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Abstract

A subset T ⊆ V of terminals is k-connected to a root s in a directed/undirected graph J if
J has k internally-disjoint vs-paths for every v ∈ T ; T is k-connected in J if T is k-connected
to every s ∈ T . We consider the Subset k-Connectivity Augmentation problem: given a graph
G = (V,E) with edge/node-costs, node subset T ⊆ V , and a subgraph J = (V,EJ ) of G such
that T is k-connected in J , find a minimum-cost augmenting edge-set F ⊆ E \ EJ such that T
is (k + 1)-connected in J ∪ F . The problem admits trivial ratio O(|T |2). We consider the case
|T | > k and prove that for directed/undirected graphs and edge/node-costs, a ρ-approximation for
Rooted Subset k-Connectivity Augmentation implies the following ratios for Subset k-Connectivity
Augmentation:

(i) b(ρ+ k) +
(

3|T |
|T |−k

)2

H
(

3|T |
|T |−k

)

;

(ii) ρ · O
(

|T |
|T |−k

log k
)

,

where b = 1 for undirected graphs and b = 2 for directed graphs, and H(k) is the kth harmonic
number. The best known values of ρ on undirected graphs are min{|T |, O(k)} for edge-costs and
min{|T |, O(k log |T |)} for node-costs; for directed graphs ρ = |T | for both versions. Our results
imply that unless k = |T | − o(|T |), Subset k-Connectivity Augmentation admits the same ratios as
the best known ones for the rooted version. This improves the ratios in [19, 14].

1 Introduction

In the Survivable Network problem we are given a graph G = (V,E) with edge/node-costs and pairwise
connectivity requirements {r(u, v) : u, v ∈ T ⊆ V } on a set T of terminals. The goal is to find a
minimum-cost subgraph of G that contains r(u, v) internally-disjoint uv-paths for all u, v ∈ T . In
Rooted Subset k-Connectivity problem there is s ∈ T such that r(s, t) = k for all t ∈ T \ {s} and
r(u, v) = 0 otherwise. In Subset k-Connectivity problem r(u, v) = k for all u, v ∈ T and r(u, v) = 0
otherwise. In the augmentation versions, G contains a subgraph J of cost zero with r(u, v) − 1
internally disjoint paths for all u, v ∈ T . A subset T ⊆ V of terminals is k-connected to a root s in a
directed/undirected graph J if J has k internally-disjoint vs-paths for every v ∈ T ; T is k-connected
in J if T is k-connected to every s ∈ T . Formally, the versions of Survivable Network we consider are
as follows, where we revise our notation to k ← k + 1.

Rooted Subset k-Connectivity Augmentation

Instance: A graph G = (V,E) with edge/node-costs, a set T ⊆ V of terminals, root s ∈ T , and a
subgraph J = (V,EJ ) of G such that T \ {s} is k-connected to s in J .

Objective: Find a minimum-cost augmenting edge-set F ⊆ E\EJ such that T \{s} is (k+1)-connected
to s in J ∪ F .
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Subset k-Connectivity Augmentation

Instance: A graph G = (V,E) with edge/node-costs, subset T ⊆ V , and a subgraph J = (V,EJ ) of
G such that T is k-connected in J .

Objective: Find a minimum-cost augmenting edge-set F ⊆ E \ EJ such that T is (k + 1)-connected
in J ∪ F .

The Subset k-Connectivity Augmentation is Label-Cover hard to approximate [9]. It is known and
easy to see that for both edge-costs and node-costs, if Subset k-Connectivity Augmentation admits
approximation ratio ρ(k) such that ρ(k) is a monotone increasing function, then Subset k-Connectivity
admits ratio k · ρ(k). Moreover, for edge costs, if in addition the approximation ρ(k) is w.r.t. a
standard setpair/biset LP-relaxation to the problem, then Subset k-Connectivity admits ratio H(k) ·
ρ(k), where H(k) denotes the kth harmonic number. For edge-costs, a standard LP-relaxation for
Survivable Network (due to Frank and Jordán [5]) is:

min







∑

e∈E

cexe :
∑

e∈E(X,X∗)

xe ≥ r(X,X∗),X,X∗ ⊆ V,X ∩X∗ = ∅, 0 ≤ xe ≤ 1







where r(X,X∗) = max{r(u, v) : u ∈ X, v ∈ X∗} and E(X,X∗) is the set of edges in E from X to
X∗.

The Subset k-Connectivity problem admits trivial ratios O(|T |2) for both edge-costs and node-
costs, by computing for every u, v ∈ V an optimal edge-set of k internally-disjoint uv-paths (this is
essentially a Min-Cost k-Flow problem, that can be solved in polynomial time), and taking the union
of the computed edge-sets. We note that for metric edge-costs the problem admits an O(1) ratio [2].
For |T | ≥ k+1 the problem can also be decomposed into k instances of Rooted Subset k-Connectivity
problems, c.f. [11] for the case T = V , where it is also shown that for T = V the number of of Rooted

Subset k-Connectivity Augmentation instances can be reduced to O
(

|T |
|T |−k

log k
)

, which is O(log k)

unless k = |T | − o(|T |).

Recently, Laekhanukit [14] made an important observation that the method of [11] can be ex-
tended for the case of arbitrary T ⊆ V . Specifically, he proved that if |T | ≥ 2k, then O(log k)
instances of Rooted Subset k-Connectivity Augmentation will suffice. Thus for |T | ≥ 2k, the O(k)-
approximation algorithm of [19] for Rooted Subset k-Connectivity Augmentation leads to the ratio
O(k log k) for Rooted Subset k-Connectivity Augmentation. By cleverly exploiting an additional prop-
erty of the algorithm of [19] (see [14, Lemma 14]), he reduced the ratio to O(k) in the case |T | ≥ k2.

However, using a different approach, we will show that all this is not necessary, as for both
directed and undirected graphs and edge-costs and node-costs, Subset k-Connectivity Augmentation

can be reduced to solving one instance (or two instances, in the case of directed graphs) of Rooted

Subset k-Connectivity Augmentation and O
(

3|T |
|T |−k

)2
H

(

3|T |
|T |−k

)

instances of Min-Cost k-Flow problem.

This leads to a much simpler algorithm, improves the result of Laekhanukit [14] for |T | < k2, and
applies also for node-costs and directed graphs. In addition, we give a more natural and much simpler

extension of the algorithm of [11] for T = V , that also enables the same bound O
(

|T |
|T |−k

log k
)

as in

[11] for arbitrary T with |T | ≥ k+1, and in addition applies also for directed graphs, for node-costs,
and for an arbitrary type of edge-costs, e.g., metric costs, or uniform costs, or 0, 1-costs. When we
say “0, 1-edge-costs” we mean that the input graph G is complete, and the goal is to add to the
subgraph J of G formed by the zero-cost edges a minimum size edge-set F (any edge is allowed) such
that J ∪ F satisfies the connectivity requirements. Formally, our result is the following.
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Theorem 1.1 For both directed and undirected graphs, and edge-costs and node-costs the following
holds. If Rooted Subset k-Connectivity Augmentation admits approximation ratio ρ = ρ(k, |T |), then
for |T | ≥ k + 1 Subset k-Connectivity Augmentation admits the following approximation ratios:

(i) b(ρ + k) +
(

|T |
|T |−k

)2
O

(

log |T |
|T |−k

)

, where b = 1 for undirected graphs and b = 2 for directed

graphs.

(ii) ρ · O
(

|T |
|T |−k

log min{k, |T | − k}
)

, and this is so also for 0, 1-edge-costs.

Furthermore, if for edge-costs the approximation ratio ρ is w.r.t. a standard LP-relaxation for the
problem, then so are the ratios in (i) and (ii).

For |T | > k, the best known values of ρ on undirected graphs are O(k) for edge-costs and
min{O(k log |T |), |T |} for node-costs [19]; for directed graphs ρ = |T | for both versions. For 0, 1-
edge-costs ρ = O(log k) [20] for undirected graphs and ρ = O(log |T |) [18] for directed graphs. For
edge-costs, these ratios are w.r.t. a standard LP-relaxation. Thus Theorem 1.1 implies the following.

Corollary 1.2 For |T | ≥ k + 1, Subset k-Connectivity Augmentation admits the following approxi-
mation ratios.

• For undirected graphs, the ratios are O(k)+
(

|T |
|T |−k

)2
O

(

log |T |
|T |−k

)

for edge-costs, O(k log |T |)+
(

|T |
|T |−k

)2
O

(

log |T |
|T |−k

)

for node-costs, and |T |
|T |−k

·O
(

log2 k
)

for 0, 1-edge-costs.

• For directed graphs, the ratio is 2(|T | + k) +
(

|T |
|T |−k

)2
O

(

log |T |
|T |−k

)

for both edge-costs and

node-costs, and |T |
|T |−k

·O (log |T | log k) for 0, 1 edge-costs.

For Subset k-Connecivity, the ratios are larger by a factor of H(k) for edge-costs, and by a factor k
for node-costs.

Note that except the case of 0, 1-edge-costs, Corollary 1.2 is deduced from part (i) of Theorem 1.1.
However, part (ii) of Theorem 1.1 might become relevant if Rooted Subset k-Connectivity Augmentation

admits ratio better than O(k). In addition, part (ii) applies for any type of edge-costs, e.g. metric
or 0, 1-edge-costs.

We conclude this section by mentioning some additional related work. The case T = V of
Rooted Subset k-Connectivity problem is the k-Outconnected Subgraph problem; this problem admits
a polynomial time algorithm for directed graphs [6], which implies ratio 2 for undirected graphs.
For arbitrary T , the problem harder than Directed Steiner Tree [15]. The case T = V of Subset
k-Connectivity problem is the k-Connected Subgraph problem. This problem is NP-hard, and the

best known ratio for it is O
(

log k log n
n−k

)

for both directed and undirected graphs [17]; for the

augmentation version of increasing the connectivity by one the ratio in [17] is O
(

log n
n−k

)

. For metric

costs the problem admits ratios 2+ k−1
n

for undirected graphs and 2+ k
n
for directed graphs [10]. For

0, 1-edge-costs the problem is solvable for directed graphs [5], which implies ratio 2 for undirected
graphs. The Survivable Network problem is Label-Cover hard [9], and the currently best known non-
trivial ratios for it on undirected graphs are: O(k3 log |T |) for arbitrary edge-costs by Chuzhoy and

Khanna [3], O(log k) for metric costs due to Cheriyan and Vetta [2], O(k) ·min
{

log2 k, log |T |
}

for

0, 1-edge-costs [20, 13], and O(k4 log2 |T |) for node-costs [19].
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2 Proof of Theorem 1.1

We start by proving the following essentially known statement.

Proposition 2.1 Suppose that Rooted Subset k-Connectivity Augmentation admits an approximation
ratio ρ. If for an instance of Subset k-Connectivity Augmentation we are given a set of q edges
(when any edge is allowed) and p stars (directed to or from the root) on T whose addition to G
makes T (k + 1)-connected, then we can compute a (ρp+ q)-approximate solution F to this instance
in polynomial time. Furthermore, for edge-costs, if the ρ-approximation is w.r.t. a standard LP-
relaxation, then c(F ) ≤ (ρp + q)τ∗, where τ∗ is an optimal standard LP-relaxation value for Subset

k-Connectivity Augmentation.

Proof: For every edge uv among the q edges compute a minimum-cost edge-set Fuv ⊆ E \ EJ

such that J ∪ Fuv contains k internally-disjoint uv-paths. This can be done in polynomial time
for both edge and node costs, using a Min-Cost k-Flow algorithm. For edge-costs, it is known that
c(Fuv) ≤ τ∗. Then replace uv by Fuv, and note that T remains k-connected. Similarly, for every star
S with center s and leaf-set T ′, compute an α-approximate augmenting edge-set FS ⊆ E \ EJ such
that J ∪ FS contains k internally-disjoint sv-paths (or vs-paths, in the case of directed graphs and
S being directed twords the root) for every v ∈ T ′. Then replace S by FS , and note that T remains
k-connected. For edge-costs, it is known that if the ρ-approximation for the rooted version is w.r.t.
a standard LP-relaxation, then c(FS) ≤ (αp + q)τ∗. The statement follows. ✷

Motivated by Proposition 2.1, we consider the following question:
Given a k-connected subset T in a graph J , how many edges and/or stars on T one needs to add to
J such that T will become (k + 1)-connected?

We emphasize that we are interested in obtaining absolute bounds on the number of edges in
the question, expressed in certain parameters of the graph; namely we consider the extremal graph
theory question and not the algorithmic problem. Indeed, the algorithmic problem of adding the
minimum number of edges on T such that T will become (k + 1)-connected can be shown to admit
a polynomial-time algorithm for directed graphs using the result of Frank and Jordán [5]; this also
implies a 2-approximation algorithm for undirected graphs. However, in terms of the parameters
|T |, k, the result in [5] implies only the trivial bound O(|T |2) on the the number of edges one needs
to add to J such that T will become (k + 1)-connected.

Our bounds will be derived in terms of the family of the “deficient” sets of the graph J . We need
some definitions to state our results.

Definition 2.1 An ordered pair X̂ = (X,X+) of subsets of a groundset V is called a biset if X ⊆
X+; X is the inner part and X+ is the outer part of X̂, Γ(X̂) = X+ \X is the boundary of X̂, and
X∗ = V \X+ is the complementary set of X̂.

Given an instance of Subset k-Connectivity Augmentation we may assume that T is an independent
set in J . Otherwise, we obtain an equivalent instance by subdividing every edge uv ∈ J with u, v ∈ T
by a new node.

Definition 2.2 Given a k-connected independent set T in a graph J = (V,EJ ) let us say that a biset
X̂ on V is (T, k)-tight in J if X ∩ T,X∗ ∩ T 6= ∅, X+ is the union of X and the set of neighbors of
X in J , and |Γ(X̂)| = k.
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An edge covers a biset X̂ if it goes from X to X∗. By Menger’s Theorem, F is a feasible solution
to Subset k-Connectivity Augmentation if, and only if, F covers the biset-family F of tight bisets; see
[12, 20]. Thus our question can be reformulated as follows:
Given a k-connected independent set T in a graph J , how many edges and/or stars on T are needed
to cover the family F of (T, k)-tight bisets?

Definition 2.3 The intersection and the union of two bisets X̂, Ŷ is defined by X̂ ∩ Ŷ = (X ∩
Y,X+ ∩Y +) and X̂ ∪ Ŷ = (X ∪Y,X+ ∪Y +). Two bisets X̂, Ŷ intersect if X ∩Y 6= ∅; if in addition
X∗ ∩ Y ∗ 6= ∅ then X̂, Ŷ cross. We say that a biset-family F is:

• crossing if X̂ ∩ Ŷ , X̂ ∪ Ŷ ∈ F for any X̂, Ŷ ∈ F that cross.

• k-regular if |Γ(X̂)| ≤ k for every X̂ ∈ F , and if X̂ ∩ Ŷ , X̂ ∪ Ŷ ∈ F for any intersecting
X̂, Ŷ ∈ F with |X ∪ Y | ≤ |T | − k − 1.

The following statement is essentially known.

Lemma 2.2 Let T be a k-connected independent set in a graph J = (V,EJ ), and let X̂, Ŷ be (T, k)-
tight bisets. If (X∩T,X+∩T ), (Y ∩T, Y +∩T ) cross or if |(X∪Y )∩T | ≤ |T |−k−1 then X̂∩Ŷ , X̂∪Ŷ
are both (T, k)-tight.

Proof: The case (X ∩ T,X+ ∩ T ), (Y ∩ T, Y + ∩ T ) was proved in [20] and [14]. The proof of the
case |(X ∪ Y ) ∩ T | ≤ |T | − k − 1 is identical to the proof of [7, Lemma 1.2] where the case T = V is
considered. ✷

Corollary 2.3 The biset-family

F = {(X ∩ T,X+ ∩ T ) : (X,X+) is a (T, k)-tight biset in J}

is crossing and k-regular, and the reverse family F̄ = {(T \X+, T \X) : X̂ ∈ F} of F is also crossing
and k-regular. Furthermore, if J is undirected then F is symmetric, namely, F = F̄ .

Given two bisets X̂, Ŷ we write X̂ ⊆ Ŷ and say that Ŷ contains X̂ if X ⊆ Y or if X = Y and
X+ ⊆ Y +; X̂ ⊂ Ŷ and Ŷ properly contains X̂ if X ⊂ Y or if X = Y and X+ ⊂ Y +.

Definition 2.4 A biset Ĉ is a core of a biset-family F if Ĉ ∈ F and Ĉ contains no biset in F \{Ĉ};
namely, a core is an inclusion-minimal biset in F . Let C(F) be the family of cores of F and let
ν(F) = |C(F)| denote their number.

Given a biset-family F and an edge-set I on T , the residual biset-family FI of F consists of the
members of F uncovered by I. We will assume that for any I, the cores of FI and of F̄I can be
computed in polynomial time. For F being the family of (T, k)-tight bisets this can be implemented
in polynomial time using the Ford-Fulkerson Max-Flow Min-Cut algorithm, c.f. [20]. It is known and
easy to see that if F is crossing and/or k-regular, so is FI , for any edge-set I.

Definition 2.5 For a biset-family F on T let ν(F) be the maximum number of bisets in F which
inner parts are pairwise-disjoint. For an integer k let Fk = {X̂ ∈ F : |X| ≤ (|T | − k)/2}.

Lemma 2.4 Let F be a k-regular biset-family on T and let X̂, Ŷ ∈ Fk intersect. Then X̂ ∩ Ŷ ∈ Fk

and X̂ ∪ Ŷ ∈ F .

Proof: Since |X|, |Y | ≤ |T |−k
2 , we have |X ∪ Y | = |X| + |Y | − |X ∩ Y | ≤ |T | − k − 1. Thus

X̂ ∩ Ŷ , X̂ ∩ Ŷ ∈ F , by the k-regularity of F . Moreover, X̂ ∩ Ŷ ∈ Fk, since |X ∩Y | ≤ |X| ≤ |T |−k
2 . ✷
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We will prove the following two theorems that imply Theorem 1.1.

Theorem 2.5 Let F be a biset-family on T such that both F , F̄ are crossing and k-regular. Then

there exists a polynomial-time algorithm that computes an edge-cover I of F of size |I| = ν
(

Fk
)

+

ν
(

F̄k
)

+
(

3|T |
|T |−k

)2
H

(

3|T |
|T |−k

)

. Furthermore, if F is symmetric then |I| = ν
(

Fk
)

+
(

3|T |
|T |−k

)2
H

(

3|T |
|T |−k

)

.

Theorem 2.6 Let F be a biset-family on T such that both F and F̄ are k-regular. Then there exists

a collection of O
(

|T |
|T |−k

lgmin{ν, |T | − k}
)

stars on T which union covers F , and such a collection

can be computed in polynomial time. Furthermore, the total number of edges in the stars is at most

ν
(

Fk
)

+ ν
(

F̄k
)

+
(

|T |
|T |−k

)2
·O

(

log |T |
|T |−k

)

.

Note that the second statement in Theorem 2.6 implies (up to constants) the bound in Theo-
rem 2.5. However, the proof of Theorem 2.5 is much simpler than the proof of Theorem 2.6, and the
proof of Theorem 2.5 is a part of the proof of the second statement in Theorem 2.6.

Let us show that Theorems 2.5 and 2.6 imply Theorem 1.1. For that, all we need is to show that by
applying one time the α-approximation algorithm for the Rooted Subset k-Connectivity Augmentation,

we obtain an instance with ν
(

Fk
)

, ν
(

F̄k
)

≤ k+1. This is achieved by the following procedure due

to Khuller and Raghavachari [8] that originally considered the case T = V , see also [1, 4, 10]; the
same procedure is also used by Laekhanukit in [14].

Choose an arbitrary subset T ′ ⊆ T of k + 1 nodes, add a new node s (the root) and all edges
between s and T ′ of cost zero each, both to G and to J . Then, using the α-approximation algorithm
for the Rooted Subset k-Connectivity Augmentation, compute an augmenting edge set F such that
J ∪ F contains k internally disjoint vs-paths and sv-paths for every v ∈ T ′. Now, add F to J and
remove s from J . It is a routine to show that c(F ) ≤ bopt, and that for edge-costs c(F ) ≤ bτ∗. It is
also known that if X̂ is a tight biset of the obtained graph J , then X ∩ T ′,X∗ ∩ T ′ 6= ∅, c.f. [1, 14].

Combined with Lemma 2.4 we obtain that ν
(

Fk
)

, ν
(

F̄k
)

≤ |T ′| ≤ k+1 for the obtained instance,

as claimed.

3 Proof of Theorem 2.5

Definition 3.1 Given a biset-family F on T , let ∆(F) denote the maximum degree in the hypergraph
F in = {X : X̂ ∈ F} of the inner parts of the bisets in F . We say that T ′ ⊆ T is a transversal of
F if T ′ ∩ X 6= ∅ for every X ∈ F in; a function t : T → [0, 1] is a fractional transversal of F if
∑

v∈X t(v) ≥ 1 for every X ∈ F in.

Lemma 3.1 Let F be a crossing biset-family. Then ∆(C(F)) ≤ ν
(

F̄
)

.

Proof: Since F is crossing, the members of C(F) are pairwise non-crossing. Thus if H is a subfamily
of C(F) such that the intersection of the inner parts of the bisets in H is non-empty, then H̄ is a
subfamily of F̄ such that the inner parts of the bisets in H̄ are pairwise disjoint, so |H̄| ≤ ν

(

F̄
)

. The
statement follows. ✷

Lemma 3.2 Let T ′ be a transversal of a biset-family F ′ on T and let I ′ be an edge-set on T obtained
by picking for every s ∈ T ′ an edge from s to every inclusion member of the set-family {X∗ : X̂ ∈
F ′, s ∈ X}. Then I ′ covers F ′. Moreover, if F ′ is crossing then |I ′| ≤ |T ′| · ν(F̄ ′).
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Proof: The statement that I ′ covers F ′ is obvious. If F ′ is crossing, then for every s ∈ T the
inclusion-minimal members of {X∗ : X̂ ∈ F ′, s ∈ X} are pairwise-disjoint, hence their number is at
most ν(F̄ ′). The statement follows. ✷

Lemma 3.3 Let F be a k-regular biset-family on T . Then the following holds.

(i) ν(F) ≤ ν
(

Fk
)

+ 2|T |
|T |−k

.

(ii) If ν
(

Fk
{e}

)

= ν
(

Fk
)

holds for every edge e on T then ν
(

Fk
)

≤ |T |
|T |−k

.

(iii) There exists a polynomial time algorithm that finds a transversal T ′ of C(F) of size at most

|T ′| ≤
(

ν
(

Fk
)

+ 2|T |
|T |−k

)

·H(∆(C(F))).

Proof: Part (i) is immediate.

We prove (ii). Let Ĉ ∈ C
(

Fk
)

and let ÛC be the union of the bisets in Fk that contain Ĉ and

contain no other member of C
(

Fk
)

. If |UC | ≤ |T | − k − 1 then ÛC ∈ F , by the k-regularity of F .

In this case ν
(

Fk
{e}

)

≤ ν
(

Fk
)

− 1 for any edge from C to U∗
C . Hence |UC | ≥ |T | − k must hold for

every Ĉ ∈ C(F). By Lemma 2.4, the sets in the set family {UC : Ĉ ∈ C(F)} are pairwise disjoint.
The statement follows.

We prove (iii). Let T k be an inclusion-minimal transversal of Fk. By Lemma 2.4,
∣

∣

∣T k
∣

∣

∣ = ν
(

Fk
)

.

Setting t(v) = 1 if v ∈ T k and t(v) = 2
|T |−k

otherwise, we obtain a fractional transversal of C(F) of

value at most ν
(

Fk
)

+ 2|T |
|T |−k

. Consequently, the greedy algorithm of Lovász [16] finds a transversal

T ′ as claimed. ✷

The algorithm for computing I as in Theorem 2.5 starts with I = ∅ and then continues as follows.

Phase 1
While there exists an edge e on T such that ν

(

Fk
I∪{e}

)

≤ ν
(

Fk
I

)

− 1, or such that ν
(

F̄k
I∪{e}

)

≤

ν
(

F̄k
I

)

− 1, add e to I.

Phase 2
Find a transversal T ′ of C(F ′) as in Lemma 3.3(iii), where F ′ = FI . Then find an edge-cover I ′ of
F ′ as in Lemma 3.2 and add I ′ to I.

The edge-set I computed covers F by Lemma 3.2. Clearly, the number of edges in I at the end

of Phase 1 is at most ν
(

Fk
)

+ ν
(

F̄k
)

, and is at most ν
(

Fk
)

if F is symmetric. Now we bound

the size of I ′. Note that at the end of Phase 1 we have ν
(

Fk
I

)

, ν
(

F̄k
I

)

≤ |T |
|T |−k

(by Lemma 3.3(ii))

and thus ν
(

F̄I

)

≤ 3|T |
|T |−k

(by Lemma 3.3(i)) and ∆(C(FI)) ≤ ν
(

F̄I

)

≤ ν
(

F̄k
I

)

+ 2|T |
|T |−k

≤ 3|T |
|T |−k

(by

Lemma 3.1). Consequently, |T ′| ≤
(

ν
(

Fk
I

)

+ 2|T |
|T |−k

)

·H(∆(C(FI))) ≤
3|T |
|T |−k

·H
(

3|T |
|T |−k

)

. From this

we get |I ′| ≤ |T ′| · ν
(

F̄I

)

≤
(

3|T |
|T |−k

)2
·H

(

3|T |
|T |−k

)

.

The proof of Theorem 2.5 is now complete.
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4 Proof of Theorem 2.6

We start by analyzing the performance of a natural Greedy Algorithm for covering ν
(

Fk
)

, that starts

with I = ∅ and while ν(Fk
I ) ≥ 1 adds to I a star S for which ν(Fk

I∪S) is minimal. It is easy to see
that the algorithm terminates since any star with center s in the inner part of some core of Fk

I and
edge set {vs : v ∈ T \ {s}} reduces the number of cores by one. The proof of the following statement
is similar to the proof of the main result of [11].

Lemma 4.1 Let F be a k-regular biset-family and let S be the collection of stars computed by the
Greedy Algorithm. Then

|S| = O

(

|T |

|T | − k
lnmin

{

ν
(

Fk
)

, |T | − k
}

)

.

Recall that given Ĉ ∈ C
(

Fk
I

)

we denote by ÛC the union of the bisets in Fk
I that contain

Ĉ and contain no other member of C
(

Fk
I

)

, and that by Lemma 2.4, the sets in the set-family

{UC : Ĉ ∈ C(F)} are pairwise disjoint.

Definition 4.1 ([11]) Let us say that s ∈ V out-covers Ĉ ∈ C
(

Fk
)

if s ∈ U∗
C .

Lemma 4.2 Let F be k-regular biset-family and let ν = ν
(

Fk
)

.

(i) There is s ∈ T that out-covers at least ν
(

1− k
|T |

)

− 1 members of C
(

Fk
)

.

(ii) Let s out-cover the members of C ⊆ C
(

Fk
)

and let S be a star with one edge from s to the

inner part of each member of C. Then ν(Fk) ≤ ν(Fk
S)− |C|/2.

Consequently, there exists a star S on T such that

ν(Fk
S) ≤

1

2

(

1 +
k

|T |

)

· ν +
1

2
= α · ν + β . (1)

Proof: We prove (i). Consider the hypergraph H =
{

T \ Γ
(

ÛC

)

: Ĉ ∈ C
(

Fk
)}

. Note that the

number of members of C
(

Fk
)

out-covered by any v ∈ T is at least the degree of s in H minus 1.

Thus all we need to prove is that there is a node s ∈ T whose degree in H is at least ν
(

1− k
|T |

)

.

For every C ∈ C(F) we have
∣

∣

∣T \ Γ
(

ÛC

)
∣

∣

∣ ≥ |T | − k, by the k-regularity of F . Hence the bipartite

incidence graph of H has at least ν(|T | − k) edges, and thus has a node s ∈ T of degree at least

ν
(

1− k
|T |

)

, which equals the degree of s in H. Part (i) follows.

We prove (ii). It is sufficient to show that every Ĉ ∈ C
(

Fk
S

)

contains some Ĉ ′ ∈ C
(

Fk
)

\ C or

contains at least two members in C. Clearly, Ĉ contains some Ĉ ′ ∈ C
(

Fk
)

. We claim that if Ĉ ′ ∈ C

then Ĉ must contain some Ĉ ′′ ∈ C
(

Fk
)

distinct from Ĉ ′. Otherwise, Ĉ ∈ Fk(C). But as S covers

all members of Fk(C), Ĉ /∈ Fk
S . This is a contradiction. ✷
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Let us use parameters α, β, γ, δ and j set to

α =
1

2

(

1 +
k

|T |

)

β =
1

2
γ = 1−

k

|T |
= 2(1− α) δ = 1,

and j is the minimum integer such that αj
(

ν − β
1−α

)

≤ 2
1−α

(note that α < 1), namely,

j =

⌊

ln 1
2(ν(1 − α) − β)

ln(1/α)

⌋

≤

⌊

ln 1
2ν(1− α)

ln(1/α)

⌋

. (2)

We assume that ν ≥ 2+β
1−α

to have j ≥ 0 (otherwise Lemma 4.1 follows). Note that β
1−α

= |T |
|T |−k

.

Lemma 4.3 Let 0 ≤ α < 1, β ≥ 0, ν0 = ν, and for i ≥ 1 let

νi+1 ≤ ανi + β si = γνi−1 − δ .

Then νi ≤ αi
(

ν − β
1−α

)

+ β
1−α

and
j
∑

i=1
si ≤

1−αj

1−α
·γ

(

ν − β
1−α

)

+ j
(

γβ
1−α
− δ

)

. Moreover, if j is given

by (2) then νj ≤
2+β
1−α

= 5|T |
|T |−k

and
∑j

i=1 si ≤ 2
(

ν − |T |
|T |−k

)

.

Proof: Unraveling the recursive inequality νi+1 ≤ ανi + β in the lemma we get:

νi ≤ αiν + β
(

1 + α+ · · ·+ αi−1
)

= αiν + β
1− αi

1− α
= αi

(

ν −
β

1− α

)

+
β

1− α
.

This implies si ≤ γ
(

ν − β
1−α

)

αi−1 + γβ
1−α
− δ, and thus

j
∑

i=1

si ≤ γ

(

ν −
β

1− α

) j
∑

i=1

αi−1 + j

(

γβ

1− α
− δ

)

= γ

(

ν −
β

1− α

)

·
1− αj

1− α
+ j

(

γβ

1− α
− δ

)

If j is given by (2) then νj ≤ αi
(

ν − β
1−α

)

+ β
1−α
≤ 2

1−α
+ β

1−α
= 2+β

1−α
, and

j
∑

i=1

si ≤
1− αj

1− α
· γ

(

ν −
β

1− α

)

+ j

(

γβ

1− α
− δ

)

≤ 2

(

ν −
β

1− α

)

= 2

(

ν −
|T |

|T | − k

)

.

✷

We now finish the proof of Lemma 4.1. At each one of the first j iterations we out-cover at least

ν
(

Fk
I

) (

1− k
|T |

)

− 1 members of C
(

Fk
I

)

, by Lemmas 4.2. In each one of the consequent iterations,

we can reduce ν
(

Fk
I

)

by at least one, if we choose the center of the star in C for some Ĉ ∈ C
(

Fk
I

)

.

Thus using Lemma 4.3, performing the necessary computations, and substituting the values of the
parameters, we obtain that the number of stars in S is bounded by

j + νj ≤

⌊

ln 1
2ν(1− α)

ln(1/α)

⌋

+
5|T |

|T | − k
= O

(

|T |

|T | − k
lnmin{ν, |T | − k}

)

.
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Now we discuss a variation of this algorithm that produces S with a small number of leaves.

Here at each one of the first j iterations we out-cover exactly ν
(

1− k
|T |

)

− 1 min-cores. For that, we

need be able to compute the bisets ÛC , and such a procedure can be found in [14]. The number of

edges in the stars at the end of this phase is at most 2
(

ν − |T |
|T |−k

)

and νj ≤
5|T |
|T |−k

. In the case of

non-symmetric F and/or directed edges, we apply the same algorithm on F̄k. At this point, we apply
Phase 2 of the algorithm from the previous section. Since the number of cores of each one of Fk

I , F̄
k
I

is now O
(

|T |
|T |−k

)

, the size of the transversal T ′ computed is bounded by |T ′| = O
(

|T |
|T |−k

· log |T |
|T |−k

)

.

The number of stars is at most the size |T ′|, while the number of edges in the stars is at most

|T ′| · ν
(

F̄I

)

=
(

|T |
|T |−k

)2
·O

(

log |T |
|T |−k

)

.

This concludes the proof of Theorem 2.6.
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