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Abstract. The efficient specification of aesthetic measures for music as
a part of modelling human conception of sound is a challenging task
and has motivated several research works. It is not only targeted to the
creation of automatic music composers and raters, but also reinforces
the research for a deeper understanding of human noesis. The aim of
this work is twofold: first, it proposes an Interactive Evolution system
that uses Genetic Programming to evolve simple 8-bit melodies. The
results obtained by subjective tests indicate that evolution is driven to-
wards more user—preferable sounds. In turn, by monitoring features of the
melodies in different evolution stages, indications are provided that some
sound features may subsume information about aesthetic criteria. The
results are promising and signify that further study of aesthetic prefer-
ence through Interactive Evolution may accelerate the progress towards
defining aesthetic measures for sound and music.

1 Introduction

Various systems have utilized Interactive Evolution (IE) through Genetic Pro-
gramming (GP) [10] as a means for automatic music composition and sound
synthesis. In parallel, an intense research effort [ITJ12] is taking place for speci-
fying a set of objective aesthetic criteria, if possible. The specification of aesthetic
criteria for music and sound is important not only for the automatic composition
of musical pieces, but also for the creation of efficient automatic music raters,
i.e. systems that produce human-like evaluations of musical pieces automati-
cally. Several works have provided interesting results towards this direction by
examining symbolic features of musical compositions [13]. In parallel, evolution-
ary techniques have been used for sound synthesis but they have mainly focused
on creating synthesized sounds that assimilate certain target sounds [4].

In [22123] two systems are presented where Genetic Algorithms (GA) and
GP are combined to modify existing symbolic music compositions and create
novel ones. The potential of inducing objective aesthetic measures for symbolic
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compositions through subjective IE systems with the utilization of Artificial
Neural Networks (ANNs) has been discussed in [9]. Some works have attempted
to drive evolution with ANNs [I3I21] or Self Organizing Maps [14] trained on
specified symbolic music features, as automatic fitness raters. The interested
reader is referred to [2] for a review of symbolic music composition with genetic
techniques.

The work at hand studies the field lying in the junction of IE and aesthetic
measures for sound. Specifically, an IE system based on GP is presented which
evolves functions belonging to a certain class and produce interesting sound
output with structural coherence in multiple musical time scales. The evolution
of these functions through an interactive scheme is indicated to be a promising
methodology for exploring the sound characteristics that distinguish preferable
melodies.

The motivation of the work at hand along with a brief description of these
functions is presented in Section[2l Section [3] presents the IE system, its interface
and refers to the features that we monitored as carriers of aesthetic information.
In Section M the results obtained through subjective are presented, which show
that the system leads the evolution towards more pleasing melodies and provide
strong indications that some features may incorporate aesthetic meaning. The
paper ends with conclusions and pointers to future work in Section Bl

2 DMotivation and Background Material

For sound synthesis, GP has been used to evolve sinusoidal oscillators and fil-
ters to simulate a target sound [5]. An IE for sound synthesis has been utilized
for the project described in [I6]. This approach uses functions to directly shape
waveforms, which are evolved according to fitness values provided by users. The
functions used to directly sculpture waveforms “produced little more than irritat-
ing noise and evolved (if at all) very slowly” [16]. On the other hand, a class of
functions that create waveforms with pleasant and interesting sonic output has
recently emerged and is rapidly gaining attention among the retrograde 8-bit
music movement [6/7]. These functions have been mostly used to create 8-bit
music, similar to the music created with Pulse Code Modulation (PCM) sound
systems of early Personal Computer (PC) systems.

The sonic output of the aforementioned functions presents structural organi-
zation from the musical time scale of micro to meso, even sometimes intruding
the borders of macro, as described in [17]. This organization allows the creation

! Time scales of music from micro to macro as defined in [I7]: Micro: Sound particles
on a time scale that extends down to the threshold of auditory perception (measured
in milliseconds). Sound object: A basic unit of musical structure, generalizing the
traditional concept of note to include complex and mutating sound events on a
time scale ranging from a fraction of a second to several seconds. Meso: Division
of form. Grouping of sound objects into hierarchies of phrase structures of various
sizes, measured in minutes or seconds. Macro: The time scale of overall musical
architecture of form, measured in minutes or hours, or in extreme cases, days.
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Algorithm 1. Construction of an 8-bit waveform of 8000Hz sample rate through
a function f(t)

Input: i) A functional expression f(¢) and ii) time duration in seconds (d)
Output: The waveform of an audio signal with d seconds duration
1: for t =1 to d8000 do
if f(t) ==NaN then
q(t) <0
else
q(t) + mod(f(t),256)
end if
s(t) « 290 —1
end for

N

of an IE system that attracts the attention of the human rater (user). Conse-
quently, subjective evaluations can be provided regarding multiple musical time
scales, thus enabling us to measure aesthetic aspects of sound that were pre-
viously undetected. Furthermore, a deeper exploration of the “compositional”
potential of these functions can be realized through GP.

The aim of this work is twofold. The first aim is to create an IE system that
evolves functions which create sounds organized in melodic parts through GP.
Consequently, this aim may lead to a report on results about the challenges
faced towards this direction. Secondly, we aim at providing a first analysis on
the aesthetic potential that some sound features may incorporate. These features
move beyond sound object and below meso time scales, thus combining the
analysis performed so far on two different fields: synthesized notes and automatic
algorithmic compositions of symbolic music respectively.

The class of functions which create waveforms with structural coherence in many
levels, from sound texture to musical composition, has recently emerged and rapidly
gained the attention of many programmers—composers [6]. These functions have
mainly been used to create 8—bit compositions, producing music content equiva-
lent to the early PCM digital coding in terms of sampling frequency and quantiza-
tion resolution. Also, these functions may have arbitrarily many variables and be-
sides the standard arithmetic operators (“+7, “=" “¥”  «/”) they also use
operators defined within the C language syntax. In this work however, we use a
single variable that is the most usual case in experimental applications of these
functions so far. Furthermore, we have experimented with the subset of the avail-
able C operators which are logical bitwise AND (&), OR (|), XOR (), bitwise left
shift (<<) and bitwise right shift (>>). For a thorough analysis on the sound
properties of these functions, the interested reader is referred to [7].

The construction of the waveforms through the examined functions is de-
scribed in Algorithm [Il while a graphical example is given in Figure [l As men-
tioned previously, these waveforms have an 8-bit resolution and a sample rate
of 8000Hz. Outlining the way that the waveforms are created, we set an in-
teger counter, ¢, that takes values between 1 and d8000 and represents the
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generated music sample indices. d is the desired duration of the sound output
in seconds. Then we evaluate the functional expression, f(t) € Z, for every
t € {1,2,...,d8000}. During the computation of f(t), division by zero is as-
sumed to provide a value of 0. Since we consider 8-bit audio depth the available
digital audio sample levels are 28 = 256, thus we simulate the wrapping over-
flowing behavior of 8-bit computer systems by forming the “quantized” sequence
q(t) = mod(f(t),256) for t € {1,2,...,d8000}. Finally, the waveform s(¢) is
calculated by normalizing ¢(¢) in the range [—1, 1] by s(¢) = 2 (¢(¢)/255) — 1.
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Fig.1. Example of the transformation of the sequence f£(t) =

t*(£>>8% (£>>15|t>>8)&(20] (£>>19)*5>>t1£>>3)), te  {1,2,...,100} to q(¢)
and finally to the waveform s(¢)

3 The Proposed Approach

In this section we explore the potential of extracting possible features towards
finding aesthetic measures through an interactive evolution system. Three types
of features were examined as carriers of information that would expose aesthetic
meaning. These three categories are Waveform Information, Spectral and Cep-
stral Features and Tree—based Features. With waveform information we measure
the information capacity of the quantized sequences that form the final wave-
form. With spectral and cepstral features we monitor some frequency domain
aspects which may incorporate aesthetic meaning. For additional information
about these features the interested reader is referred to [24]. Finally, with tree—
based features we intend to capture structural characteristics of the tree rep-
resentation of functions, regarding size and operators. Especially with operator
entropy we try to capture diversity and homogeneity of the operator distribu-
tion. An analysis on whether or not some operations produce more “pleasing”
art has previously been presented in [3], with an analysis on automatically cre-
ated images. A short description of the aforementioned features along with their
acronyms is provided in Table [l

The TE system uses GP to evolve the functional expressions discussed in
Section Bl The fitness value of each individual is provided by the user, after
hearing the sound output (phenotype) it produces for as long as she/he wishes.
Some sound outputs have interesting melodic content, with several melodic and
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Table 1. The features examined as carriers of aesthetic information

Waveform information
Fractal Dimension (FD) Fractal dimension of the quantized se-
quence with the Higuchi [8] algorithm
Shannon Information Etropy (SIE) Shannon Information Entropy [19] of the
normalized (to unit sum) histogram of the
quantizes sequence
Compressibility through compression rate Ratio of the size of the compressed quan-
(CR) tized sequence with the Lempel-Ziv al-
gorithm [26] over the size of the uncom-
pressed sequence
Spectral and Cepstral features [24]

Spectral Centroid (SC) The “center of weight” of the spectrogram

Spectral Centroid Standard Deviation Standard deviation of the the spectral

(SCstd) centroids within short time segments (of
0.1299 seconds)

Mean Spectral Flux (SFm) The mean value of spectral fluxes (Eu-

clidean distances of the spectrogram of
short consecutive segments) of segments of
0.1299 seconds

Spectral Flux Standard Deviation (SFstd) The standard deviation of the aforemen-
tioned spectral fluxes

Spectral Roll-off (SR) The frequency below which the 85% of the
total energy of the spectrogram is concen-
trated

Spectral Roll-off Standard Deviation Standard Deviation of the Spectral Roll-

(SRstd) offs of short consecutive time segments (of

0.1299 seconds).

Mel-Frequency Cepstral Coefficients En- the Shannon Information Entropy of the
tropy (MFCCe) normalized (to unit sum) histogram of the
Mel-Frequency Cepstral Coefficients
Tree—based features

Maximum Tree Depth (MTD) The maximum depth of the tree represen-
tation of an individual
Number of Tree Nodes (NTN) The number of nodes in the tree represen-

tation of an individual
Operator Probability Density Function The PDF of the operators in an individual
(PDF) (OpPDF)
Operator PDF Entropy (OpE) The Shannon Information Entropy of the
OpPDF of each individual.
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rhythmic variations, while others produce rather uninteresting music forms,
with dull repetitions. Since the user may not be sure about the variation po-
tential of each melody, she/he should spend a considerable amount of time
hearing repeating motifs, a fact that increases fatigue. For this reason, several
visualizations are provided in parallel with the sound playback so that the user
may anticipate the expected variation potential of the individual she/he hears.
These visualizations include the spectrogram, the Mel-Frequency Cepstral Co-
efficients (MFCCs) and the plot of the quantized sequence (¢(t)) among others.
Figure @l illustrates a screen shot of the visualizations that are produced during
the playback of an individual.
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Fig. 2. Screen shot of the visualizations during the playback process

The evolutionary process follows the standard GP methodology. The indi-
viduals of the current population are going through a selection stage, where the
parents of the next generation are specified. Three versions were created with dif-
ferent selection schemes, two of which are the standard roulette and tournament
methods. For a thorough description of the genetic operators and the selection
procedures mentioned so far, the reader is referred to [I5]. The third selection
scheme was an extreme methodology that we call “elitist”, where only the fittest
individuals among the current and former generation in every step were selected
as parents. The motivation behind this approach was towards reducing the user
fatigue caused by emerging offspring that produced rather noisy or uninterest-
ing phenotype. The tradeoff was the reduced potential of extremely novel audio
content. User fatigue in IE systems, and especially in systems that produce art,
is an important factor since it does not only affects the user’s engagement to the
rating task, but may consequently mislead the evolutionary process [25].
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The selected individuals provide offspring for the next generation through
the subtree crossover and the subtree mutation operators, also known as head-
less chicken crossover [I] operator. The genetic operator was selected randomly
with crossover having 0.9 and mutation 0.1 probability being chosen. After exper-
imenting with the genetic operators, we observed that individuals of extremely
small and large depth tend to produce uninteresting and noisy sound respectively.
For this reason we employ depth constraints to the offspring by re—performing
the selected operation with the selected individuals until the depth of their off-
spring was between 3 and 10.

Population initialization was firstly designed to be random, but the produced
individual phenotypes were most commonly uninteresting or noisy. Such an ini-
tialization would hardly produce interesting findings, since the rating procedure
would just discard noisy individuals. The initial population was thus chosen to
be constituting of individuals that are randomly chosen among a set of prede-
fined individuals with certified melodic attributes. In this way, the user is able
to drive the evolutionary process towards her/his subjectively chosen direction.
To the presented IE system, each user is able to select the number of individuals
in each generation. For the presented results however, the users were advised
to choose 4 individuals, which seems to be a good compromise between popu-
lation diversity and evolution potential of the proposed IE system. Finally, the
implementation of the IE system was developed in MATLAB using a modified
version of “GPLAB” [20]. In order to make the system as easy—to—use as possi-
ble, the communication between the user and the system was performed through
a Graphical User Interface (GUI).

4 Results

The results presented in this work comprise of statistics gathered among 10
participants—users on their first trial of the IE system. No record with personal
data about the users was kept, but we can mention that most of them (7 out of
10) were playing a musical instrument, from whom the 4 had at least 5 years of
music education. The participants were not aware of the purposes of the research,
and were not informed about the way that system functioned before they started
their trial. The only information they were provided had to do with their inter-
action with the system through the GUI. Before the beginning of each trial, each
user heard three sample melodies to get accommodated with the music style and
sound textures of the 8-bit melodies. They were advised to rate each melody ac-
cording to their taste and to feel free to quit the program any time they liked. The
hearing process was controlled by the user, who was prompted to stop the melody
any time she/he wished. Before the beginning of each trial, the users were advised
to consult the visualizations for determining the alteration potential of the melody
they heard. After hearing each melody, a rating dialog was appearing prompting
the user to rate the melody just heard. The rating scale was the integer values
between 0 and 10, with 0 being the worse, and the participants were advised to
freely rate the individuals according to their personal taste.
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4.1 Convergence to Subjective Optima

We have divided the participants in three groups so that all three selection ver-
sions of the system were tested. Thus, 3 participants used the “Flitist” version,
4 participants used the Roulette and 3 the Tournament version. Table 2] demon-
strates the overall improvement of the user ratings from the initial to the last
population each user rated. The FI and FL indices are used when we refer to
fitness ratings in the initial and the last population respectively, while the GN
indicates the number of generations. The mean value of the aforementioned quan-
tities is denoted u, their standard deviation by o, while max and min denote
their maximum and minimum values respectively. The relative fitness change
of the means from the initial to the last population is denoted with 7y, hence
ry = (prL — pr1)/per-

The positive value of 7 for every version shows that the mean fitness value
increased from the initial to the final population, which reveals that the proposed
system captures, at some extent, the subjective aesthetics of the user. The best
relative improvement is recorded for the Tournament version with 0.543 ratio.
It has to be noted though that one of the three users of the “FElitist” version
evolved one generation, which he rated worst than the initial population and
then quit the trial. The maximum mean number of generations was also achieved
for the Tournament version. The standard deviation of the ratings in the final
population is decreased in relation to the initial population, which means that
the fitness of all individuals in the final population are close.

Table 2. Results for the improvement of ratings between the initial and final popula-
tions for all three versions of the IE system

Initial population Last population
UGN MINF1 gF1  OF] MaXpl MiNFL fMFL OFL MAaxXpL Ty
“Elitist” 4.333 0 4.4172.151 7 2 5.1672125 9 0.170
Roulette 6 0 3.4382.190 7 1 4.2501.880 7 0.236
Tournament 9 0 29172811 7 1 4.5001.679 7 0.543

4.2 Towards Aesthetic Measures for Sound

The melodies of the individuals that were candidates as members of the initial
population were collected from the internet [6]. These melodies have been con-
structed by programmers—electronic music composers with experimentation on
possible combinations of operators and constants. In the previous paragraphs
we observed that the evolution of these melodies with GP produced new ones
which were more preferable by the users. We try to capture the impact of this
shift towards more preferable sounds by monitoring the change in the features
referred in Table[Il Table [l demonstrates the mean value of the waveform, spec-
tral and cepstral features, as denoted in Table[I] of the individuals in the initial
and the last population for the trials of all users. Furthermore, it exhibits their
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relative change, which is also illustrated in Figure B] (a). The relative changes of
the tree—based features are depicted in Figure Bl (b) and (c). The relative change
of a value from step i, v;, to step j, vj, is defined as r = (v; — v;)/v;.

Table 3. The mean values of the waveform, spectral and cepstral features for the
melodies in the initial and the last population of the trial of all user and their relative
changes. The features that have a relative change above 0.2 in magnitude are marked
with boldface numbers.

Waveform info Spectral and Cepstral features
FD SIE CR SC SCstd SFm SFstd SR SRstd MFCCe
Init. pop. 1.345 3.628 0.030 1083 261.3 1.85 1.105 2004 476.4 3.012
Last pop. 1.635 2.581 0.020 998.2 3524 0.51 0.427 1894 659.2 3.036
Rel. change 0.216 -0.289 -0.333 -0.078 0.349 -0.724 -0.614 -0.055 0.384 0.008

The small number of participants does not allow for safe conclusions to be
drawn. However, the presented results are evidential about the potential impact
of some features on the aesthetic properties of sound, since their relative change
is considerable. For example, the spectral flux mean and standard deviation
(SFm and SFstd) decreased impressively, with a parallel considerable increase
in the standard deviation of spectral centroids (SCstd). This fact reveals that
the intense spectral modulations within 0.1299 seconds, which are captured by
spectral flux, are not pleasant. The increase in SCstd on the other hand, shows
that more intense spectral modulations are preferred, but in a larger time scale.
The spectral roll-off features (SR and SRstd) could probably be discarded, since
they follow the behavior of the spectral centroid features.

Interesting results were also provided by the information entropy and com-
plexity measures. The compression rate (CR) decreased, indicating that wave-
forms which exhibit less repeating patterns are preferred. On the other hand, the
Shannon Information Entropy (SIE) of the histogram of the quantized sequence
(g(t)) that formed the waveform was reduced, outlining “sharper” histograms,
with less amplitude bins being used. The fractal dimension (FD) was also in-
creased to 1.635, which is a value approximating golden ratio (1.618). The rela-
tion of symbolic music characteristics and the golden ratio has also been noticed
n [12]. By combining these results, one could claim that there is a structural
organization of music in multiple levels which may be expressed by the golden
ratio.

Figure [ (c) illustrates that tree characteristics like the mean tree depth
(MTD), the mean number of tree nodes (NTN) and the operator entropy (OpE)
did not present important change. Figure Bl (b) demonstrates that the bitwise
“right shift” (>>) and the bitwise “and” (&) operators were more preferable, while
the utilization of arithmetic operators was reduced. The -1 value in the relative
change of the bitwise “left shift” (<<) operator occurred because there was only
one such operator in the initial population among all trials, which diminished.
Finally, Figure Bl (d) depicts an example of a user rating behavior, i.e. the cir-
cles in the graph correspond to the mean rating value at each generation, while
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Fig. 3. (a) Relative change of waveform, spectral and cepstral features, (b) relative
operator changes, (c¢) relative change of tree characteristics and (d) a typical rating
example of a user for each generation, with circles depicting the mean rating and error
bars their standard deviation.

the error bars around the mean depict the standard deviation. This behavior is
similar among most of the users. Specifically, at the first stages of evolution the
ratings decreased, before increasing again to reach high rating values at the last
stages. Some example melodies together with information about the generation
they appeared and the fitness value they were provided by a participant during
a trial can be found at [18].

5 Conclusions

This work presents an Interactive Evolution (IE) system that uses Genetic Pro-
gramming (GP) to evolve 8-bit melodies produced by a certain class of functions.
Moreover, a discussion about the potential use of this system for capturing aes-
thetic criteria for sound was carried out. Three versions were tested that included
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different selection schemes. Results are reported on trials performed by 10 par-
ticipants on all three versions. The participants, being not aware of the aims
of this research, rated the individuals—melodies in all generations subjectively.
The results show that all three versions evolved the initial melodies to new ones
that were more pleasing for the majority of the participants. Towards establish-
ing aesthetic measures for sound, we examined features regarding the waveform,
spectral, cepstral and tree-based characteristics of the individuals in each gen-
eration. The results indicate that this direction could produce fruitful findings
about musical structure and sound in many levels.

As a future work, we initially intent to create a web platform for this IE sys-
tem in order to make it accessible to many participants. Additional information
about each participant will also be requested, including musical experience, age
and education among others. Such an analysis would also provide insights about
the connection of aesthetic criteria to the experiences of a person. Furthermore,
future work should also include experimentation on making the evolutionary
process more effective and interesting for the user. For example, we could em-
ploy a similarity testing procedure between the phenotypes of offspring and the
population in the gene pool to prevent the appearance of extremely similar indi-
viduals from generation to generation. Finally, we could amplify the interactive
part of the evolutionary process by letting the user decide about certain aspects
of the evolution, from the choice of the genetic operators to be applied to the
selection of individual(s) to be genetically modified.
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