
Improved Lower Bound for Online Strip Packing
(Extended Abstract)

Rolf Harren1 and Walter Kern2

1 Max-Planck-Institut für Informatik (MPII)
Campus E1 4, 66123 Saarbrücken, Germany

rharren@mpi-inf.mpg.de
2 University of Twente, Department of Applied Mathematics

P.O. Box 217, 7500 AE Enschede, The Netherlands
w.kern@utwente.nl

1 Introduction

In the two-dimensional strip packing problem a number of rectangles have to be packed
without rotation or overlap into a strip such that the height of the strip used is minimal.
The width of the rectangles is bounded by 1 and the strip has width 1 and infinite height.

We study the online version of this packing problem. In the online version the rect-
angles are given to the online algorithm one by one from a list, and the next rectangle
is given as soon as the current rectangle is irrevocably placed into the strip. To evalu-
ate the performance of an online algorithm we employ competitive analysis. For a list
of rectangles L, the height of a strip used by online algorithm ALG and by the opti-
mal solution is denoted by ALG(L) and OPT(L), respectively. The optimal solution
is not restricted in any way by the ordering of the rectangles in the list. Competitive
analysis measures the absolute worst-case performance of online algorithm ALG by its
competitive ratio

ρALG = sup
L

{
ALG(L)

OPT(L)

}
.

Known Results. Regarding the upper bound on the competitive ratio for online strip
packing, recent advances have been made by Ye, Han & Zhang[6] and
Hurink & Paulus[3]. Independently they showed that a modification of the well-known
shelf algorithm yields an online algorithm with competitive ratio 7/2+

√
10 ≈ 6.6623.

We refer to these two papers for a more extensive overview of the literature.
In the early 80s, Brown, Baker & Katseff[1] derived a lower bound ρ ≥ 2 on the

competitive ratio of any online algorithm by constructing certain (adversary) sequences
in a fairly straightforward way. These sequences, that we call BBK sequences in the
sequel, were further studied by Johannes[4] and Hurink & Paulus[2], who derived im-
proved lower bounds of 2.25 and 2.43, respectively. (Both results are computer aided
and presented in terms of online parallel machine scheduling, a closely related prob-
lem.) The paper of Hurink & Paulus[2] also presents an upper bound of ρ ≤ 2.5 for
packing BBK sequences. Kern & Paulus[5] finally settled the question how well the
BBK sequences can be packed by providing a matching upper and lower bound of
ρBBK = 3/2 +

√
33/6 ≈ 2.457.
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Our Contribution. Using modified BBK sequences we show an improved lower bound
of 2.589 . . . on the absolute competitive ratio of this problem. The modified sequences
that we use consist solely of two types of items, namely, thin items that have negligible
width (and thus can all be packed in parallel) and blocking items that have width 1.
The advantage of these sequences is that the structure of the optimal packing is simple,
i.e., the optimal packing height is the sum of the heights of the blocking items plus the
maximal height of the thin items. Therefore, we call such sequences primitive.

On the positive side, we present an online algorithm for packing primitive sequences
with competitive ratio (3 +

√
5)/2 = 2.618 . . .. This upper bound is especially inter-

esting as it not only applies to the concrete adversary instances that we use to show
our lower bound. Thus to show a new lower bound for strip packing that is greater
than 2.618 . . . (and thus reduce the gap to the general upper bound of 6.6623), new
techniques are required that take instances with more complex optimal solutions into
consideration.

Organization. We start our presentation with a description of the Brown-Baker-Katseff
sequences and their modification. Afterwards we present our lower bound based on
these modifications, and finally we describe our algorithm for packing primitive
sequences.

2 Sequence Construction

In this paper we denote the thin items by pi and the blocking items by qi (adopting
the notation from [5]). As already mentioned in the introduction, we assume that the
width of the thin items is negligible and thus all thin items can be packed next to each
other. Moreover, the width of the blocking items qi is always 1, so that no item can be
packed next to any blocking item in parallel. Therefore, all items are characterized by
their heights and we refer to their heights by pi and qi as well. By definition, for any list
L = q1, q2, . . . , qk, p1, p1, . . . , p� consisting of thin and blocking items we have

OPT(L) =

k∑
i=1

qi + max
i=1,...,�

pi.

To prove the desired lower bound we assume the existence of a ρ-competitive algorithm
ALG for some ρ < 2.589 . . . (the exact value of this bound is specified later) and
construct an adversary sequence depending on the packing that ALG generates.

To motivate the construction, let us first consider the GREEDY algorithm for online
strip packing, which packs every item as low as possible—see Figure 1a. This algorithm
is not competitive (i.e., has unbounded competitive ratio): Indeed, consider the list Ln =
p0, q1, p1, q2, p2, . . . , qn, pn of items with

p0 := 1,

qi := ε for 1 ≤ i ≤ n,

pi := pi−1 + ε for 1 ≤ i ≤ n
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Fig. 1. Online and optimal packings

for some ε > 0. GREEDY would pack each item on top of the preceding ones and thus
generate a packing of height GREEDY(Ln) =

∑n
i=0 pi +

∑n
i=1 qi = n+ 1+Ω(n2ε),

whereas the optimum clearly has height 1 + 2nε.
The GREEDY algorithm illustrates that any competitive online algorithm needs to

create gaps in the packing. These gaps work as a buffer to accommodate small blocking
items—or, viewed another way, force the adversary to release larger blocking items.

BBK sequences. The idea of Brown, Baker & Katseff[1] was to try to cheat an arbitrary
(non-greedy) online packing algorithm ALG in a similar way by constructing an alter-
nating sequence p0, q1, p1, . . . of thin and blocking items. The heights pi respectively
qi are determined so as to force the online algorithm ALG to put each item above the
previous ones—see Figure 1b for an illustration. To describe the heights of the items
formally, we consider the gaps that ALG creates between the items. We distinguish two
types of gaps, namely gaps below and gaps above a blocking item, and refer to the-
ses gaps as α- and β-gaps, respectively. These gaps also play an important role in our
analysis of the modified BBK sequences. We describe the height of the gaps around the
blocking item qi relative to the thin item pi. Thus, we denote the height of the α-gap
below qi by αipi and the height of the β-gap above qi by βipi. Using this notation, we
are ready to formally describe the BBK sequences L = p0, q1, p1, q2, . . . with

p0 := 1,

q1 := β0p0 + ε,

pi := βi−1pi−1 + pi−1 + αipi + ε for i ≥ 1,

qi := max
(
αi−1pi−1, βi−1pi−1, qi−1

)
+ ε for i ≥ 2.
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As mentioned in the introduction, Brown, Baker & Katseff[1] used these sequences to
derive a lower bound of 2 before Kern & Paulus[5] recently showed that the competitive
ratio for packing them is ρBBK = 3/2 +

√
33/6 ≈ 2.457.

The optimal online algorithm for BBK sequences that Kern & Paulus[5] describe
generates packings with striking properties: No gaps are created except the first possible
gap β0 = ρBBK − 1 and the second α-gap α2 = 1/(ρBBK − 1), which are chosen as
large as possible while remaining ρBKK-competitive. Observing this behavior of the
optimal algorithm led us to the modification of the BBK sequences.

Modified BBK sequences. When packing BBK sequences, a good online algorithm
should be eager to enforce blocking items of relatively large size (as each blocking item
of size q increases the optimal packing by q as well). These blocking items are enforced
by generating corresponding gaps.

Modified BBK sequences are designed to counter this strategy: Each time the online
algorithm places a blocking item qi, the adversary, rather than immediately releasing a
thin item pi+1 (of height defined as in standard BBK sequences) that does not fit in be-
tween the last two blocking items, generates a whole sequence of slowly growing thin
items, which “continuously” grow from pi to pi+1. Packing this subsequence causes ad-
ditional problems for the online algorithm: If the algorithm fits the whole subsequence
into the last interval between qi−1 and qi, it would fill out the whole interval and create
an α-gap of 0. On the other extreme, if ALG would pack a thin item of height roughly
pi above qi, then the (relative) β-gap it can generate is much less compared to what it
could have achieved with a thin item of larger height pi+1. The next blocking item qi+1

will be released as soon as the sequence of thin items has grown from pi to pi+1.
This general concept of modified BBK sequences applies after the first blocking

item q1 is released. Since subsequences of thin items and single blocking items are
released alternately, we refer to this phase as the alternating phase. Before that, we have
a starting phase which ends with the release of the first blocking item q1. This starting
phase needs special attention as we have no preceding interval height as a reference.

The optimal online algorithm by Kern & Paulus[5] generates an initial gap β0 =
ρBBK − 1 of maximal size to enforce a large first blocking item q1. In the starting
phase, we seek to prevent the algorithm from creating a large β0-gap in the following
way. Assume that the online algorithm places p0 “too high” (i.e., β0 is “too large”). Then
the adversary, instead of releasing q1, would continue generating higher and higher thin
items and observe how the algorithm places them. As long as the algorithm places
these thin items next to each other (overlapping in their packing height), the size of the
gap below these items decreases monotonically relative to the height where items are
packed. Eventually, β0 has become sufficiently small—in which case the starting phase
comes to an end with the release of q1—or the online algorithm decides to “jump” in the
sense that one of the items in this sequence of increasing height thin items is put strictly
above all previously packed thin items, creating a new gap (distance between the last
two items) and a significantly increased new packing height. Once a jump has occurred,
the adversary continues generating thin items of slowly growing height until a next
jump occurs or until the ratio of the largest current gap to the current packing height
(the modified analogue to the standard β0-gap) is sufficiently small and the starting
phase comes to an end.
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Summarizing, a modified BBK sequence simply consists of a sequence of thin items,
continuously growing in height, interleaved with blocking items which (by definition
of their height) must be packed above all preceding items, and are released as described
above, i.e., when the thin item size has grown up to the largest gap between two blocking
items, c.f. the full paper for more details.

In the next section we use these modified BBK sequences to show the following
theorem.

Theorem 1. There exists no algorithm for online strip packing with competitive ratio

ρ < ρ̂ =
17

12
+

1

48

3

√
22 976− 768

√
78 +

1

12

3

√
359 + 12

√
78 ≈ 2.589 . . . .

3 Lower Bound

For the sake of contradiction, we assume that ALG is a ρ-competitive algorithm for
online strip packing with ρ < ρ̂. Let δ = ρ̂ − ρ > 0. W.l.o.g. we assume that δ is
sufficiently small.

We distinguish between the thin items pi (whose height matches the height of the
previous interval plus an arbitrarily small excess) and the subsequences of gradually
growing thin items by denoting the whole sequence of thin items by r1, r2, . . . and
designating certain thin items as pi.

Our analysis (cf section 5) distinguishes two phases. In the first phase, the starting
phase, we consider the following problem that the online algorithm faces. Given an
input that consists only of thin items r1, r2, . . . (in this phase no blocking items are
released), minimize the competitive ratio while retaining a free gap of maximal size
(relative to the current packing height). More specifically, let

h(maxgapALG(ri))

ALG(ri)

be the max-gap-to-height ratio after packing ri where h(maxgapALG(ri)) denotes the
height of the maximal gap that algorithm ALG created up to item ri and ALG(ri)
denotes the height algorithm ALG consumed up to item ri. We say ALG is (ρ, c)-
competitive in the starting phase if ALG is ρ-competitive (i.e., ALG(ri) ≤ ρOPT(ri))
and retains a max-gap-to-height ratio of c (i.e., h(maxgapALG(ri))/ALG(ri) ≥ c for
i ≥ 1) for all lists L = r1, r2, . . . of thin items.

In the analysis of the starting phase we show that our modified BBK sequences force
any ρ-competitive algorithm to reach a state with max-gap-to-height ratio less than

ĉ =
ρ̂− 2

√
ρ̂− 1

ρ̂− 1
.

Thus no (ρ, ĉ)-competitive algorithm exists for ρ < ρ̂. In the moment ALG packs an
item ri and hereby reaches a max-gap-to-height ratio of less than ĉ, the starting phase
ends with the release of the first blocking item q1 of height ĉ · ALG(ri).
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In the analysis of the alternating phase we show that no ρ-competitive algorithm
can exist if the first blocking item after the starting phase has height ĉ times the current
packing height for

ĉ =
1−

√
4ρ̂2 − 12ρ̂+ 5

2(ρ̂− 1)
.

Thus our two phases fit together for

ĉ =
ρ̂− 2

√
ρ̂− 1

ρ̂− 1
=

1−
√
4ρ̂2 − 12ρ̂+ 5

2(ρ̂− 1)
,

which is satisfied for

ρ̂ =
17

12
+

1

48

3

√
22 976− 768

√
78 +

1

12

3

√
359 + 12

√
78 ≈ 2.589 . . . .

The correseponding value of ĉ is ĉ ≈ 0.04275 . . .. We skip the proof of Theorem 1.

Algorithm 1. Online Algorithm for Restricted Instances

1: Initially the packing is considered to be blocked
2: whenever a rectangle rj is released do
3: if rj is a blocking item then
4: Pack rj at the lowest possible height
5: else if rj is a thin item then
6: if the packing is open then
7: Pack rj bottom-aligned with the top thin item
8: else if the packing is blocked then
9: Try to pack rj below the top item

10: If this is not possible, pack rj at distance (ρ− 2)rj above the packing

4 Upper Bound

In this section we present the online algorithm ONL for packing instances that consist
solely of thin and blocking items. We prove that the competitive ratio of ONL is ρ =
(3 +

√
5)/2. We distinguish two kinds of packings according to the item on top: If the

item on top of the packing is a blocking item, we have a blocked packing, otherwise we
have an open packing. Initially, we have a blocked packing by considering the bottom
of the strip as a blocking item of height 0.

The general idea of the algorithm ONL is pretty straight-forward: Generate a β-gap
of relative height ρ − 2 whenever a jump is unavoidable and pack arriving blocking
items as low as possible. Since we neglect the starting phase, β = ρ− 2 is the maximal
β-gap that we can ensure. This leads to the following algorithm—see also Algorithm 1.
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s′i−1

s′i

si

βsi

si+1

βsi+1

h′′
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Fig. 2. Packing after the (i + 1)-th jump. The blocking items that arrived after si are shown in
darker shade. By definition, si is the first item that does not fit into the previous interval. Thus we
have si+1 > s′i + β si − h′.

– If a blocking item rj arrives, we pack rj at the lowest possible height. This can be
inside the packing, if a sufficiently large gap is available, or directly on top of the
packing. In the latter case, the packing is blocked afterwards.

– If a thin item rj arrives at an open packing, we bottom-align rj with the top item.
– If, finally, a thin item rj arrives at a blocked packing, we try to pack rj below

the blocking item on top. If this is not possible, i.e., rj exceeds the height of all
intervals for thin items, we pack rj at distance β rj = (ρ − 2)rj above the top of
the packing. This changes the packing to an open packing again.

We show that ONL is ρ-competitive for ρ = (3 +
√
5)/2. Actually, this is only ques-

tionable in one case, namely, when we pack a thin item rj with distance (ρ − 2)rj
above the packing. All other cases are trivial since if the packing height increases, then
the optimal height increases by the same value (for thin items the packing height only
increases if rj is the new maximal item).

We denote the thin items that are packed when generating a new gap by si for the
i-th jump. Let s′i−1 be the highest thin item that is bottom-aligned with si−1. Note that
the blocking item that blocks the packing after the i-th jump is packed directly above
s′i−1. See Figure 2 for an illustration.

It is obvious that the first jump item s1, that is actually the first thin item that arrives,
can be packed.

For the induction step we assume ONL(si) ≤ ρOPT(si). Before a jump can be-
come unavoidable, new blocking items of total height greater than β si need to arrive
as otherwise the gap below si could accommodate all of them. Let h′ be the height of
the blocking items that are packed into the β-gap below si and let h′′ be the total height
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of blocking items that arrive between si and si+1 and are packed above si. We have
h′ ≤ (ρ−2)si and h′+h′′ > (ρ−2)si as otherwise no blocking item would be packed
on top. As further blocking items could be packed even below s′i−1 we get

OPT(si+1) ≥ OPT(si) + h′ + h′′ + si+1 − si

ONL(si+1) = ONL(si) + s′i − si + h′′ + βsi+1 + si+1.

And thus we have

ONL(si+1) ≤ ρOPT(si+1)

⇐ ONL(si) + s′i − si + h′′ + βsi+1 + si+1 ≤ ρ
(
OPT(si) + h′ + h′′ + si+1 − si

)
⇐ (ρ− 1)si + s′i − ρh′ − (ρ− 1)h′′ ≤ (ρ− 1− β)si+1.

As ρ− 1− β = 1 and si+1 > s′i + (ρ− 2)si − h′ this is satisfied if

(ρ− 1)si + s′i − ρh′ − (ρ− 1)h′′ ≤ s′i + (ρ− 2)si − h′

⇔ si ≤ (ρ− 1)(h′ + h′′)
⇐ si ≤ (ρ− 1)(ρ− 2)si = si.

The last equality holds since ρ = (3+
√
5)/2 and thus (ρ−1)(ρ−2) = 1. Summarizing,

we arrive at

Theorem 2. ONL is a ρ-competitive algorithm for packing primitive sequences with

ρ =
3 +

√
5

2
≈ 2.618.

So the true best possible competitive ratio for packing primitive sequences is some-
where in between the two values specified by Theorems 1 and 2. We have reasons to
believe that it is strictly in between these two. But perhaps an even more challenging
question is whether or not (or to what extent) primitive sequences provide worst case
instances for online packing in general.
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