
Matrix Analysis of Genetic Programming

Mutation

Andrew J. Parkes, Ender Özcan, and Matthew R. Hyde

School of Computer Science
The University of Nottingham

Nottingham, NG8 1BB
United Kingdom (UK)

E-mail: [ajp,exo,mvh]@cs.nott.ac.uk
URL: http://cs.nott.ac.uk/∼[ajp,exo,mvh]

Abstract. Heuristic policies for combinatorial optimisation problems
can be found by using Genetic programming (GP) to evolve a mathe-
matical function over variables given by the current state of the problem,
and whose value is used to determine action choices (such as preferred
assignments or branches). If all variables have finite discrete domains,
then the expressions can be converted to an equivalent lookup table or
‘decision matrix’. Spaces of such matrices often have natural distance
metrics (after conversion to a standard form). As a case study, and to
support the understanding of GP as a meta-heuristic, we extend previous
bin-packing work and compare the distances between matrices from be-
fore and after a GP-driven mutation. We find that GP mutations often
correspond to large moves within the space of decision matrices. This
gives evidence that the role of mutations within GP might be somewhat
different than their role within Genetic Algorithms.

1 Introduction

The effects of the genetic programming (GP) mutation operator are not often
analysed in detail. When an analysis is performed, it is often to show how suc-
cessful different levels of mutation are, or to show the effects of its interaction
with crossover. This paper presents a methodology to analyse the effect of mu-
tation on the phenotype of an individual. Mutation’s effects on the genotype are
trivial to calculate, as it is easy to see how the new and old expressions differ.
The effects are less easy to quantify on the phenotype, yet this is often the effect
which is most important.

In GP, the genotype and phenotype are often indistinguishable, but there are
many applications of GP where they are clearly different. One example is when
GP is used to generate heuristic functions, which give a score to a number of
options at any given decision point (see [1, 5, 3, 7–9] for examples on many differ-
ent problems, including job shop scheduling, cutting/packing, and SAT). This is
equivalent to an ‘index policy’ [10], because each potential option is given a score
independently of other options, and the option with the largest score is selected.

In the example we present in this paper, the evolved mathematical expressions
are used as policies for the online one-dimensional bin packing problem.

In this domain, the choices that are made using the expression can stay
the same, even though the expression itself has changed, along with the values
it produces for any given inputs. For example, an expression whose results are
scaled by 2 gives the same relative scores to each option. In this situation, it is not
enough to analyse the effects of genetic operators on the genotype, because this
may not be the same as analysing the effects on the behaviour of the phenotype,
which is what we are really interested in.

In this paper, we combine these issues with previous work in [14] and present a
matrix analysis tool for understanding the effects of mutation on the phenotype.
This can be used in any situation where the GP trees represent mathematical
expressions with integer variables. The tool is based on the idea that a matrix
can be generated from the expression by inputting all possible integer combina-
tions, and storing the results. The resulting matrix will represent the expression
exactly, as the only possible inputs are integers anyway. In this paper, we study
integer variables, but we expect this to work for at least general discrete and
finite cases.

A matrix can be generated for an expression before and after the mutation
operator is applied, and the matrices can be compared to analyse what effect the
mutation had. We show in this paper that many mutation calls return a different
expression, but which corresponds to an equivalent matrix, and so its behaviour
as a heuristic is the same. The proportion of such ineffective mutations varies
during the run, but can be as high as 45%.

When an expression’s matrix is different after a mutation, we measure how
different, and find that the change is relatively large on average. A high pro-
portion of the matrix is often modified by the mutation operator. With further
analysis, this research could also provide insight into the code bloat phenomenon,
as mutations become less effective as the generations increase. It also can be used
as a tool for the analysis of GP runs, to check how the mutation is performing,
and modifying its severity accordingly.

2 The Bin Packing Problem

The exact nature of the problem is a secondary concern in this paper, we are
interested in analysing the mutation operator of the GP system. However, to
do this, we need a problem domain for which to evolve heuristics, and the one
dimensional bin packing problem is a highly appropriate domain to test on, given
the volume of existing literature on evolving policies for this problem.

The one-dimensional bin-packing problem involves a set of integer-size pieces
L, which must be packed into bins of a certain capacity C, using the minimum
number of bins possible. In other words, the set of integers must be divided into
the smallest number of subsets so that the sum of the sizes of the pieces in a
subset does not exceed C [12]. We will assume that all of the bins have the same
capacity, and that the pieces are drawn from a uniform distribution.

For this work we consider problem instances where 500 integer sized pieces
are uniformly distributed in the range [5,10], and the bin capacity is 20. We
use the following notation, UBP(20,5,10,500) to represent this domain. In this
paper, the ‘on-line’ bin packing problem is studied. That is, we do not know
in advance how many pieces there are or the size of those pieces. Our system
must simply pack the pieces into the bins in the order they arrive, and the pieces
cannot be moved once they have been placed in a bin.

3 Previous Work

GP was used to evolve heuristics for online one-dimensional bin packing in [4,
5]. In that work, the heuristics were expressions, which provided a score to each
available bin. The GP system utilised the +,−, ∗, and % (protected divide,
see [1]) operators, and the three terminals available to the GP were the piece
size, the bin fullness, and the bin capacity. The current piece is put into the bin
which received the highest score. No known heuristic has both a better worst case
performance ratio and average uniform case performance ratio (with items drawn
uniformly in the interval [0,1]) than the ‘best-fit’ heuristic [11], but heuristics
were evolved which could beat best-fit on narrower distributions of pieces.

This work was later extended to reduce the number of inputs to two, as it
was found that it was sufficient to use ‘emptiness’ (capacity - fullness) and piece
size as GP terminals [6]. An extension has also been shown to utilise a ‘memory’
component to learn to use the distribution of piece sizes [2].

Parkes and Özcan noted that for a bin packing problem where the pieces and
bins have integer size, the possible inputs to the expression are discrete. There-
fore, the expression can be represented by a matrix. They showed that matrices
themselves can be evolved with a genetic algorithm [14]. However, in this paper,
we employ standard GP to evolve trees (mathematical expressions), and use
their matrix representation to analyse the effects of the mutation operator. The
matrix representation is explained in detail in section 4.

The key idea of this paper is that when evolving expressions with tree-based
GP, a mutation could be made on a part of the tree which represents inactive
code. While the tree would look different, the actual results returned by the tree
would be the same for any given input values. Furthermore, the values returned
by the tree are used to rank the bins by the scores that they receive, so the
actual values do not matter. It is only the relative order of the scores that makes
a difference. For this reason, a mutation could cause a change in the tree, which
does cause a change in the results of the tree, but which does not cause a change
in the behaviour of the tree when applied to the problem. A simple example of
this is a mutation which adds 10 to the value returned by the tree. The tree
would be modified, and the values returned would be modified, but the policy
that the tree represents would not be modified. This is because the tree will
always give the same bin the highest score (and the second highest, and so on).

4 The Matrix Representation

Figure 1 shows an example GP tree, with two inputs S and E. To choose a bin
for a given piece, this tree is evaluated once for each available bin, and the bin
with the highest score receives the piece. This system is presented in [4, 5], and
is also employed in this paper.

+n
����

HHHH
Sn %n

�
�

@
@

Sn En

Fig. 1. An example heuristic function. S represents the piece size, E represents the
emptiness of the bin (capacity-fullness)

Figure 2 shows the matrix which represents the expression in figure 1. The
rows represent the remaining space left in a bin. The columns represent the size
of the piece that we are currently choosing a bin for. The policy matrix contains
heuristic values. The values are obtained by evaluating the expression (tree) with
the remaining space and piece size as inputs. They show the heuristic score that
is given to any bin by the tree, for any given piece size.

The dots in the matrix are positions which will never be used for an instance
of UBP(20,5,10,500), as there are no piece sizes less than 5 and greater than 10.
No bin can have a remaining space of between 16 and 19 (inclusive), because
the minimum piece size is 5. These positions in the matrix are referred to as
‘inactive’ positions. We can calculate a value for them by evaluating the tree
with the relevant inputs, but they will never be used. The other positions are
referred to as ‘active’ positions.

If we add 10 to each of the values in figure 2, then it will make no difference
to which bin receives the highest score. For a piece size of 5, a bin with 5 units
of remaining space will always be chosen. For this reason, the exact values are
not important, it is the relative order of the values that is important. Figure
3 shows a normalised version of the matrix in figure 2, where the bins are still
ranked in the same order for a given piece size. In this paper, we are interested
in whether the mutation operator makes changes in the normalised matrix, as
this determines the behaviour of the heuristic.

To further clarify, the matrixes are used in the following manner. For any
given piece size, there will be a column of scores, which correspond to the pref-
erence of which bin to put the piece into. For example, in figure 2, if we must
pack a piece of size 6 next, then the piece will be put into a bin with an empti-
ness of 6, as this emptiness has the highest score (7.00) in that column of the
matrix. However, if no available bin has an emptiness of 6, then the piece will

Fig. 2. Value matrix generated from
the expression in figure 1

5 6.00
6 5.83 7.00
7 5.71 6.86 8.00 . . .
8 5.63 6.75 7.88 9.00 . .
9 5.56 6.67 7.78 8.89 10.00 .
10 5.50 6.60 7.70 8.80 9.90 11.00
11 5.45 6.55 7.64 8.73 9.82 10.91

E 12 5.42 6.50 7.58 8.67 9.75 10.83
13 5.38 6.46 7.54 8.62 9.69 10.77
14 5.36 6.43 7.50 8.57 9.64 10.71
15 5.33 6.40 7.47 8.53 9.60 10.67
16
17
18
19
20 5.25 6.30 7.35 8.40 9.45 10.50

5 6 7 8 9 10
S

Fig. 3. Normalised matrix generated
from the matrix in figure 2

5 12
6 11 11
7 10 10 10 . . .
8 9 9 9 9 . .
9 8 8 8 8 8 .
10 7 7 7 7 7 7
11 6 6 6 6 6 6

E 12 5 5 5 5 5 5
13 4 4 4 4 4 4
14 3 3 3 3 3 3
15 2 2 2 2 2 2
16
17
18
19
20 1 1 1 1 1 1

5 6 7 8 9 10
S

be put into the bin with emptiness 7, as this has the second highest score and
is therefore the second preference. If no available bin has a remaining space of
7, then the third preference is selected for the piece, and so on. An empty bin is
always available, so the piece will always be able to be put there, even if none of
the other preferences are available. The normalised matrix (figure 3) shows this
rank ordering of bin emptiness values.

5 Genetic Programming Parameters

In this paper, we analyse 50 runs of a GP system with the parameters shown in
table 1. We use the ECJ (Evolutionary Computation in Java) system, which is
a mature and well known toolkit for genetic algorithms. We do not make any
claims about the quality of these parameters, we chose them because we wish to
analyse the mutation operator in the standard ECJ distribution.

For the reader interested in technical implementation details, the mutation
analyser was implemented as an extension of the ‘MutationPipeline’ class, over-
riding the ‘produce’ method. The custom produce method converts the old indi-
vidual and the new individual into their matrix form, and then compares them
using the distance metrics described in section 6.

The population size is set to 10000, to ensure that there are a significant
number of mutations in each generation. The results do not include those where
the mutation fails and the parent is just copied. There must be an actual mu-
tation for the change to be logged. The mutation can fail for example if the
newly generated subtree cannot fit into the designated mutation point because

Table 1. The GP parameters

Population Size 10000

Generations 100

Crossover Probability 0.85

Reproduction Probability 0.05

Mutation Probability 0.1

Selection Method Tournament Size 70

Initialisation Method Ramped half-and-half

Initial Min and Max Tree Depth 2, 6

Max Tree Depth After Mutation 17

it violates the depth limit of 17. This is a standard default parameter in the ECJ
system, which prevents very deep trees from forming. The standard tournament
size is set to 7, for the standard ECJ population size of 1024. As we are using a
larger population size of 10000, we increase the tournament size to 70.

The mutation operator is subtree mutation. The selection of a node is done
probabilistically, with a 0.1 probability of selecting a terminal, and 0.9 proba-
bility of selecting a non-terminal node. The subtree is replaced by the ‘Grow’
method [15].

6 Distance Metrics

To analyse the effects of mutation on the policies, we must define a distance
metric to measure the distance between two matrices. In this paper we employ
three distance metrics, all of which operate on the normalised versions of the
matrices. Only the active parts (see Section 4) of the matrices are included
in the distance calculations. To illustrate the three metrics, we use the simple
example of UBP(11, 4, 5). With bins of 11 capacity, and pieces between 4 and 5
inclusive (For the results section, our experiments are performed on instances of
UBP(20, 5, 10)). Two policy matrices for this problem are shown in figures 4 and
5. For each column, each heuristic value (one per emptiness value) represents
a preference of where to put the piece. The highest value represents the first
preference, the second highest represents the second preference, and so on.

6.1 Metric 1

This metric simply counts the number of preferences that are different in the
normalised matrices. In the example of figures 4 and 5, this metric would give
the two matrices a difference value of 6. For the problem instances we address in
this paper, the matrices are larger, and so a score of 57 means the two matrices
are completely different. A score of 0 means that the two matrices are identical.

Fig. 4. Example Matrix A
4 2 .
5 4 4
6 1 3

E 7 5 2
8 . .
9 . .
10 . .
11 3 1

4 5
S

Fig. 5. Example Matrix B
4 3 .
5 4 1
6 1 2

E 7 5 3
8 . .
9 . .
10 . .
11 2 4

4 5
S

6.2 Metric 2

Recall that for any given piece size, there will be a column of heuristic values,
which correspond to the preference of which available residual space to put the
piece into. For example, consider the first columns from both matrices in figures
4-5. These columns represent the preference order for the piece size 4. We show
the columns here as rows (excluding the inactive positions):

Column 1 of matrix 1: 2, 4, 1, 5, 3
Column 1 of matrix 2: 3, 4, 1, 5, 2

We see that for both columns, the preference is to put the piece into a bin
with a residual capacity of 7, as this has the highest value (5). For both columns,
if a bin does not exist with 7 units of space left, the second choice of bin would
have a residual capacity of 5. We can write the preference order of residual
capacities like this:

Residual capacity preference order 1: 7, 5, 11, 4, 6
Residual capacity preference order 2: 7, 5, 4, 11, 6

To calculate metric 2 we iterate through each preference order list. We add
one point of similarity if both matrices have the same first preference. Then we
move to the second preference and add one point if that is the same, and so on.
For each column, we stop when the current preference is different, and move to
the next column. In the example, 7 and 5 are ranked in the same order in both
lists, and the next entries are different, so these columns have a similarity of 2.
The columns for the piece size 5 have no similarity, as the first preferences are
different (residual capacity 5 in the first matrix, and 11 in the second matrix).
Therefore, according to metric 2, these matrices have a similarity of 2.

In the problem instances we use in this paper, the maximum score is 57, as
there are 57 active positions to compare. We subtract the result from 57 to put
the metric on the same scale as metric 1. Therefore, a score of 57 means that
the two matrices have a different first choice for every piece. A score of 0 means
that the two matrices are identical.

6.3 Metric 3

This is an ordering based metric, which involves comparing the columns of the
matrices in a similar way to metric 2. While metric 2 asks how many elements
of the preference order are the same (until the first difference), metric 3 asks
how many of the elements that follow each preference are the same, regardless
of their order. We calculate a preference order for each column, the same as we
calculated for metric 2. This is shown again here for the first column, for ease of
reference.

Residual capacity preference order 1: 7, 5, 11, 4, 6
Residual capacity preference order 2: 7, 5, 4, 11, 6

We iterate through each preference from order 1, and find the identical pref-
erence in order 2. For every value which follows that preference in both orders,
we add one point of similarity. In our example:

7 precedes 5, 11, 4 and 6 in both lists (similarity of 4).
5 precedes 11, 4, and 6 in both lists (similarity of 3).
11 precedes 6 in both lists (similarity of 1).
4 precedes 6 in both lists (similarity of 1).

The total similarity for the first column is therefore 9 (4+3+1+1). The simi-
larity of a column is subtracted from n(n-1)/2, as this is the maximum similarity
score, where n is the length of a column. We perform the same calculation for
the other columns. In the instances used in this paper, Metric 3 has a minimum
value of 0, representing identical matrices, and a maximum value of 251.

This metric considers each preference order as a permutation, and tells us
how many swaps would be needed between any two adjacent preferences, to get
from one permutation to the other.

7 Results

This section presents our results, showing the effect of the mutation operator
on the policy matrices, over the 100 generations. The calculations are based
on 50 runs of the GP algorithm. For example, the results for generation 6 are
calculated from all 50 sets of recorded values at generation 6.

In figure 6, first consider the dotted line, which represents the ‘metric 1’
difference between the matrices after mutation. In each generation, all of the
mutations are measured with metric 1, and the average difference is calculated.
A higher value means that the mutation operator has a larger effect on the
policies. The plot shows that in the first 3 generations, the effect of mutation
increases. After generation 3, the effect of mutation decreases gradually.

The second line in figure 6 shows the same calculation, but excluding the
mutations that cause absolutely no change to the normalised matrix. One can
see that when the mutation does make a change to the policy, that change

 0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

55

Generation

D
iff

er
en

ce
 b

et
w

ee
n

m
at

ric
es

 (
M

et
ric

 1
)

Average difference after mutation
Without mutations that cause no change

Fig. 6. Effect of mutation as measured
by metric 1. The two plots show the
average effects, and those not including
the mutations that cause no change.

 0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

Generation

P
ro

po
rt

io
n

of
 a

ll
m

ut
at

io
ns

Mutations that cause no change

Fig. 7. Proportion of mutations per
generation that cause no change in the
normalised matrix, and therefore cause
no change in the packing policy

is generally greater in the first few generations. That change decreases until
generation 13, after which the change caused by the mutation operator gradually
increases.

Figure 7 shows the proportion of mutations which do not change the nor-
malised matrix at all, and therefore do not change the behaviour of the heuristic.
This plot shows that in the first generation, around 45% of mutations have no
effect on the individuals. This drops by a large amount in generation 2, to around
19%. This shows that the effect of mutation changes dramatically in the first 2
generations, as the population changes from a randomly generated one, to one
made from the parents of the first generation.

Code bloat could be the cause of the downward trend in the effect of mutation.
As code bloat increases the proportion of the tree which has no effect (See
‘removal bias’ theory [16] and ‘replication accuracy’ theory [13]), so the mutation
operator is more likely to mutate a subtree which has no effect anyway. Of the
mutations that do have an effect, the downward trend in the first 13 generations,
followed by the gradual increase, is an effect which requires further research.
We suspect that it involves the convergence of the population. For the one-
dimensional bin packing problem, it could be the case that the population has
generally converged to a good solution by around generation 13. If this is the
case, then the results show that the mutation operator makes smaller changes
as the population is improving. We would argue that this is a desirable quality,
as it will make incremental changes to the better policies in later generations,
while not changing the core functionality of the policy. Once the GP algorithm
is generally improving the best individual less frequently, and the population is
more stagnant, code bloat becomes a larger factor.

Figure 8 shows the results calculated with metric 2, which follow the same
pattern, but the difference is measured as larger than metric 1. This could suggest

 0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

55

Generation

D
iff

er
en

ce
 b

et
w

ee
n

m
at

ric
es

 (
M

et
ric

 2
)

Average difference after mutation
Without mutations that cause no change

Fig. 8. Effect of mutation as measured
by metric 2. The two plots show the
average effects, and those not including
the mutations that cause no change.

Fig. 9. Effect of mutation as measured
by metric 3. The two plots show the
average effects, and those not including
the mutations that cause no change.

that the mutation operator often modifies the first few choices for each piece size,
but not the lower choices (for example the 10th and 11th choice of bin).

Figure 9 shows the results calculated by metric 3. Recall that this metric con-
siders how many preferences that follow each preference are the same, regardless
of the order of the preferences. It tells us how many swaps would be needed to
get from one preference permutation to the other. This metric suggests that,
in later generations, the mutation operator changes less the relative preference
order. In the early generations, the mutation operators make very large changes
in the relative ordering of the bin preferences. The effect measured by metric 3
consistently decreases throughout the run, unlike the other two metrics.

When a mutation swaps two preferences that are far apart in the preference
order, metric 3 measures a larger change. For example, if the 1st and 6th pref-
erences swap, then metric 3 measures a larger change than if the 1st and 2nd
preferences swap. In contrast, metric 1 measures the same change for both of
those examples, as only two preferences are different. From the results of metric
3, we can infer that the changes later in the run are more localised, and that there
is no significant further reduction in the severity of mutation after generation
15.

Figures 6-9 show the results per generation, but it is also interesting to con-
sider the distribution of the mutation effects, rather than just the mean averages.
Figures 10 and 11 show histograms of all the mutations from all generations in
all 50 runs, not including the mutations which cause no change. Figure 10 shows
the mutations measured with metric 2, and figure 11 shows the same mutations
measured with metric 3. It is interesting to note that metric 2 measures the
changes as mostly high, and metric 3 measures them as mostly low. From metric
2, we can say that the changes in the preference order mostly appear early in the
preference order, which is the most influential part. By far, the most common
difference value is 57, which represents a mutation which causes a change in the

Fig. 10. Histogram of metric 2 effect of
mutation.

Fig. 11. Histogram of metric 3 effect of
mutation.

policy where, for each piece, the first choice of bin will be modified. Even though
the first choices often change, figure 11 shows that in general the mutations rep-
resent just a few swaps of adjacent preferences. The difference between figures
10 and 11 show that the magnitude of the mutation depends upon which metric
is used to measure it.

8 Conclusions

We have presented a method for analysing the effects of the GP mutation opera-
tor in a normal GP run. It is applicable whenever the individual is a mathemati-
cal expression, with integer variables. Because of the integer input, the expression
can be represented as a matrix of values, representing the value returned for each
possible combination of inputs. In this study, the individuals were tree-based ex-
pressions which acted as index policies for the online bin packing problem. They
gave a heuristic score to each bin, and the highest scoring bin received the next
piece. The individuals therefore acted as policies for the handling of pieces when
they arrive, depending on the bins available at the time.

The results show that the mutation operator causes large changes in the
behaviour of the policies. It is generally not an operator that makes small changes
to improve a policy incrementally. Of course, some of the changes were small,
but the majority of mutations have a larger effect.

Over the course of the run, the effect of the mutation operator changes. Its
effect was larger at the beginning of the run, and reduces as the run progresses.
Our results indicate that more research is necessary into the the role of code
bloat in reducing the effect of mutation. The ‘replication accuracy’ theory of code
bloat [13] states that fit individuals which are large enough to not be affected
by mutation are more likely to survive in the population, as their behaviour is
unchanged from one generation to the next. The matrix analysis methodology
could be employed to test the effect of mutation on the phenotype of large and

small individuals. In the future, we also plan to use the matrix analysis tool to
analyse the effects of the crossover operator on the individuals.

There are many areas where this type of analysis tool could be used. For
example, it could be used during a GP run to vary the severity of mutation
depending on the effect it is having on the population. It could be used to
assess the effectiveness of bloat control methods, which usually operate simply
on the size of the trees. The analysis method presented here offers the chance to
measure bloat by the effects of the mutation operator. Once developed further,
this technique could be a valuable tool for effective parameter setting of the
genetic operators in GP.

References

1. Allen, S., Burke, E.K., Hyde, M.R., Kendall, G.: Evolving reusable 3D packing
heuristics with genetic programming. In: Proceedings of the ACMGenetic and Evo-
lutionary Computation Conference (GECCO ’09). pp. 931–938. Montreal, Canada
(July 2009), http://www.cs.nott.ac.uk/ mvh/papers/mvhgecco2009.pdf

2. Burke, E.K., Hyde, M., Kendall, G.: Providing a memory mechanism to enhance
the evolutionary design of heuristics. In: Proceedings of the IEEE World Congress
on Computational Intelligence (WCCI’10). pp. 3883–3890. Barcelona, Spain (July
2010), http://www.cs.nott.ac.uk/ mvh/papers/mvhcec2010.pdf

3. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Wood-
ward, J.: Exploring hyper-heuristic methodologies with genetic pro-
gramming. In: Mumford, C., Jain, L. (eds.) Computational Intelligence:
Collaboration, Fusion and Emergence, pp. 177–201. Springer (2009),
http://www.cs.nott.ac.uk/ mvh/papers/mvhGPasHH.pdf

4. Burke, E.K., Hyde, M.R., Kendall, G.: Evolving bin packing heuris-
tics with genetic programming. In: Runarsson, T., Beyer, H.G., Burke,
E., J.Merelo-Guervos, J., Whitley, D., Yao, X. (eds.) LNCS 4193, Pro-
ceedings of the 9th International Conference on Parallel Problem Solving
from Nature (PPSN’06). pp. 860–869. Reykjavik, Iceland (September 2006),
http://www.cs.nott.ac.uk/ mvh/papers/mvhppsn2006.pdf

5. Burke, E.K., Hyde, M.R., Kendall, G., Woodward, J.: Automatic heuristic
generation with genetic programming: Evolving a jack-of-all-trades or a mas-
ter of one. In: Proceedings of the 9th ACM Genetic and Evolutionary Com-
putation Conference (GECCO’07). pp. 1559–1565. London, UK. (July 2007),
http://www.cs.nott.ac.uk/ mvh/papers/mvhgecco2007.pdf

6. Burke, E.K., Hyde, M.R., Kendall, G., Woodward, J.: The scalability of evolved
on line bin packing heuristics. In: Proceedings of the IEEE Congress on Evo-
lutionary Computation (CEC’07). pp. 2530–2537. Singapore (September 2007),
http://www.cs.nott.ac.uk/ mvh/papers/mvhcec2007.pdf

7. Burke, E.K., Hyde, M.R., Kendall, G., Woodward, J.: A genetic program-
ming hyper-heuristic approach for evolving two dimensional strip packing heuris-
tics. IEEE Transactions on Evolutionary Computation 14(6), 942–958 (2010),
http://www.cs.nott.ac.uk/ mvh/papers/mvh-draft-ieeetec2010.pdf

8. Fukunaga, A.S.: Automated discovery of local search heuristics for satisfiability
testing. Evolutionary Computation (MIT Press) 16(1), 31–61 (2008)

9. Geiger, C.D., Uzsoy, R., Aytug, H.: Rapid modeling and discovery of priority dis-
patching rules: An autonomous learning approach. Journal of Scheduling 9(1), 7–34
(2006)

10. Gittins, J.C.: Bandit processes and dynamic allocation indices. Journal of the Royal
Statistical Society. Series B (Methodological) 41(2), 148–177 (1979)

11. Kenyon, C.: Best-fit bin-packing with random order. In: Proceedings of the Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 359–364 (1996)

12. Martello, S., Toth, P.: Lower bounds and reduction procedures for the bin packing
problem. Discrete Applied Mathematics 28(1), 59–70 (1990)

13. McPhee, N.F., Miller, J.D.: Accurate replication in genetic programming. In: Es-
helman, L. (ed.) Genetic Algorithms: Proceedings of the Sixth International Con-
ference (ICGA95). pp. 303–309. Morgan Kaufmann, Pittsburgh, PA, USA (15-19
1995), citeseer.ist.psu.edu/mcphee95accurate.html

14. Özcan, E., Parkes, A.J.: Policy matrix evolution for generation of heuristics. In:
Proceedings of the 13th annual conference on Genetic and evolutionary computa-
tion. pp. 2011–2018. GECCO ’11, ACM, New York, NY, USA (2011)

15. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming.
lulu.com, freely available at http://www.gp-field-guide.org.uk (2008)

16. Soule, T., Foster, J.A.: Removal bias: a new cause of code growth in tree based
evolutionary programming. In: 1998 IEEE International Conference on Evolu-
tionary Computation. pp. 781–786. Anchorage, Alaska, USA (5-9 May 1998),
http://citeseer.ist.psu.edu/313655.html

