Skip to main content

The Effect of Bloat on the Efficiency of Incremental Evolution of Simulated Snake-Like Robot

  • Conference paper
Book cover Genetic Programming (EuroGP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7244))

Included in the following conference series:

  • 1012 Accesses

Abstract

We present the effect of bloat on the efficiency of incremental evolution of locomotion of simulated snake-like robot (Snakebot) situated in a challenging environment. In the proposed incremental genetic programming (IGP), the task of coevolving the locomotion gaits and sensing of the bot in a challenging environment is decomposed into two subtasks, implemented as two consecutive evolutionary stages. In the first stage we use genetic programming (GP) to evolve a pool of morphologically simple, sensorless Snakebots that move fast in a smooth, open terrain. Then, during the second stage, we use this pool to seed the initial population of Snakebots that are further subjected to coevolution of their locomotion control and sensing morphology in a challenging environment. The empirical results suggest that the bloat no immediate effect on the efficiency of the first stage of IGP. However, the bloated seed contributes to a much faster second stage of evolution. In average, the second stage with bloated seed reaches the best fitness values of the parsimony seeds about five times faster. We assume that this speedup is attributed to the neutral code that is used by IGP as an evolutionary playground to experiment with developing novel sensory abilities, without damaging the already evolved, fast locomotion of the bot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huynen, M., Stadler, P., Fontana, W.: Smoothness within ruggedness: the role of neutrality in adaptation. Proceedings of the National Academy of Sciences of the United States of America 93, 397–401 (1996)

    Google Scholar 

  2. Wilke, C., Wang, J., Ofria, C., Lenski, R., Adami, C.: Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature 412, 331–333 (2001)

    Article  Google Scholar 

  3. Wagner, A.: Robustness, evolvability, and neutrality. FEBS Letters 579(8), 1772–1778 (2005)

    Article  Google Scholar 

  4. Galván-López, E., Poli, R., Kattan, A., O’Neill, M., Brabazon, A.: Neutrality in evolutionary algorithms... what do we know? Evolving Systems 2, 145–163 (2011)

    Article  Google Scholar 

  5. Ebner, M.: On the search space of genetic programming and its relation to nature’s search space. In: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999, pp. 1357–1361 (1999)

    Google Scholar 

  6. Vassilev, V.K., Miller, J.F.: The Advantages of Landscape Neutrality in Digital Circuit Evolution. In: Miller, J.F., Thompson, A., Thompson, P., Fogarty, T.C. (eds.) ICES 2000. LNCS, vol. 1801, pp. 252–263. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Yu, T., Miller, J.F.: The role of neutral and adaptive mutation in an evolutionary search on the onemax problem. In: GECCO Late Breaking Papers 2002, pp. 512–519 (2002)

    Google Scholar 

  8. Collins, M.: Finding needles in haystacks is harder with neutrality. In: GECCO 2005: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, vol. 2, pp. 1613–1618 (2005)

    Google Scholar 

  9. Beaudoin, W., Verel, S., Collard, P., Escazu, C.: Deceptiveness and neutrality: The nd family of fitness landscapes. In: GECCO 2006: Proceedings of the 2006 Conference on Genetic and Evolutionary Computation, pp. 507–514 (2006)

    Google Scholar 

  10. Doerr, B., Gnewuch, M., Hebbinghaus, N., Neumann, F.: A rigorous view on neutrality. In: IEEE Congress on Evolutionary Computation, CEC 2007, pp. 2591–2597 (September 2007)

    Google Scholar 

  11. Lobo, J., Miller, J.H., Fontana, W.: Neutrality in technological landscapes. In: Santa Fe Working Paper (2004)

    Google Scholar 

  12. Brameier, M., Banzhaf, W.: Neutral Variations Cause Bloat in Linear GP. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 286–296. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Gelly, S., Teytaud, O., Bredeche, N., Schoenauer, M.: Universal Consistency and Bloat in GP. Revue d’Intelligence Artificielle 20, 805–827 (2006)

    Article  Google Scholar 

  14. Poli, R., McPhee, N.F.: Covariant parsimony pressure for genetic programming. Technical Report CES-480, Department of Computing and Electronic Systems, University of Essex, UK (2008)

    Google Scholar 

  15. Kuyucu, T., Tanev, I., Shimohara, K.: Incremental genetic programming via genetic transpositions for efficient coevolution of locomotion and sensing of simulated snake-like robot. In: European Conference on Artificial Life, pp. 439–446 (2011)

    Google Scholar 

  16. Shipman, R.: Genetic redundancy: Desirable or problematic for evolutionary adaptation. In: 4th International Conference on Artificial Neural Networks and Genetic Algorithms (ICANNGA 1999), pp. 1–11 (1999)

    Google Scholar 

  17. Tanev, I., Ray, T., Buller, A.: Automated evolutionary design, robustness and adaptation of sidewinding locomotion of simulated snake-like robot. IEEE Transactions on Robotics 21, 632–645 (2005)

    Article  Google Scholar 

  18. Morowitz, H.J.: The Emergence of Everything: How the World Became Complex. Oxford University Press (2002)

    Google Scholar 

  19. Koza, J., Keane, M., Yu, J., Bennett, F., Mydlowec, W.: Automatic creation of human-competitive programs and controllers by means of genetic programming. Genetic Programming and Evolvable Machines 1, 121–164 (2000)

    Article  MATH  Google Scholar 

  20. Tanev, I., Shimohara, K.: Co-evolution of active sensing and locomotion gaits of simulated snake-like robot. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, GECCO 2008, pp. 257–264. ACM, New York (2008)

    Chapter  Google Scholar 

  21. Smith, R.: Open Dynamics Engine (2004)

    Google Scholar 

  22. Tanev, I.T.: Dom/xml-based portable genetic representation of the morphology, behavior and communication abilities of evolvable agents. Artificial Life and Robotics 8, 52–56 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tanev, I., Kuyucu, T., Shimohara, K. (2012). The Effect of Bloat on the Efficiency of Incremental Evolution of Simulated Snake-Like Robot. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds) Genetic Programming. EuroGP 2012. Lecture Notes in Computer Science, vol 7244. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29139-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29139-5_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29138-8

  • Online ISBN: 978-3-642-29139-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics