ∈ X and Assumption 1.

Next, we show that cds∃⊆L is also a pre-order based bounded step firing policy.

For all steps α and β, we define α �∃⊆
L β if α �∃

L β and Lα = Lβ . Clearly, �
∃⊆
L

is both transitive and reflexive as �∃
L is.

We therefore have, for every finite set of steps X :

cds
�∃⊆

L

(X) = {α ∈ X | α 6= ∅ ∧ ∃β ∈ X : α ≺∃⊆
L β}

= {α ∈ X | α 6= ∅ ∧ ∃β ∈ X : α ≺∃
L β ∧ Lα = Lβ} .

We need to show that:

α ∈ cds
�∃⊆

L

(X) ⇐⇒

α ∈ {α ∈ X | ∃v ∈ α ∃ℓoc ∈ Lv ∃α+ t ∈ X : t ∈ ℓoc ∧ Lt ⊆ Lα} .
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The proof is similar to that for �∃
L.

To show that cds∀L is a bounded step firing policy, we need to prove that
if X ∈ Xτ is finite and Y ⊆ X and X \ cds∀L(X) ⊆ Y and α ∈ cds∀L(X) ∩ Y ,
then α ∈ cds∀L(Y ). Before proceeding with the proof, we note that in the proofs
of the key Theorems 4.1 and 4.3 of [4] from which Theorem 1 in this paper is
derived, the set Y appearing in Definition 3(2) is always taken to be of the form
enbldT ,τ (q). Hence, due to Assumption 1, we can assume in Definition 3(2) that
Y is sub-step closed.

We first observe that max≤(X) ∩ cds∀L(X) = ∅ and so we have max≤(X) ⊆

X \cds∀L(X) ⊆ Y . Then we observe that since X is finite and α ∈ cds∀L(X), there
is a transition v ∈ α such that for all ℓoc ∈ Lv there exists α+β ∈ max≤(X) ⊆ Y
with ℓoc ∈ Lβ . Since, as we explained above, the set Y may be assumed to be
sub-step closed, there exists t ∈ β such that α + t ∈ Y and ℓoc ∈ Lt (t ∈ ℓoc).
This and the fact that Y is finite (as Y ⊆ X) means that we have α ∈ cds∀L(Y ).

Finally, we show that cds∀⊆L is also a bounded step firing policy. We need

to show that if X ∈ Xτ is finite and Y ⊆ X and X \ cds∀⊆L ⊆ Y and α ∈

cds∀⊆L (X) ∩ Y , then α ∈ cds∀⊆L (Y ).

We first observe that max≤(X)∩ cds∀⊆L (X) = ∅ and so we have max≤(X) ⊆

X \ cds∀⊆L (X) ⊆ Y . Then we observe that since X is finite and α ∈ cds∀⊆L (X),
there is a transition v ∈ α such that, for all ℓoc ∈ Lv, there exists α+t ≤ α+β ∈
max≤(X) ⊆ Y with ℓoc ∈ Lt and Lt ⊆ Lα. This and the fact that Y is finite

(as Y ⊆ X) means that we have α ∈ cds∀⊆L (Y ).

Proof of Proposition 2

To show (a) we observe that the following holds.

α ∈ {α ∈ enbldNP(M) | supp(α) ⊆
⋃
gsatlocM (α)} ⇔

α ∈ enbldNP(M) ∧ ∀v ∈ α ∃ℓoc ∈ gsatlocM (α) : v ∈ ℓoc ⇔

α ∈ enbldNP(M) ∧ ∀v ∈ α ∃ℓoc ∈ gsatlocM (α) : ℓoc ∈ Lv ⇔

α ∈ enbldNP(M) ∧ ∀v ∈ α ∃ℓoc ∈ Lv : ℓoc ∈ gsatlocM (α) ⇔ (def. gsatloc
M

(α))

α ∈ enbldNP(M) ∧ ∀v ∈ α ∃ℓoc ∈ Lv∀t ∈ ℓoc : α+ t /∈ enbldNP(M) ⇔

α ∈ enbldNP(M) ∧ ∀v ∈ α ∃ℓoc ∈ Lv∀α+ t ∈ enbldNP(M) :
t /∈ ℓoc ⇔ (by (1) and (3))

α ∈ Enbld∀
NP(M) .

Then, to show (b), we proceed as follows.

α ∈ {α ∈ enbldNP (M) | Lα = gsatlocM (α)} ⇔

α ∈ enbldNP(M) ∧ ∀ℓoc ∈ Lα ∀t ∈ ℓoc : α+ t /∈ enbldNP(M) ⇔

α ∈ enbldNP(M) ∧ ∀ℓoc ∈ Lα ∀α+ t ∈ enbldNP(M) : t /∈ ℓoc ⇔ (by (1) and (3))

α ∈ Enbld∃
NP(M) .
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Proof of Proposition 3

To show (a) we observe that the following holds.

α ∈ {α ∈ enbldNP(M) | supp(α) ⊆
⋃
lsatlocM (α)} ⇔

α ∈ enbldNP(M) ∧ ∀v ∈ α ∃ℓoc ∈ lsatlocM (α) : v ∈ ℓoc ⇔

α ∈ enbldNP(M) ∧ ∀v ∈ α ∃ℓoc ∈ lsatlocM (α) : ℓoc ∈ Lv ⇔

α ∈ enbldNP(M) ∧ ∀v ∈ α ∃ℓoc ∈ Lv : ℓoc ∈ lsatlocM (α) ⇔ (def. lsatlocM (α))

α ∈ enbldNP(M) ∧ ∀v ∈ α ∃ℓoc ∈ Lv∀t ∈ ℓoc :
Lt ⊆ Lα ⇒ α+ t /∈ enbldNP (M) ⇔

α ∈ enbldNP(M) ∧ ∀v ∈ α ∃ℓoc ∈ Lv∀t ∈ ℓoc :
¬(Lt ⊆ Lα ∧ α+ t ∈ enbldNP(M)) ⇔

α ∈ enbldNP(M) ∧ ∀v ∈ α ∃ℓoc ∈ Lv∀t ∈ ℓoc :
Lt \ Lα 6= ∅ ∨ α+ t /∈ enbldNP(M) ⇔

α ∈ enbldNP(M) ∧ ∀v ∈ α ∃ℓoc ∈ Lv∀t :
t ∈ ℓoc ⇒ (Lt \ Lα 6= ∅ ∨ α+ t /∈ enbldNP(M)) ⇔

α ∈ enbldNP(M) ∧ ∀v ∈ α ∃ℓoc ∈ Lv∀t :
t /∈ ℓoc ∨ Lt \ Lα 6= ∅ ∨ α+ t /∈ enbldNP(M) ⇔

α ∈ enbldNP(M) ∧ ∀v ∈ α ∃ℓoc ∈ Lv∀t :
α+ t ∈ enbldNP(M) ⇒ (t /∈ ℓoc ∨ Lt \ Lα 6= ∅) ⇔

α ∈ enbldNP(M) ∧ ∀v ∈ α ∃ℓoc ∈ Lv∀α+ t ∈ enbldNP(M) :
t 6∈ ℓoc ∨ Lt \ Lα 6= ∅ ⇔ (by (1) and (3))

α ∈ Enbld∀⊆
NP(M) .

Then, to show (b), we proceed as follows.

α ∈ {α ∈ enbldNP(M) | Lα = lsatlocM (α)} ⇔

α ∈ enbldNP(M) ∧ ∀ℓoc ∈ Lα ∀t ∈ ℓoc : Lt ⊆ Lα ⇒ α+ t /∈ enbldNP(M) ⇔

α ∈ enbldNP(M) ∧ ∀ℓoc ∈ Lα ∀α+ t ∈ enbldNP(M) :
t /∈ ℓoc ∨ Lt 6⊆ Lα ⇔ (by (1) and (3))

α ∈ Enbld∃⊆
NP(M) .

Proof of Theorem 4

Suppose that T is τzL0 -transition system. First we notice that axiom i does not
depend on the locality set. For axiom ii and L1 it suffices to show that, for each
state q of T :

cdszL0(enbldT ,τ (q)) = cdszL1(enbldT ,τ (q)) . (4)

We observe that since the maximal steps in enbldT ,τ (q) never belong to the set

cdszL0(enbldT ,τ (q)) and axiom ii holds for L0 we have:

∀α ∈ enbldT ,τ (q) ∀u ∈ α : u ∈ Tq . (5)

We now take i ∈ {0, 1} and consider four cases.
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Case 1: α ∈ cds∃⊆Li (enbldT ,τ (q)). Then α ∈ enbldT ,τ (q) and there are v ∈ α,
ℓoc ∈ Li

v and α+ t ∈ enbldT ,τ (q) such that t ∈ ℓoc and Li
t ⊆ Li

α. Hence, by (5),

we have that v, t ∈ Tq and v, t ∈ C ∈ clustersL
i

q , where C = Tq ∩ ℓoc. By the

node-consistency of Li and L1−i we obtain that there is ℓoc′ ∈ L1−i such that
C = Tq ∩ ℓoc′. Hence ℓoc′ ∈ L1−i

v and t ∈ ℓoc′.
Now suppose that L1−i

t 6⊆ L1−i
α , and so there is ℓoc′′ ∈ L1−i

t \ L1−i
α . Then, there

exists C′ ∈ clustersL
1−i

q , where C′ = Tq ∩ ℓoc′′. By the node-consistency of Li

and L1−i there is ℓoc′′′ ∈ Li such that Tq ∩ ℓoc′′′ = C′. So ℓoc′′′ ∈ Li
t. Since, by

(5), all u ∈ α are such that u ∈ Tq, and ℓoc′′ /∈ L1−i
α , we have ℓoc′′′ /∈ Li

α. Hence
ℓoc′′′ ∈ Li

t \ L
i
α, producing a contradiction with Li

t ⊆ Li
α.

As a result, α ∈ cds∃⊆L1−i(enbldT ,τ (q)).

Case 2: α ∈ cds∃Li(enbldT ,τ (q)). We proceed as in Case 1, ignoring the parts
concerned with Li

t ⊆ Li
α and L1−i

t ⊆ L1−i
α .

Case 3: α ∈ cds∀⊆Li (enbldT ,τ (q)). Then α ∈ enbldT ,τ (q) and there is v ∈ α such
that for all ℓoc ∈ Li

v there is α+ t ∈ enbldT ,τ (q) satisfying t ∈ ℓoc and Li
t ⊆ Li

α.
Let us now consider any ℓoc′ ∈ L1−i

v and take C = Tq ∩ ℓoc′. By (5), we have
v ∈ C and so, by the node-consistency of Li and L1−i, there is ℓoc ∈ Li

v with
C = Tq ∩ ℓoc. We know that there is α + t ∈ enbldT ,τ (q) satisfying t ∈ ℓoc and
Li
t ⊆ Li

α (and also, by (5), t ∈ Tq). Hence t ∈ C. We thus have t ∈ ℓoc′.
Now suppose that L1−i

t 6⊆ L1−i
α , and so there is ℓoc′′ ∈ L1−i

t \ L1−i
α . Then, there

exists C′ ∈ clustersL
1−i

q , where C′ = Tq ∩ ℓoc′′. By the node-consistency of Li

and L1−i there is ℓoc′′′ ∈ Li such that Tq ∩ ℓoc′′′ = C′. So ℓoc′′′ ∈ Li
t. Since, by

(5), all u ∈ α are such that u ∈ Tq, and ℓoc′′ /∈ L1−i
α , we have ℓoc′′′ /∈ Li

α. Hence
ℓoc′′′ ∈ Li

t \ L
i
α, producing a contradiction with Li

t ⊆ Li
α.

As a result, α ∈ cds∀⊆L1−i(enbldT ,τ (q)).

Case 4: α ∈ cds∀Li(enbldT ,τ (q)). We proceed as in Case 3, ignoring the parts
concerned with Li

t ⊆ Li
α and L1−i

t ⊆ L1−i
α .


