Optimal dimensioning of pipe networks: the
new situation when the distribution and the
transportation functions are disconnected

Bouchra Bakhouya!? Daniel De Wolf!3
"nstitut des Mers du Nord 2leseg  *HEC Ecole de gestion ULG
Université Catholique de Lille Université du Littoral Cote d’Opale
3 rue de la digue 49/79 Place du G de Gaulle, BP 5529
59.800 Lille, France 59 383 Dunkerque Cedex 1, France
Email: b.bakhouya@ieseg.fr Email: daniel.dewolf@univ-littoral.fr
Abstract

In [9], De Wolf and Smeers consider the problem of the optimal
dimensioning of a gas transmission network when the topology of the
network is known. The pipe diameters must been chosen to minimize
the sum of the investment and operating costs. This two stage prob-
lem was solved by application of the bundle method for monsmooth
optimization.

This model does not reflect any more the current situation on the
gas industry. Today, the transportation function and gas buying func-
tion are separated. This work considers the new situation for the trans-
portation company. The objective for the transportation company is to
determine the flows in the network that minimize the energy used for
the gas transport. This corresponds to the minimization of the power
used in the compressors. We introduce in the investment problem new
decision variables, namely the mazximal power of the compressor. We
present here first results obtained on the belgian gas network and on a
realistic network corresponding to a part of the french network.



1 Introduction

De Wolf and Smeers [9] consider the problem of the optimal dimensioning of
a gas transmission network when the topology of the network is known as a
two stages problem: investment in pipe diameters in the first stage, network
optimal operations in the second stage.

The second stage problem considered by De Wolf and Smeers [10], namely
the problem of the gas transportation through a network of pipelines, was
formulated as a cost minimization subject to nonlinear flow-pressure rela-
tions, material balances and pressure bounds. This model does not reflect
any more the current situation on the gas market. Today, the transportation
and gas buying functions are separated. For example, on the Belgian gas
industry, the transport is devoted to Fluxys company and several actors are
in charge of gas supplying. This work considers the new situation for the
transportation company.

In [6], the new situation for the exploitation model of the transportation
company was presented. The objective for the transportation company is to
determine the flows in the network that minimize the energy used for the
gas transport. This corresponds to the minimization of the power used in
the compressors. In order to reflect this new situation, a modelisation of the
compressors was introduced in the exploitation model of De Wolf and Smeers
[10].

We present here first results concerning the optimal dimensioning model.
In [9], De Wolf and Smeers only consider the pipe diameters as investment
variables. We add the maximal power of compressors as investment variables.

As in Andr et al [2], the new model presented in this paper consider the
trade-off between the minimization of capital expenditures and the minimiza-
tion of operational expenditures. In other terms, this model could balance
any decrease in investment of pipelines with an increase of compressor power
(and conversely) regarding the costs.

The paper is organized as follows. Section 2 presents the new investment
problem formulation with the new investment variables (maximal power of
compressors). Section 3 examines the mathematical properties of the prob-
lem. Section 4 presents the solution procedure. Section 5 presents the nu-
merical results of the application to the belgian and french network. Finally,
some conclusions are given in Section 6.



2 Problem formulation

We consider first the investment problem. The transportation company
which must decide the pipe diameter for each new pipe, and the maximal
power for each compression station, in order to minimize the sum of

e investment cost in diameters and compression power;

e network operations costs, namely the compressors used power.
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Figure 1: Network representation

Figure 1 gives the network representation through a graph G = (N, A)
where N is the set of nodes, and A is the set of arcs (pipelines, compressors
or valves). We consider three types of arcs. The set of arcs A is thus divided
in three subsets, namely:

e A, the subset of passive arcs corresponding to pipelines,
e A_, the subset of active arcs corresponding to compressors,

e A,, the subset of arcs corresponding to valves.

2.1 The investment problem

We use the following notation for the investment variables:

D;;  notes the pipe diameter, V(i,j) € A,,

P;;  notes the maximal power of compressor, ¥(i,j) € A..

Let us know explain the corresponding investment costs. For the in-
vestment costs in compressors stations, we suppose a fized installation cost,
noted k¢, and a marginal cost proportional to the installed power, ki P;;. The
total investment cost in compression stations is thus considered as a linear
function of the installed powers:

Cino(P) = Y (ke +kPy) (1)
(ivj)eAC
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For the investment costs for pipes, we consider, following De Wolf and Smeers
9], the sum of three terms :

e the pipe acquisition cost which is proportional to the steel quantity:
k ALiijj
e the coating costs which is proportional to the pipe diameter:
ko LijDij
e Pipe posing cost: which has empirically the following form:
(kp + kpD7;) Ly

The total investment cost in pipes is thus a quadratic function of the pipes
diameters of the following form:

Cino(D) =Y [kp+kpDij + k?yDD?j]Lij (2)

(L])eAP

Let us know explains the constraints of the investment problem. We
relax the constraint that the pipe diameters must be chosen in a set of discrete
values to avoid the additional difficulty of solving a non linear non convex
problem in integer variables. The same assumption is made on the maximal
power of compression stations. We only impose a mazimal pipe diameter:

0D;; D

and an upper bound on the maximal power of the compressors :
0P;; P

2.2 Formulation of second stage problem

The second stage problem was already formulated in Bakhouya and De Wolf
[6]. We summarize here this formulation.



The operation variables are the following :

fi;  note the gas flow in each arc (i, 7) € A,
Wi;  note the power dissipated in the compressor (i, j) € A,
p;  note the gas pressure at each node 7 € N,

s;  note the net gas supply in each node i € N.

Note that the flow variables f;; can be negative for pipes (a negative flow f;;
means that the flow —f;; goes from node j to node ¢). Note also that the
net supply variables s; can be negative (a negative net supply s; means that
there is a demand of —s; at node ).

The objective function corresponds to minimization of the energy used
in the compressors:

min Q,p = « Z L

Wy 3
(i,j)€Aq 07 gntherm ’ ( )
where « is the unitary energy price (in Euro/kW) and nerm, the thermic
efficacity.

The constraints of the second stage problem are the following. At
a supply node i, the gas inflow s; must remain within take limitations
specified in the contracts:

S$i <8 <5

At a demand node, the gas outflow —s; must be greater or equal to d;, the
demand at this node.

The gas transmission company cannot receive gas at a pressure higher
than the one insured by the supplier at the entry point. Conversely, at each
exit point, the demand must be satisfied at a minimal guaranteed pressure:

Pi <pi <pi

The flow conservation equation at node i (see Figure 2) insures the gas
balance at node :
Yo fu= > futsi
jl(@.g)eA Jl@Gi)eA
Now, consider the constraints on the arcs. For an arc corresponding to a
pipe, the relation between the flow f;; in the arc and the pressures at the two
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Figure 2: Supply node ¢

ends of the pipe p; and p; is of the following form (see O’Neill and al.[13]):

sign(fi;) f5; = Co (07 —p3), V(i j) € 4, (4)
where Cj; is a parameter depending on the pipe length L;; and on the pipe
diameter, D;j:

vol_=Y  — K..DZ2 5

4 \ ARTL;; R (5)

For an active arc corresponding to a compressor, the following expression

of the power used by the compressor can be found (See André et al [3], Babu
et al [5] or Seugwon et al [12]):

Wi =mnfi ((?)w - 1) V(i, j) € Aq (6)

(3

OZ“:W

The power used in the compressor must be lower than the maximal power,
noted F;;:
Wij S Pij7 V(Z7]) € Ac

There is also an upper bound on the maximal pressure increase ratio:

i< s (i, 5) € A,

)

For active arcs, the direction of the flow is fixed:

fij Z 07 V(Z,j) € Ac



2.3 Two stages problem formulation

We can summarize the formulation as follows:

rnin(D,P) Cmv(D> + sz)(P> + Qop(D7 P)

Cmv(D) = Z(i,j)EAp [kP + k%’DlJ + k:‘—{’D’LQj]LU

Cino(P) = X (i jyean (ke + ko Fij)
1
Qop(D,P) = min « — W,
(f757p7W) (i,j)EAa O; 977th67‘m

Z fij: Z fji—FSi Vi€ N
Jl(i,5)eA Jl(G,5)eA
sign(fiy) f2 = Ky D5 (0! —p2) W(i.j) € A, (7)

Y2
— Pj -
Wij = 7 fij ((p) — 1) V(i, j) € Ae
5 <8 <5 Vie N
s. t. -

Pi S pi < Di Vie N
Jij =20 V(i,j) € Ae
?§73 v(ZL])GAc
VV’L'j S P’L’j V(Z,]) € Ac

3 Mathematical properties

To illustrate the mathematical properties of the operations objective function
Qop(D, P), we consider the simple network illustrated at the Figure 3. All
the data of the problem are also given on the Figure.

There is one supply node: the node 1. We note by s; the supply at this
node, and the maximal pressure at this node is noted p,;. There is also one
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Figure 3: Simple network

compressor corresponding to arc (1,2). We note by fio the flow in this arc,
and by Wi, the used power. There is also one pipe corresponding to arc
(2,3). We note by fo3 the flow in this arc, and by Dss the corresponding
diameter. Finally, there is also one demand node: the node 3. We note the
demand at this node by d3. We consider a minimal pressure at this node :

Ds-
From the node balance equations, we can immediately deduce that:

s1 = fiz = faa = d3=400

The equation corresponding to the compressor is of the following form:

0,236
Wiy = 0,167 ((?) - 1) fi2 (8)
1

since the equation corresponding to the pipe as the following expression:

f33 = —=—D3s(p5 — p3) (9)

Consider as First case, the case where Ds3 is enough to avoid the use of
the compressor. The limit case corresponds thus to:

p1 =P, = 80(=pe) and p3 = py =30
Equation (9) can thus be rewritten as:

1075
1,1

Y

400% = D3,(80% — 30%)

The resolution of this equation gives the minimal value of the diameter of
the pipe that avoids the use of the compressor:

Dsys =20

Consider know as second case, a pipe diameter Dy3 lower than 20. In
this case, the compressor must be used. We can also suppose that the gas
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will be delivered at node 3 at a pressure corresponding to the lower bound.
Equation (9) can thus be rewritten as follows:

107°
1,1

)

400% = == Diy(p3 — 30)

Solving this equation with respect to p, variable gives the pressure at the
end of the compressor:

4002
p2=4/30%2 + —-1,1-10°
D3

We can suppose that the gas pressure at node 1 corresponds to the maximal
pressure. By (8), we can compute the compressor used power as follows:

Do 0,236
Wiy = 0,167  (22) " —1)400
v ((80) )

Figure 4 plots the compressor used power as a function of the pipe diame-
ter. We can conclude that the objective function of the second stage problem
(the power used in compressor) is not differentiable as a function of the
first stage variables (pipe diameters). In fact, at point Deg = 20, the right
hand side and left hand side partial derivative differ.

plot.eps scaled 1200

Figure 4: Used power as a function of the pipe diameter

We shall now consider the resolution of the two stage problem formulated
in (7).

4 Solution procedure

To solve the investment problem, we propose the following solution proce-
dure:

1. We start from a feasible solution in terms of the investment variables
D;; and P;;. For the two practical study cases (namely the belgian gas
network and a realistic network corresponding to a part of the french
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network), we start from the actual diameters increased by 20 % and
from the actual maximal powers of compression stations increased by

20 %.

. As explained in De Wolf et Bakhouya [6], we solve an auziliary convex
problem to achieve a good starting point for the second stage
problem. This problem is inspired from Maugis [11]:

min h(f,s) = Z Lfis sz

2
e 30
Jl@j)eA (e

It can be shown (See De Wolf and Smeers [8]) that problem (10) has a
physical interpretation. Namely, its objective function is the mechani-
cal energy dissipated per unit of time in the pipes. This implies that the
point obtained by minimizing the mechanical energy dissipated in the
pipes should constitute a good starting point for the complete problem.

. We solve the second stage problem starting from the solution of the
problem (10). We obtains thus a feasible solution for the complete
problem.

. Then, we solve the complete problem all in one problem from this
feasible point. Namely, we replace in the two stages formulation of the
investment problem (7), the operations function by its expression and
we include all the constraints of the second stage problem in the first
stage problem. We obtain thus the one stage problem given by (11).
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. / "N M2
(D.Pfoap. W) 2 [k +kpDij + kp DylLy

(,5)€Ap ]
+ Y (ke+kePy)+a ) oo Wi
(1,)€Aq (i,j)€Aq Ntherm
0D;,D V(i,§) € A,
OBJP \V/(l,j) €A,
Z fij: Z fji—FSi Vie N
jlE.5)eA il(Gi)eA

sign(fij) 5 = KD (p; —p2) V(i j) € A,

72 (11)
Wij = fi ((ij) - 1) V(i, j) € Aq

s. t. i
5, <5 <35 Vie N
Pi <pi <Di Vie N
fi; >0 V(i,j) € A.
< V(i j) € Ac
Wij < Py V(i j) € Ac

The solver we have used is GAMS/CONOPT with used of DNLP sub-
routine to take into account the non-differentiability. Let us now come to
the practical study cases.

5 Numerical results

Our first study case is the belgium gas transport network. The main char-
acteristics of the belgian gas network (See Figure 5) are the following:

e there are 24 passive arcs, and 2 compressors,
e there are 9 demand nodes, 6 supply nodes, and 20 single nodes,

e there are no cycle on this network.

belnet.eps scaled 900

Figure 5: Belgian gas transmission network
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As previously said, we use as starting point, the actual network and for
the passive arcs, we increase the current diameter by 20 %, since for active
arcs, we increase the mazimal power by 20 %,

The resolution of problem (11) for the belgian gas network by GAMS/CON-
OPT gives the following conclusions:

e The solver increases some diameters in order to reduce the use of the
two compressors.

e The solver keeps the mazimal power of compression stations unchanged.

We can conclude that the model prefers to increase the capacity of the
passive arcs, namely to increase the pipe diameters, in place of increasing
the capacity of the active arcs, namely in place of increasing of the
maximal power of compression stations. This is the first important result
of this work.

Our second study case concerns a realistic cycled network which cor-
responds to a part of the french network. The main characteristics are the
following:

e there are 41 passive arcs, 7 compressors, and 10 valves,
e there are 19 demand nodes, 6 supply nodes, and 56 single nodes,
e there are 3 cycles on this network.

For this second case study, we have received the data from Gaz de France
for a period from 2006 to 2021. Two cases must be distinguished:

o (Case of years 2006 to 2011: for these years, the actual capacities are
enough to transport all the demand. The same conclusions can be
established as for the belgian gas network. Namely, the solver increases
some diameters in order to reduce the use of the compressors but it
keeps the maximal power of compression stations unchanged.

e Case of years 2012 to 2021: for these years, a reinforcement of the ca-
pacities of the network is needed. In this case also, the model prefers
to increase the capacity of the passive arcs (the pipe diameters)
in place of increasing the capacity of the active arcs (the max-
imal power of compression stations). But the simulations for these
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years have emphasized the /em role of another important design vari-
able, namely the maximal flow in the compression stations. The
maximal power was never increased but we have to increase the max-
imal flow in the compression station to take into account the increase
of demand. This is the second main result of this work.

6 Conclusions

We have formulated the optimal dimensioning problem for a gas transport
company as a two stage problems: investment in pipe diameters and in
maximal power of compression stations in the first stage, operations of the
network in the second stage.

We have solved this problem for two practical study cases: the belgian
gas network and a part of the french gas transmission network. The mains
results of theses simulations are the following.

First, the model prefers to increase the capacity of the passive
arcs (the pipe diameters) in place of increasing the capacity of the
active arcs (the maximal power of compression stations).

Secondly, another important design wvariable is the maximal flow in
the compression stations which must be increased in accordance with the
increase of the demand.
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