
High-Entropy Visual Identification for Touch Screen Devices

Nathaniel Wesley Filardo and Giuseppe Ateniese

Johns Hopkins University
Computer Science Department

3400 N. Charles Ave.
Baltimore, MD 21218

http://www.cs.jhu.edu/~{nwf,ateniese}/
{nwf,ateniese}@cs.jhu.edu

Abstract. We exhibit a system for improving the quality of user-derived keying material on touch-
screen devices. We allow a device to recover previously generated, highly entropic data suitable for
use as (part of) a strong secret key from a user’s act of identifying to the device. Our system uses
visual cryptography [22], using no additional electronics and no memorization on the part of the user.
Instead, we require the use of a transparency overlaid on the touch-screen. Our scheme is similar to the
identification scheme of [23] but tailored for constrained, touch-screen displays.

1 Introduction

Mobile devices have become pervasive features of modern life. While handy, these devices typically do not
have input mechanisms that make entering secure passwords easy. (In fact, many of them use predictive text
models to make entering even low entropy prose easier. This does not bode well for asking the user to enter
even short, highly entropic strings such as t5Ax9zK%.) Therefore, we expect mobile devices either to not be
used for storing sensitive data or to present a likely vulnerability.

Our system enhances password or pass-phrase security by pairing traditional password entry with the
requirement that the user answer a randomly chosen visual challenge. The system does not require that a
user memorize any static secret material beyond their extant password; instead, our challenges use visual
cryptography [22] and require that the user carry a transparent slide to respond. Informally, this puts our
system in the category of systems which “authenticate with something you have” (or as one factor of a
multi-factor system) rather than “with something you know.” Our scheme is similar to the one in [23] (a
detailed comparison may be found in Appendix A).

We believe our system to be useful as a generic tool for augmenting password strength, without requiring
that users memorize yet more secrets. The challenges encode many bits of entropy in their solution, and
are well-suited as a drop-in augmentation to systems, both for authentication and for deriving encryption
keys, which have traditionally used passwords or phrases. Our system is designed so that any attacker not
in possession of the user’s slide gains no insight into how to answer by collecting any number of challenges
(but without seeing responses).

In our demonstration prototype using OpenIntent’s OI Safe [24],1 a password store and cryptography
provider for the Android environment, the entropy encoded in the challenge is concatenated with the user’s
password and fed into a traditional Password-Based Encryption (PBE) [18, 1] scheme to decrypt the (strong,
random) key used to encrypt individual password entries. That is, authentication takes place by successfully
decrypting a second key, rather than the more typical hash-and-compare done with password authentication
schemes. The safe stores, in addition to the user’s data, enough information to create challenges. A new
challenge is generated and the safe is re-keyed every time it is successfully opened.

We will first give a brief review of the basic visual cryptography we use (section 2), followed by an overview
of our scheme and prototype implementation (section 3) and a contrast to prior work (section 4). We then

1 All of the code used for this paper is available on the Web at http://github.com/nwf/android-vcpass and
http://github.com/nwf/android-vcpass-oisafe

http://github.com/nwf/android-vcpass
http://github.com/nwf/android-vcpass-oisafe

discuss our threat model more fully, and the resulting theoretical design of a parametric family of systems
(section 5). Having laid out our parameter space, we exhibit our particular realization within this family
and apply standard human-computer interaction tools to estimate performance of an ideal instantiation
(section 6).

2 Visual Cryptography

Visual Cryptography [22] is a method for encrypting or hiding visual information in a way where decryption
may be done by a human without the use of code-books, tables, or computers. The prototypical example, and
the one we use in our prototype scheme, is a two-of-two secret splitting scheme, in which a black and white
secret image is split into two “black and transparent” shares, neither of which alone conveys any information
about the encoded image.2

To hide a single pixel of the image, we follow the most basic 2-of-2 secret splitting scheme of [22]. A
b× b block of pixels in the shares will have either identical (for a white pixel) or complementary (for black)
diagonals set black (the other pixels will be transparent), as shown in Figure 1. The resulting shares will
have b2 as many pixels as the original image; to avoid confusion we distinguish between “display pixels” of
the shares and “image pixels” of the original and reconstructed images. Information security is attained by
setting one share’s blocks independently, identically distributed (iid) uniformly at random, making it clearly
uncorrelated with the hidden image. The other share’s corresponding block is then set to the appropriate
diagonal. While the image was an input to the values of this share, no information survives due to the iid
uniform bit flip channel defined by the first share. Thus the secret is only recoverable from the pair of shares,
as intended.

Fig. 1: The basic 2× 2-subpixel, 2-of-2 visual secret splitting scheme. Shown here, four display pixels of each
share are being combined to produce one pixel of the hidden image.

3 System Overview

As is typical of secure document stores, OI Safe has a “master key” which is used to encrypt individual
entries. The master key is chosen at random and is itself encrypted using a salted PBE scheme fed with the
user’s password; this makes changing the password independent of the amount of the data being stored. OI
Safe may be “opened” by entering the password, which allows it to decrypt the master key, and thereby

2 Formally, the requirement is that there is zero mutual information between either of the shares in isolation and
the secret.

2

allows the user and external applications to access stored passwords and its encryption functionality. It may
be “closed” (either explicitly or after a configurable timeout) by erasing the in-memory copy of the master
key plain-text.

Our prototype enhances the security of the system by combining, prior to PBE strengthening, the user’s
password with (roughly 36 bits of) random data, hidden using visual cryptography. To open the safe under
this new scheme, the user first provides a plain-text password, as with the non-augmented OI Safe, and then
decrypts the previously generated random data. The latter step involves placing a transparency (carrying
a gridded image such as Figure 2), previously generated and printed, over the display and indicating the
direction (or absence) of an arrow in each grid cell by touching and dragging in the appropriate direction.
(The set of arrow and blank images we call the “vocabulary” in subsequent discussion.3) We emphasize that
it is possible to use the touch screen, and therefore to answer the challenge, without removing the overlay
slide first.

Fig. 2: An example slide, which should be scaled to match the device’s display and printed on a transparent
sheet of plastic. Slides are composed of random noise rendered as display pixels as per section 2. The grid
lines separate independent instances of visual secret splitting (each grid cell) and are imposed only to aid in
subsequent use; see Figure 3.

A camera shot of the challenge prompt and slide overlay running on a Motorola DroidTM phone may be
found in Figure 3. This picture gives an idea of the “arrow” vocabulary used and gives an example of what
a user of the system would see when answering a challenge.4 By virtue of visual secret splitting, absent the
slide, the phone appears to be displaying random noise. To answer the challenge, the user would touch each
cell and drag in the direction indicated in the table. Additional details of implementation may be found in
section 6.

The system is initialized by using a desktop computer and printer to create the user’s slide. Sufficient
information about the slide (i.e., the seed to a CSPRNG and other material; see section 6) are then imported
into the safe at construction of the secure store, i.e., at the same time as the user first sets their traditional,
plain-text password, just as they would in the conventional (i.e., purely plain-text password based) OI Safe
scheme. The safe then generates an initial challenge and stores these parameters under the same encryption
used for its own master key. Subsequently, each time the safe is opened, the parameters are decrypted and a
new challenge is generated, using the device’s strong random number generator. This challenge is written to

3 Our prototype chooses to use a vocabulary of four arrows, one for each cardinal direction, and two blanks. There are
sixteen independent cells in our challenges. These choice balances the entropy of the challenge (see subsection 5.2)
against the (estimated) time to answer the challenge (see subsection 6.1), but are not the only possible choice;
section 5 will discuss the system, and its parameters, more fully.

4 In this case, the system is prompting for an answer to check that it knows what the user’s slide looks like; in
general, the user would see this after having typed in their traditional password at the prompt in OI Safe

3

(a) Camera shot of the application’s challenge prompt.

none down none down
left right up none
up none none right
none left left right

(b) Solution to challenge

Fig. 3: Challenge and solution. To improve visibility, challenges are displayed using only one color subpixel
– in this case green. As the user provides answers (correct or not), the cells are shaded blue; answers are
provided by touching each triangle and dragging away from the broad side. To facilitate alignments, the
display draws (yellow) lines between cells corresponding to the thin black lines printed on the slide. Due to
the difficulty of aligning the display, slide, and camera, it may be hard to make out all the triangles in the
challenge; the challenge is readable only within a very narrow field of view, even when properly aligned.

4

non-volatile store for the next authentication attempt, and the safe master key is re-crypted with the user’s
password and the answer to this new challenge.5 That is, whenever the safe is opened, it updates itself to
be ready for the next authentication.6 Cycling challenges in this way helps thwart incomplete surveillance
attempts: repeated observation of, say, the user solving the challenge without being able to see the challenge
or slide in detail, will not lead to an in-aggregate solution to a challenge, whereas repeated incomplete
obsevations of password entry might.

4 Prior Work

There are deployed systems (usually under the heading of “biometrics”) which attempt to make the statement
that “with high probability, the operator of the device is in fact a legitimate user” based on fingerprints
[15, 20, 19], facial recognition [15, 2], typing patterns [3, 26], retinal scans [10], etc. While much of this work
was based on probabilistic matching, making it untenable as a source for keying material, recent work [9]
has shown how to derive good keying material from biometric data. These systems typically require cameras
or specialized scanners and may involve a lengthy initial data acquisition phase; our system requires only a
touch-screen display (and a printer during initialization).

There are “visual identification” schemes, such as Déjà Vu [8], which use visual recognition for (remote)
authentication. The secret here is entered by the discrimination of a series of pre-selected, randomly-generated
visuals from a larger set. This scheme trades entropy (it derives at most one bit per displayed image) for
a more pleasant user experience (this system does not require that the user carry a slide). These systems
were generally conceived of for desktop, not mobile, environments and therefore use relatively large images
and can present many at a time. Further, their low entropy per challenge makes them usable for one-time
passwords but less ideal for encryption keys.

The system of [12] uses visual secret splitting to authenticate bank transactions. Here, the user confirms
that the bank’s share decrypts to correctly identify the requested transaction and then reveals the location of
two markers within the image to indicate acceptance. This paper appears not to consider an adversary which
accumulates information across multiple uses of the system in order to learn about the user’s transparency.

There has been prior work on visual cryptography for authentication of humans to devices. [17] gives
a system which requires the user to memorize a secret and (mentally) perform some unspecified “simple
operation” on that secret and the message received via visual cryptography. The system of [23] proposes
challenges which illuminate regions of a multi-colored slide, the responses to which are enumerations of the
indicated colors; a detailed comparison may be found in appendix A. The system of [25] uses visual secret
splitting to encode passwords in a different context: authenticating users for remote voting; that paper does
not consider the amount of entropy in the secret to be split (they offer, for purposes of illustration, only a
very low security example; however, as they work on larger displays than we do, and need use a slide only
once, this is not really a limitation so much as an omission from the paper).

We also briefly contrast our system to a hypothetical scheme where we used a camera to scan a secret
image (like a QR code). Other than the obvious need for the target device to have a camera, this system
would suffer from the likely constraint that these secret images should have relatively low pixel density, for
ease and reliability of picture-taking. Unfortunately, this would also ease surveillance and adversarial capture
of the secret.

5 This is akin to the user changing their password every time they use the safe. In fact, the same code-path is invoked
when the user does change their password or chooses to change their slide; both of these actions require that the
safe be already open.

6 This act is done entirely in the background since it takes noticeable amounts of CPU time—roughly 10 seconds—
on current Android phones. The safe will not close itself until it is ready to be opened again. Possibly we should
require visual challenges on a different schedule than closing the safe; perhaps once per day or reboot, so that the
user does not typically need their slide with them. That is, we can hold the visual challenge answer in memory on
a different schedule than the user’s password.

5

Our system focuses on providing a moderately sized, secure channel for entropy with a simple, touch-
screen user interface. As with all visual cryptography schemes, our system comes with the added cost of
needing to carry a transparency containing a visual cryptography share.

5 Design

5.1 Threat Model

Our design, as with most secret-based systems, aims to defend against semi-active attackers with incomplete
surveillance capabilities. We are primarily concerned with an adversary who steals the user’s mobile device
or finds it after it has inadvertently been left behind and thus has absolute control of the hardware for
the duration of their attack. Since secure erasure of long-term data (which includes challenges but not the
user’s responses thereto) may be impossible, such acts may compromise all past challenges.7 In the case of
a remote authentication system, the adversary may be able to prompt the challenger to provide a challenge
at any time and then abort the protocol. Our system ensures that challenges do not leak data about their
interpretation, even in aggregate.

At no time will the adversary be given both a challenge and its solution (e.g., through device compromise
or surveillance). This restriction may sound severe, but recall that our system is still fundamentally password-
like, and that any secret-based system fails if the secret can be observed.8

In the same vein, we do not consider software attacks (e.g., viruses, trojan horses, “malware”) on the
system, as once an adversary is able to observe our process’s memory, it becomes a simple matter to read
out the secret keys directly. Even in absence of such abilities, software which can capture touch screen events
and screen contents can read out the user’s password and answers to visual cryptography problems. In the
specific case of a password safe, it may be possible to impersonate the legitimate client and simply ask for
the secrets contained within the safe directly! We therefore assume that the underlying trusted computing
base is indeed sufficiently worthy of the trust placed in it.9

The formal game we play is to give our adversary the parameters of the system and the complete set of
challenges that the system may ever produce.10 The adversary wins the game if they can gain a non-negligible
advantage over merely guessing.

5.2 The Challenge Schema

Our challenge to the user is relatively simple: given N cells, each of which may each take on one of |K|
values (which we call the vocabulary), discriminate between |D| (D ⊆ K) individual values and the remaining
|K \D|. Upon prompting, the user is required to answer with which of the cells contain a value from D and
to indicate which value in particular. The remainder of the cells require no explicit user action. To generate
a challenge, the cells are set unformly at random (iid) from the vocabulary (of size |K|). We therefore expect

N |D| |K|
−1

cells to require user interaction, and each cell will contribute

−
∑

i

pi log2 pi = −
|D|

|K|
log2

1

|K|
−

|K \D|

|K|
log2

|K \D|

|K|
(1)

7 In particular, modern flash devices engage in “wear-leveling” whereby writes to a logical sector are actually spread
among several physical sectors. This greatly improves the useful life of the flash, but means that many old copies
of rewritten material may be extractable by an adversary.

8 In fact, our system does marginally better than traditional password-based systems in terms of the effects of perfect
observation (see the discussion in Appendix B).

9 Perhaps if the system were being used for remote authentication, rather than decryption of local data, there would
be some room for correctness even in the face of local compromise. Our focus here is, as stated, to guard against
the loss of secret data if the device is stolen.

10 Our system generates each challenge iid uniformly from this space; in a system where that is not the case, the
probability of a challenge share might leak information about its contents. If such a system were to be designed,
security under our game would require that the theoretical adversary be told these probabilities as well, since it
may be possible for a real-world adversary to estimate them with high precision.

6

bits of entropy. We allow and analyze systems with |D| + 1 < |K|, (with less than maximum potential
entropic return) to let us trade between expected user actions and the resulting entropy.

To generate a challenge, the generator (e.g., the safe after successful authentication) must have access
to all the vocabulary entries and slide data for each cell. Naturally, this information must be kept secret,
as it allows anyone in possession of it to reply correctly to challenges without being able to see the images
themselves. We assume that the generator has access to sufficiently safe encrypted storage (in the case
of our prototype, these secrets are stored inside the presumably secure safe). The generator also needs a
(cryptographically) secure random number generator to provide the entropy that will later be read back
from the challenge.

5.3 System Game

The system may be described as a game between the three parties of user (the operator of the device),
generator (the device when it has the system secrets in memory), and verifier (the device when it does not
have the system secrets in memory).

1. For each cell n ∈ {1, . . . , N}, the user uses an initialization program to create a vocabulary of equal-
length, independent bit strings, Kn, with distinguished subset Dn, subject to the criteria from subsec-
tion 5.4. The user then provides all Dn privately to the generator. We use K and D to denote the
in-n-order concatenation of all Kn and Dn, respectively.

2. For each of the N cells, the user’s initialization program further creates a (iid) random string of bits sn,
the slide, of the same length as strings in Kn. This string is also privately provided to the generator, and
the user announces all {kn ⊕ sn|kn ∈ Kn} (without revealing any information about Dn). We use s to
denote the in-n-order concatenation of sn.

3. For each of the N cells, the generator selects an element kn ∈ Kn iid uniformly at random and (privately)
informs the verifier. The generator publishes the challenge, cn = kn ⊕ sn.

4. The generator stores Ek(D, s) (an encrypted copy of the private parameters of the system) for later use.
5. The user now computes k′ = s⊕ c = s⊕ (k ⊕ s) and (privately) reveals the answer to the verifier.
6. The verifier accepts if k′ = k.

An adversary wins the game if they may replace the user in the last two steps and cause the verifier to accept
with odds better than ≥ 1/k + ǫ for some ǫ > 0. However, the adversary cannot win without successfully
attacking the private exchanges (e.g., via surveillance, timing, or software attacks): an ǫ > 0 implies either
nonuniform selection of kn or correlation between sn ⊕ kn and kn, which in turn would imply nonuniform
selection of sn. (In actual usage, steps 3 through 6 are repeated many times; the publication of all the
encrypted vocabulary in step 2 is intended to capture this repeated use of the system parameters.)

In our system, comparison of k against k
′ is checked implicitly: k′ is fed through a PBE scheme and

used to decrypt a block (containing the safe’s random master key) encrypted with k. k′ and k are never
compared directly: successful decryption is taken to imply that k = k

′. Further, k and s are derived from
cryptographically secure pseudo-random number generators; the seeds for these generators stand in for their
outputs in step 4 and the re-keying procedure above. After every successful verification, the verifier knows
k and may use it to decrypt Ek(D, s), revealing the secret parameters of the system. Since, in our system,
the verifier and generator are the same (i.e., the device, just at different points in time), at this point, steps
3 and 4 may be repeated to produce a new secret key and a new challenge for later authentications, which
allows the system to (limitedly) frustrate even perfect surveillance (unlike a pure password scheme, where
no such mitigation is possible; see appendix B).

5.4 Visual Secret Shares That Don’t Leak

The constructions in [22] are all intended to produce n shares for a single message; no share is ever used
for multiple messages. [23] does present a multiple-use scheme for visual identification (authentication of a
human), but that scheme considers the equivalent of a cell to be entirely revealed to an adversary after a

7

use; therefore, it requires the use of many more cells to combat an adversary. To keep the number of cells
low, thereby allowing for larger cells on smaller displays, we use a standard visual secret splitting scheme to
obscure the challenge. To ensure that no number of challenge visual shares will reveal any information about
the user’s share, we must impose some constraints on the system.

As before, we have N cells, a set of K vocabulary entries for each, D ⊆ K of which are to be distinguished
in some way (when combined with the user’s share). The cells are each made up of some number of image
pixels, P . For each image pixel, we permit only one of the D values to “claim” it. We then set, iid uniformly
at random and independent of the user’s share, the values of all image pixels in the K \ D values and all
unclaimed image pixels of each d ∈ D. This “vocabulary generation” happens independently for each of the
N cells. Were we to permit more than one d, d′ ∈ D to claim a given pixel, then there would be correlation
between challenges containing d and d′, thereby leaking information to an adversary.

We assume that the parameters |D|, |K|, N , P , the subset of the pixels claimed by each D, and the
intended decoded value (i.e., the intended image) of these claimed pixels are public. Because each pixel of
the slide is only meaningfully correlated with one pixel out of all of the D, and not correlated with any
element in K \D, the information security argument continues to hold.

Instantiation of this scheme requires NP |K| independent uniform random bits: NP (|K| − 1) of which
are consumed by the K \D and unclaimed D image pixels, and NP of which determine the user’s share.

We do run the risk of generating a confusing vocabulary: that is, one in which two elements of K may
not be sufficiently distinguishable. To mitigate this risk, instantiations of the system should present the
full vocabulary to the user when the system is being initialized (i.e., when the slide is being generated).
We assume that this clear-text is not intercepted. We assume that any correlation between the vocabulary
entries K by the user’s rejection of confusing vocabularies are negligible.

5.5 Incomplete Erasure Attacks

As mentioned earlier, whenever one rewrites sensitive material, (e.g., by changing the password in a staged
keying system like OI Safe’s) there is always a danger that the old copy is not completely erased. In our
case, however, the rewritten material is encrypted with the result of a PBE scheme, and each of those copies’
keys was derived, in part, from the answer to a visual challenge. Therefore, the key is reasonably entropic.
Under standard assumptions of the system used to encrypt the master key, namely IND-CPA, the multitude
of messages offers no gain to the adversary. Our prototype uses OI Safe’s default “strong” crypto-system for
storing both the encrypted master key and the secret information for the visual cryptography subsystem:
BouncyCastle’s Java cryptography provider in mode PBEWithSHA1And256BitAES-CBC-BC.

6 Implementation

Fig. 4: An example vocabulary for one cell, as seen when overlaid with the slide, with |K| = 6 and |D| = 4.
The four distinguished values (resp. up, down, left, right) are shown at the left and would be distinguished
by the user touching the cell and dragging away from the broad side of the triangle. The rightmost two cells
do not call for a user’s response. Each cell has an independently generated vocabulary encoding the same
arrows but with different “filler” pixels.

We now turn our attention to the particular parameters used by our prototype implementation. Rather
than being a rigid encoding of this particular choice of parameters, our prototype has been designed to

8

(a) An example challenge, ideally rendered, with slide
overlaid.

left right none none
up down left right
none none up down
left right none none

(b) Answer to the challenge.

Fig. 5: An example of a system with |K| = 6, |D| = 4, and N = 16.

encapsulate the application (e.g., OI Safe) using it from the details of visual cryptography whenever possible:
the application is almost entirely oblivious to the contents of the values it passes to our visual cryptography
front-end. In testing, we switched a number of these parameters and the design of the distinguished elements
without having to (additionally) modify OI Safe at all.

Mobile devices by necessity do not have large displays, both in the sense that there are few pixels present
and that the pixels themselves are small. The former restricts the number of cells we can reasonably fit in a
challenge. Despite the small screen size limiting our cell count, we chose to present only a single challenge
at a time.11 The latter had unexpected consequences: we found that using display-native pixel size for the
sub-pixels of the visual cryptography made alignment of the slide and challenge almost impossibly difficult;
we therefore set the ratio of display to image pixels to 6 : 1. With the additional impact of the inter-
vocabulary-item constraints on pixels from subsection 5.4, our vocabulary tends to have images which are
not immediately obvious; even an ideal rendering (see Figure 5) leaves something to be desired. It is possible
that there are better vocabulary designs to be had or that the issue will be less severe on future display
technologies (higher pixel count LCDs, or e-ink displays); for the moment, however, our design suffices.

The size of our cells are chosen so that a 4× 4 grid of cells fits on a display of 312× 312 (display) pixels.
Given the 6 : 1 pixel ratio, this makes our cells 13 × 13 image pixels and sets P = 169. This allows for
42 image pixels to be set by each distinguished value, which is likely large enough that confusable values
are unlikely to be generated. Our prototype instantiates our scheme with N = 16, |D| = 4, and |K| = 6.
In particular, this gives us 16 cells in our grid and an expected 10.6 cells requiring user action (though, of
course, it is possible that we will generate a challenge with all 16 or 0 cells requiring user interaction). Each
of the |D| = 4 cells is a direction indicator, as shown in Figure 4. The image pixels of these cells which are
not fixed by the direction indicator are set randomly as described above.

This system provides roughly 2.3 bits of entropy per cell, or roughly 36 bits per challenge. If all 95
printable ASCII characters are available and used to greatest effect, then each of our challenges may be
seen as having added the equivalent of 5.5 characters to the password (36/ log2(95) = 5.47 . . .). Restricting

11 Presenting multiple challenges for the same slide sequentially does not yield linear increase in entropy; the marginal
utility of the next challenge behaves as in Table 1.

9

ourselves to the 26 letters of the alphabet, the requisite string length becomes 7.7 (36/ log2(26) = 7.65 . . .).
See subsection 6.1 for a way to estimate how long a user would take to respond in each case.

Initial vocabulary and user share generation currently happens on a desktop computer, to make printing
easier. To further the ease of use and development, we instantiate two Cryptographically Secure Pseudo-
Random Number Generators (CSPRNGs) using AES in CTR mode with seeds of a few hundred random
bits each (rather than store and manipulate the full string of NP |K| = 16224 bits). One CSPRNG is used
to generate the user’s slide, the other is used to generate the “noise” pixels in the vocabulary.12 While
the resulting bit stream is necessarily not an iid uniform string of bits, a CSPRNG’s output should be
indistinguishable from one by any probabilistic polynomial-time adversary.

Our prototype produces a new challenge after every successful opening of the safe. The secrets of the
visual cryptography subsystem are themselves guarded by the same PBE-derived key as the safe’s master
key. To reduce space consumption, we store the CSPRNG seeds and recreate both the slide and vocabulary
in memory on demand.

A few words must be said about the odd coloring of Figure 3. We use a green, rather than white, cell
color as it uses only one color sub-pixel in each LCD pixel; this in turn helps the user see the reconstructed
image. Yellow lines are shown between cells and corresponding thin black lines are printed on the user’s slide
to aid in alignment of the two. Due to the mechanics of LCD displays and perhaps also imprecise printing,
there is some difficulty in aligning the slide to the screen in a way that makes the entire image clear from
any single vantage point.

6.1 Estimating Timing

It is currently difficult (taking multiple attempts) to produce a slide whose pixels are sized correctly for the
phone’s display. Further, it is difficult to align the slide and the display. More precise printing than that of
a laser printer, shaping of transparencies, or some form of software-assist13 may be sufficient to ease usage
of our system. However, we do not believe that users would currently put up with the difficulty of use.14

In lieu of actual users, assuming we can overcome issues with accurate printing and alignment of the
slide, we can use Fitts’s law [11, 21],

Mij = .204 log2

[

1 +
Dij

Wj

]

, MT =
∑

i,j

Pij [Mij +RT]

to estimate the time it will take for a user to answer a challenge with an ideal slide and display. The
left equation relates Dij , the distance between objects i and j, and Wj ,the width of object j, to Mij , the
estimated time of motion from i to j. Informally, it can be read as “short distances and large objects allow
fast positioning.” The right equation computes the average positioning time by weighting the positioning
time of each pair Mij with the probability of needing to make that move, Pij ; RT is the “reaction time,”
the time it takes the positioning system (i.e., the user) to find the next move. We can compare the derived
estimate for our prototype with similar estimates for using touch-screen keyboards15.

We consider expert keyboard users, for whom we set RT = 0, and we assume that the alignment difficulties
of slides on screens can be overcome, perhaps through more exact printing. To estimate the effects of reaction
time in the visual cryptography setting, where order of entry is irrelevant and there are potentially many

12 In our prototype, those seeds are passed to the device via a QR barcode rather than as a file, enabling us to work
on devices where externally manipulating storage is annoying or impossible. This is not, however, central to the
scheme.

13 For example, we could have the user touch a series of distinguished points on the slide, giving the device a better
idea of how to display the challenge. Alternatively, for devices supporting multi-touch displays, we could perhaps
manufacture slides that triggered touch events merely by being placed upon the display.

14 We acknowledge that this represents a practical weakness of our design. We do, however, believe that it can be
overcome.

15 In all cases, we ignore errant entries, so these times are lower bounds. Numbers reported in this section are derived
from measurements of a Motorola DroidTM phone running Google Android version “2.1-update1” build “ESE81.”

10

acceptable responses at any moment (i.e., cells not yet answered), we use a weighted version of Hick’s Law
[13, 21]:

RT (n) = .200 log2 [n+ 1] .

Our variant is a recurrence form, which should capture that users do not re-search already searched cells:

RT (n) =

n
∑

i=0

pn,i [−.200 log2 pn,i +RT (n− i)] .

where pn,i is the probability that searching n cells for one that requires activity takes i steps:

pn,i =







|D|
|K|

[

|K\D|
|K|

]i

i < n
[

|K\D|
|K|

]n

i = n
.

Note that in this variant there is no ambiguity about whether to respond and so no +1 inside the log2—the
nonresponse case is handled as i = n. For our instantiation, we estimate a total of RT (N) = 4.2 seconds
spent searching per challenge. To get expected motion time, we compute the expectation of nMT :

E
[

nMT
]

=

N
∑

n=0

p(n)nMT

=

N
∑

n=0

(

16

n

)[

|D|

|K|

]n [
|K \D|

|K|

]N−n

nMT.

For our instantiation, this yields an estimate of 4.2 seconds of motion. Combining these yields a grand total
of 8.4 seconds to respond to a challenge, neglecting slide positioning time.

Using the Android on-screen keyboard as a prototypical example, we estimate that it would take an
expert user 3.6 seconds to enter a (memorized) random 8-character mono-case string or 4.7 seconds to enter
a (memorized) random 6-character mixed-case alphanumeric string. The increase in time is due to the need
to transition between shifted and un-shifted modes of the on-screen keyboard.

7 Future Work

Our system avails itself only of the most basic form of visual cryptography. Visual Cryptography has been
actively studied by many researchers over the years. The original Naor and Shamir paper [22] discusses k-out-
of-n threshold schemes more general than the 2-out-of-2 we used here. Visual cryptography has been extended
to work with full-color images [14, 16, 7], with “meaningful” (i.e., non-random) cover images [6, 27, 28], and
general access structures both without [4] and with [5] meaningful cover images. This prior work has tended
(the identification schemes of [23] aside) to focus on the act of secret splitting itself, rather than its potential
application to authentication.

8 Conclusion

We have developed and exhibited a system which allows users to answer high-entropy challenges without
having to memorize said entropy or provide biometric information. The trade-off is carrying a visual cryp-
tography share on a transparency and an (estimated) increase of a few seconds of entry time relative to a
memorized, keyboard-based equivalent.

9 Acknowledgements

We are indebted to Matthew Wright for his combinatorial help in deriving the correct form of aM (k, i). The
phone pictured was generously donated to JHU ISI for student use by Google, Inc. We would further like to
thank our shepherd Moritz Becker and the several anonymous reviewers for their very helpful comments.

11

A The Visual Identification System of Naor and Pinkas

The identification scheme with one verifier of [23] uses a transparency, known by the verifier and possessed
by the human, composed of N squares, each of which is iid colored with one of 10 colors. The challenges in
this system serve to illuminate d of these squares and keep the rest dark. The answer to the challenge is the
list of colors lit, in some pre-defined order. As with our work, this system assumes incomplete surveillance;
indeed, their colored slide is likely easier to observe accurately from a distance or at low resolution than our
visual secret splitting share, which uses relatively small pixels.

Our goal is slightly different than the above system, as we seek to generate a large amount of entropy in
addition to identifying the user. For the above system to output more than 30 bits of entropy (as ours does),
it must be that d > 10. After M observed responses, the adversary has attack probability of

(

1

10
+

9dM

10N

)d

As their security threshold is 10−7 and goes as 1− 5−d, to be robust to even a single answer being observed,
this system requires N > 9dM > 90.16 While only d of those need to be interacted with, 10 choices is enough
to warrant a menu or keypad UI element, complicating the interface and slowing response time.

If we change the system to have 5 “colors” (the four cardinal directions and blank, as in our system),
then d > 13 (with an expected 4/5∗13 = 10.4 interactions required from the user) and the security threshold

is (1/5 + 4dM/5N)
−d

by analogy. Making this 10−7 requires N > 116. To make layout easy, we should use
an 11 × 11 grid of squares: the slide would contain arrows and blanks, and the display just needs to light
up the requested cells. On our demo device, each cell would be 5 millimeters on a side. On average, the
user will have to scan 112/(4/5 ∗ d) ≈ 11.5 cells at a time, so Hick’s search time should be on the order
of .200(121/11.5) log2 [11.5] ≈ 7.4 seconds. Fitts’s response time should be on the order of 5.6 seconds. We
expect that answering one of these challenges will therefore take about half again as long as one of ours (13.0
vs 8.4 seconds). It may be simpler to align and read off the challenges in this scheme, but that comes with
increased risk of successful surveillance. Were we to do a user study, it would be interesting to compare the
two.

B Adversary Information Gain From Leaked Answers

The constraint that our system never yield (challenge,answer) pairs to the adversary may seem odd. However,
we can demonstrate that expanding our system to work in the face of leaked answers to challenges is nontrivial
by demonstrating a substantial loss of entropy for each leaked answer. Thus our system requires that the user
be able to respond without the adversary’s having perfect surveillance whereby they are able to see the pixel
values of a challenge. For remote authentication, it should be easy to generate a novel challenge for every
interaction, making surveillance-based attempts to recover (challenge,answer) pairs harder than they might
otherwise be. Our prototype’s situation is harder, as the challenges are necessarily created while the system
secrets are available, that is, when the safe is open. An adversary may therefore collect the challenge and
wait for the user to answer it; however, taking the same rudimentary precautions one takes with passwords
should be sufficient.

Before we can compute the probability of an adversary’s successful guess, we need to define a combinatorial
relation. Define

aM (k, i) ≡

(

k

i

)



iM −
∑

j<i

(

i

j

)

aM (j, j)





16 Our system, if instantiated with N = 16, |K| = 5 and |D| = 4, achieves this threshold; raising |K| to 6 as in
our instantiation lowers our entropy moderately. Both systems fall below any reasonable threshold fairly quickly.
Our system could be augmented to generate challenges which contain voids in certain cells; this would slow the
adversary’s rate of information gain but would also lower the entropy were N held constant. We have not thoroughly
analyzed the impact of such a change.

12

to count the number of strings of length M > 0 drawn from a vocabulary of k > 0 symbols which use exactly
0 < i ≤ k of them. We will not rigorously prove this, but will sketch the inductive argument. First, note that
∀M.aM (1, 1) = 1, which is correct as there is only one unary string of a given length. iM counts all possible
strings for a vocabulary size i, and

(

k

i

)

provides the number of such vocabularies that can be built out of
our total vocabulary of size k. iM multiply counts strings which use fewer than i symbols, and so we must
subtract them off; if the undesired string uses j < i symbols, it will be generated in

(

i

j

)

aliases. There are,

by induction, aM (j, j) such miscreant strings.
Having observed M > 0 answers to a given cell in a system in which |D| = |K| − 1, the probability of an

adversary getting the right answer is

p(M) = |K|
−M



1 · aM (|K| , |K|) + |K|
−1

|K|−1
∑

k=1

(k + 1) aM (|K| , k)



 .

The first term is the probability that our adversary has seen all vocabulary entries for that cell, at which
point there is no guessing left. The second term is a sum over the number of entries seen, k. Having observed
k < |K| distinct entries, the adversary need not guess if the challenge uses one of these, which will happen
with odds k/ |K|; the adversary otherwise guesses uniformly, getting the right answer with odds 1/(|K|−k).
All told,

1 ·
k

|K|
+

1

|K| − k

|K| − k

|K|
=

k + 1

|K|
.

Similarly, we can measure the expected entropy of the system:

H(M) = − |K|
−M

[0 · aM (|K| , |K|)]

− |K|
−M

|K|−1
∑

k=1

aM (|K| , k)

[

0 +
|K| − k

|K|
log2

1

|K| − k

]

= |K|
−M−1

|K|−1
∑

k=1

aM (|K| , k) (|K| − k) log2 (|K| − k) .

The adversary’s guesses are independent for each cell in the challenge, so after M challenges the odds of a
successful guess is p(M)N and the entropy is N ·H(M); see Table 1.

For systems instantiated with |K| > |D|+ 1, the odds are necessarily higher and the entropies lower. In
this case, the adversary’s response to an unknown vocabulary entry should be the “no interaction” response
until only one K \D is unknown.

Note that even M = 1 is sufficient for the adversary to win the game, as the probability of success is
dramatically increased. However, in a traditional password scheme, the probability of success after M = 1
revealed answers is 1. While the expected attack odds under our system will never hit 1, it rapidly falls below
any reasonable security threshold, and so we would still recommend re-keying after discovered surveillance.

13

M Expected entropy Expected probability correct guess
0 37.2 6.6× 10−12

1 25.6 4.3× 10−7

2 17.3 9.4× 10−5

3 11.4 2.5× 10−3

4 7.3 2.3× 10−2

5 4.6 9.8× 10−2

6 2.8 .24

Table 1: The expectations, after M challenges’ answers have been revealed, of remaining entropy (in bits)
and probability of the adversary’s first guess being correct. The values here are for a system instantiated
with N = 16, |K| = 5, |D| = 4.

14

Bibliography

[1] Mart́ın Abadi and Bogdan Warinschi. Password-based encryption analyzed. In Lúıs Caires, Giuseppe
Italiano, Lúıs Monteiro, Catuscia Palamidessi, and Moti Yung, editors, Automata, Languages and Pro-
gramming, volume 3580 of Lecture Notes in Computer Science, pages 664–676. Springer Berlin / Hei-
delberg, 2005. doi: 10.1007/11523468 54.

[2] Paolo Abeni, Madalina Baltatu, and Rosalia D’Alessandro. User authentication based on face recog-
nition with support vector machines. In CRV ’06: Proceedings of the The 3rd Canadian Conference
on Computer and Robot Vision, page 42, Washington, DC, USA, 2006. IEEE Computer Society. ISBN
0-7695-2542-3. doi: http://dx.doi.org/10.1109/CRV.2006.83.

[3] Admit One Security. Keystroke dynamics. URL http://www.biopassword.com/keystroke_dynamics_

advantages.asp.
[4] Giuseppe Ateniese, Carlo Blundo, Alfredo De Santis, and Douglas R. Stinson. Visual cryptography for

general access structures. Inf. Comput., 129(2):86–106, 1996. ISSN 0890-5401. doi: http://dx.doi.org/
10.1006/inco.1996.0076.

[5] Giuseppe Ateniese, Carlo Blundo, Alfredo De Santis, and Douglas R. Stinson. Extended capabilities for
visual cryptography. Theor. Comput. Sci., 250(1-2):143–161, 2001.

[6] Chin-Chen Chang and Tai-Xing Yu. Sharing a secret gray image in multiple images. In Cyber Worlds,
2002. Proceedings. First International Symposium on, pages 230 – 237, 2002. doi: 10.1109/CW.2002.
1180884.

[7] S. Cimato, R. De Prisco, and A. De Santis. Colored visual cryptography without color darkening. Theor.
Comput. Sci., 374(1-3):261–276, 2007. ISSN 0304-3975. doi: http://dx.doi.org/10.1016/j.tcs.2007.01.006.
URL http://ma1.eii.us.es/miembros/valvarez/proyectos/viscripcolor3.pdf.

[8] Rachna Dhamija and Adrian Perrig. Déjà vu: a user study using images for authentication. In SSYM’00:
Proceedings of the 9th conference on USENIX Security Symposium, pages 4–4, Berkeley, CA, USA, 2000.
USENIX Association.

[9] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM J. Comput., 38:97–139, March 2008. ISSN
0097-5397. doi: http://dx.doi.org/10.1137/060651380. URL http://dx.doi.org/10.1137/060651380.

[10] Hadi Farzin, Hamid Abrishami-Moghaddam, and Mohammad-Shahram Moin. A novel retinal identi-
fication system. In EURASIP Journal on Advances in Signal Processing, volume 2008, page 10, 2008.
doi: 10.1155/2008/280635.

[11] Paul M. Fitts. The information capacity of the human motor system in controlling the amplitude of
movement. Journal of Experimental Psychology, 47(6):381391, June 1954.

[12] Ulrich Greveler. VTANs - eine anwendung visueller kryptographie in der online-sicherheit. In GI
Jahrestagung (2)’07, pages 210–214, 2007.

[13] William E. Hick. On the rate of gain of information. Quarterly Journal of Experimental Psychology,
(4):11–26, 1952.

[14] Young-Chang Hou. Visual cryptography for color images. Pattern Recognition, 36(7):1619 – 1629,
2003. ISSN 0031-3203. doi: 10.1016/S0031-3203(02)00258-3. URL http://ma1.eii.us.es/miembros/

valvarez/proyectos/viscripcolor.pdf.
[15] L.C. et al. Jain, editor. Intelligent Biometric Techniques in Fingerprint and Face Recognition. CRC

Press, 1999.
[16] Duo Jin, Wei-Qi Yan, and Mohan S. Kankanhalli. Progressive color visual cryptography. Journal of

Electronic Imaging, 14(3):033019, 2005. doi: 10.1117/1.1993625. URL http://link.aip.org/link/?

JEI/14/033019/1.
[17] Mi-Ra Kim, Ji-Hwan Park, and Yuliang Zheng. Human-machine identification using visual cryp-

tography. in Proc. The 6th IEEE Int. Workshop on Intelligent Signal Processing and Communica-
tion Systems, pages 178–182, 1998. URL http://www.sis.uncc.edu/~yzheng/publications/files/

ispacs98-VisualCrypto.pdf.

http://www.biopassword.com/keystroke_dynamics_advantages.asp
http://www.biopassword.com/keystroke_dynamics_advantages.asp
http://ma1.eii.us.es/miembros/valvarez/proyectos/viscripcolor3.pdf
http://dx.doi.org/10.1137/060651380
http://ma1.eii.us.es/miembros/valvarez/proyectos/viscripcolor.pdf
http://ma1.eii.us.es/miembros/valvarez/proyectos/viscripcolor.pdf
http://link.aip.org/link/?JEI/14/033019/1
http://link.aip.org/link/?JEI/14/033019/1
http://www.sis.uncc.edu/~yzheng/publications/files/ispacs98-VisualCrypto.pdf
http://www.sis.uncc.edu/~yzheng/publications/files/ispacs98-VisualCrypto.pdf

[18] RSA Laboratories. Pkcs #5: Password-based cryptography standard, v2.0, 1999. URL ftp://ftp.

rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs5v2-0.pdf.
[19] Lenovo. Thinkvantage R© client security solution. URL http://www.pc.ibm.com/us/think/

thinkvantagetech/security.html.
[20] A&H Software Ltda. Fingerauth password manager. URL http://www.fingerauth.com/.
[21] Scott I. Mackenzie and William R. Soukoreff. Text entry for mobile computing: Models and methods,

theory and practice. Human-Computer Interaction, 17(2 & 3):147–198, 2002. URL http://citeseerx.

ist.psu.edu/viewdoc/download?doi=10.1.1.71.9151&rep=rep1&type=pdf.
[22] M. Naor and A. Shamir. Visual cryptography. Technical report, Jerusalem, Israel, 1994.
[23] Moni Naor and Benny Pinkas. Visual authentication and identification. In CRYPTO ’97: Proceedings

of the 17th Annual International Cryptology Conference on Advances in Cryptology, pages 322–336,
London, UK, 1997. Springer-Verlag. ISBN 3-540-63384-7.

[24] OpenIntents. OI Safe. URL http://www.openintents.org/en/node/205.
[25] Nathanael Paul, David Evans, Aviel D. Rubin, and Dan S. Wallach. Authentication for remote voting.

In Workshop on Human-Computer Interaction and Security Systems, April 2003.
[26] N. Pavaday and K.M.S. Soyjaudah. A comparative study of secret code variants in terms of keystroke

dynamics. pages 133 –140, oct. 2008. doi: 10.1109/CRISIS.2008.4757473.
[27] Ching-Nung Yang and Chi-Sung Laih. New colored visual secret sharing schemes. Des. Codes Cryptog-

raphy, 20(3):325–336, 2000. ISSN 0925-1022. doi: http://dx.doi.org/10.1023/A:1008382327051.
[28] R. Youmaran, A. Adler, and A. Miri. An improved visual cryptography scheme for secret hiding. In

Communications, 2006 23rd Biennial Symposium on, pages 340 –343, 0-0 2006. doi: 10.1109/BSC.2006.
1644637.

16

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs5v2-0.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs5v2-0.pdf
http://www.pc.ibm.com/us/think/thinkvantagetech/security.html
http://www.pc.ibm.com/us/think/thinkvantagetech/security.html
http://www.fingerauth.com/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.71.9151&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.71.9151&rep=rep1&type=pdf
http://www.openintents.org/en/node/205

	High-Entropy Visual Identification for Touch Screen Devices

