
ar
X

iv
:1

01
0.

27
13

v3
  [

cs
.G

T
]  

16
 J

ul
 2

01
1

1

A Strategy-Proof and Non-monetary Admission
Control Mechanism for Wireless Access Networks

Xiaohan Kang, Juan José Jaramillo, Lei Ying
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Abstract

We study admission control mechanisms for wireless access networks where (i) each user has a minimum
service requirement, (ii) the capacity of the access network is limited, (iii) the access point is not allowed to use
monetary mechanisms to guarantee that users do not lie when disclosing their minimum service requirements,
and (iv) the access point wants to admit as many users as possible. To guarantee truthfulness, we use auction
theory to design a mechanism where users compete to be admitted into the network. We propose admission control
mechanisms under which the access point intelligently allocates resources based on the announced minimum service
requirements to ensure that users have no incentive to lie and the capacity constraint is fulfilled. We also prove
some properties that any feasible mechanism should have.

Index Terms

Auctions, truth-telling, admission control, resource allocation

I. INTRODUCTION

Resource allocation has been one of the most important issues in the design of communication networks.
Given a wireless access network, in which the users have various quality of service (QoS) requirements
and the access point has limited resources, admission control mechanisms are vital to achieve stability,
fairness and efficiency of the system. In this paper, we consider a wireless access network with multiple
users and a single access point. We assume that the access point network is a public network, and is not
allowed to charge users for accessing the network. We study the case when the QoS requirements are
private, and users are allowed to selfishly disclose any value that would give them better service. Then the
problem is to design an admission control mechanism such that the true QoS of the users can be collected
without the use of any pricing scheme, and as many users as possible are admitted. A natural choice is
to set up a game with the users, such that the selfish users are incentivized to tell the truth. Originated in
economics theory, auction mechanisms have been found very useful in this kind of situations, since they
are designed to entice selfish bidders to tell the truth when allocating limited resources.

Various auction mechanisms have been well-studied. Myerson [2] has obtained the optimal auction
mechanism in closed form mathematical expression. His result, however, only works for limited utility
functions without constraints over the resource. The well-known VCG mechanism has been proved to
guarantee truth-telling while achieving the social optimum [3]. The challenge of designing an effective
auction mechanism in the proposed setting is the access point is not allowed to charge the users, so
the auction mechanism has to be non-monetary. Thus, the VCG mechanism cannot be easily adapted in
our scenario due to the non-monetary requirement. Credit schemes that were developed to incentivize
cooperation in wireless networks could also be adapted to guarantee users do not lie about their true
requirements, but they would also require secure mechanisms to avoid tampering with the virtual money
[4], [5], [6], [7], [8], [9], [10]. Recently, Hou and Kumar have proposed a bidding game between users and
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access point that maximizes the total utility, but in the iterative process the users are forced to bid specific
values instead of bidding selfishly [11]. In [12] a knapsack auction is studied, where multiple bidders
want to place objects of different sizes and valuations. While the problem also has capacity constraints,
the object sizes are public knowledge and the auction is allowed to use payment schemes to guarantee
users truthfully reveal their private valuations. A non-monetary mechanism is studied in [13], where only
the user that requests the smaller service rate is admitted.This model is useful in peer-to-peer networks
if the access technology does not provide separation between the upstream and downstream flows and
users want to minimize the upload bandwidth in order to increase their download bandwidth. However,
in the access point model that we study, the goal is to admit asmany users as possible without violating
the capacity constraint. In this paper, we seek to design auction mechanisms that are truthful and do not
use any money-based scheme for general utility functions.

Our contributions are therefore threefold.
i. We model the admission control problem, whose objective is to admit as many users as possible, as

an auction mechanism design with resource constraint.
ii. Second, we present two theorems that help us understand the essence of strategy-proof mechanisms.

The first theorem (Theorem 2) shows the impossibility of a reasonable truth-telling mechanism to be
based on probabilistic decisions, and the second theorem (Theorem 3) shows that the truthfulness of
a mechanism is equivalent to the existence of a highest winning bid regardless of one’s own bid.

iii. We propose our mechanism and show that it has the desiredproperties and admits at least half of
the optimal number of users with high probability in an asymptotic sense.

This paper is organized as follows. Section II gives the model of this problem and the set of assump-
tions. Section III analyzes the problem and characterizes the properties for feasible auction mechanisms.
Section IV gives our proposed mechanism and shows feasibility and the performance bound. Section V
concludes this paper.

II. M ODEL

Consider a multiple access network withn users and a single access point (AP), where only one user
can get a certain amount of resource allocated by the AP at anygiven time slot. LetN = {1, 2, · · · , n}
be the set of all users. The AP is assumed to have resources with the total amount ofC > 0. Each user is
assumed to have a quality of service (QoS) requirementqi ≤ C, which indicates the resource requested
by the useri and is only known to the useri. We suppose that the range ofqi is Ti = [ai, bi] ⊂ [0, C]
and letT = T1 × T2 × · · · × Tn andT−i = T1 × T2 × · · · × Ti−1 × Ti+1 × · · · × Tn where× denotes the
Cartesian product. We use bold letters likeq, t, s ∈ T andq−i, t−i, s−i ∈ T−i to imply vectors rather than
scalars.

By settingq′i = qi/C and takingq′i as the requested resource, the total amount of resources would then
be 1. So without loss of generality we setC = 1 and callqi the service rate of useri for the rest of the
paper.

Our objective is to admit as many users as possible. Thus, in order to decide which users to serve and
the QoS the AP should provide, the AP sets up an auction, in which each user, or bidder, bids a requested
service rateti ∈ Ti, which can be different from the true service rateqi, and the AP decides the set of
users that get admitted and assigns service ratexi to useri. Note that the bidt is different from the bids
in a traditional auction in that the higher a user bids, the more resource he/she is requesting, and thus
the less likely he/she should be admitted. By Myerson’s revelation principle [2], we only consider direct
revelation mechanisms, i.e., the mechanisms in which userssubmit bids in the form of service rate values
rather than in the form of any other strategies. Then the mechanism can be described by theoutcome
functions(p, x), wherep andx are the set of functions

p(t) = (pφ(t), φ ⊂ N )

x(t) = (xi,φ(t), φ ⊂ N )
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with pφ : T → R being the probability that only the subset of usersφ of N get admitted andxi,φ : T → R

being the actually assigned service rate for useri if the subsetφ is admitted. For convenience we set
xi,φ(t) to be the assigned service rate by mechanism(p, x) if i ∈ φ andpφ(t) > 0, and 0 otherwise, i.e.,
no resource is assigned to useri, which is equivalent to not admitting useri.

The utility function for useri, given the true service rateqi and the assigned service ratexi, is ui(qi, xi).
It is assumed thatui(·, ·) is non-negative, non-decreasing withxi whenxi ≥ qi, and equals 0 whenxi < qi.
Given mechanism(p, x), the expected utility for useri with true service rateqi, bid service rateti and
others biddingt−i is

Ui(p, x, qi, ti, t−i) =
∑

φ:i∈φ

ui(qi, xi,φ(t))pφ(t) . (1)

We now present some definitions we will use throughout the paper.

Definition 1 (Incentive compatibility - IC). A mechanism(p, x) is incentive compatibleor truthful or
strategy-proofif for any utility function, anyi ∈ N , anyq ∈ T and anyti ∈ Ti, we have

Ui(p, x, qi, qi,q−i) ≥ Ui(p, x, qi, ti,q−i) (2)

whereU(·) is defined in (1). That is, any possible true service rate vector q is a Nash equilibrium [14],
in which no user has incentive to lie if all the other users bidtheir true service rates.

It must be noted that the definition of IC requires no user has incentive to lieregardlessof the utility
function they have, as long as the assumptions onui(qi, xi) hold. This concept of user utility is then
fundamental to prove the results on truthfulness. However,it must be emphasized that our objective is to
admit as many users as possible and not to maximize the total network utility.

Definition 2 (Weak-incentive compatibility - weak-IC). A mechanism(p, x) is weakly-incentive compatible
if for any utility function, for anyi ∈ N and anyti ∈ Ti, we have

Ui(p, x, qi, qi,q−i) ≥ Ui(p, x, qi, ti,q−i), ∀q ∈ T ∗ (3)

for someT ∗ ⊂ T with L(T\T ∗) = 0, whereL(·) is the Lebesgue measure.1

Definition 3 (Feasibility). A mechanism(p, x) is feasibleif it satisfies
i. Probability constraint (P):

For anyφ ⊂ N and anyt ∈ T ,
∑

ψ⊂N

pψ(t) = 1 and pφ(t) ≥ 0 . (4)

ii. Capacity constraint (CC):
For anyi ∈ N , any t ∈ T , and anyφ ⊂ N with pφ(t) > 0,

∑

j∈φ

xj,φ(t) ≤ 1 and xi,φ(t) ≥ 0 . (5)

iii. Individual rationality (IR):
For anyφ ⊂ N with pφ(t) > 0, any t ∈ T , and anyi ∈ φ,

xi,φ(t) ≥ ti . (6)

iv. Incentive compatibility (IC) in (2).

1Lebesgue measure is the standard way to measure the subsets of an n-dimensional Euclidean space, which coincides with the standard
measure ofn-dimensional volumes.
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Definition 4 (Weak-determinism - weak-D). A mechanism(p, x) is weakly-deterministicif for any t ∈ T
and anyi ∈ N ,

(∀j ∈ N , j 6= i⇒ tj 6= ti) ⇒
∑

φ:i∈φ

pφ(t) ∈ {0, 1} .

That is, for a given bid vectort, if user i is the only one who bidsti, then either the user always gets
admitted, or the user never gets admitted.

Definition 5 (Determinism - D). A mechanism(p, x) is deterministicif there exists a functionψ : T →
P(N ) such that for anyt ∈ T ,

pφ(t) =

{

1 if φ = ψ(t)

0 otherwise

whereP(A) is the power set ofA. Determinism implies that the winning set is always unique.We call
ψ(·) the winning set function.

Note that for a deterministic mechanism(p, x) we can have the assigned service rate denoted as

xi(t) =

{

xi,ψ(t)(t) if i ∈ ψ(t)

0 otherwise
. (7)

Definition 6 (Anonymity). A mechanism(p, x) is anonymousif for any t ∈ T , any π ∈ Γn, and any
φ ⊂ N ,

p(π(t)) = π(p(t))

xφ(π(t)) = π(xφ(t)),

whereΓn is the set of all permutations ofn indices. That is, the outcome of the auction does not depend
on the identity of the bidders.

Definition 7 (Monotonicity). A mechanism(p, x) is monotonicif for any i ∈ N , anyt−i ∈ T−i, and any
si, s

′
i ∈ Ti with si > s′i,

∑

φ:i∈φ

pφ(t−i, si) ≤
∑

φ:i∈φ

pφ(t−i, s
′
i) .

That is, given that others’ bids are fixed, a user’s chance of getting admitted should not decrease when
the user bids lower.

We have the following lemma for monotonicity.

Lemma 1. Any mechanism that satisfies P, IR and IC is monotonic.

The proof of Lemma 1 is deferred to Appendix VI-A. The idea of the proof is that if the mechanism
is not monotonic, then there exists a utility function such that users have incentive to lie.

We are interested in feasible auction mechanisms that are weakly-deterministic and anonymous. Fea-
sibility implies that the decision is in the capacity region, no user is forced to participate, and no one
has incentive to lie about his type. Weak-determinism, anonymity and monotonicity are properties we
consider desirable for a fair mechanism.

Definition 8 (Single-price). A mechanismA = (p, x) is single-pricedif for any t ∈ T and anyφ ⊂ N
with pφ(t) > 0,

xi,φ(t) = xj,φ(t) ∀i, j ∈ φ .

That is, all the users in a winning set get the same assigned service rate.
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III. A NALYSIS OF THE PROBLEM

In this section we analyze feasible strategy-proof mechanisms in non-monetary scenarios. We start with
a mechanismĀ = (p̄, x̄), which is inspired by the uniform-price auction [3].

A. The Simple Single-Priced Mechanism̄A

We now propose the mechanism̄A, and prove that this mechanism satisfies the capacity constraint, is
weak-IC, and admits at least half of the maximum possible number of users. After that we point out the
flaws of the weak-IC concept.

Given bid vectort ∈ T , the mechanismĀ is described as follows.
Step i. Letα be a rearrangement of the indices such thattα(1) ≤ tα(2) ≤ · · · ≤ tα(n). If several

users bid the same, just arrange them randomly. Introduce a pseudo-bidder withtn+1 = 1 and
α(n+ 1) = n+ 1.

Step ii. Find the largest index̄m with 1 ≤ m̄ ≤ n such thatm̄ · tα(m̄+1) ≤ 1. The winning set is
ψ̄(t) = {α(1), α(2), · · · , α(m̄)}.

Step iii. Set the assigned service ratex̄i(t) = x̄(t) = tα(m̄+1) if i ∈ ψ̄(t).
The idea of the mechanism is basically that we start from the lower bidders and try to admit as many

users as possible, with assigned service rate equal to the lowest losing bid.
Notice that the rearrangementα and the winning set̄ψ here might not be unique if several users bid the

same value, in which case both of them will be probabilistic functions instead of deterministic functions.
However, when there are no two users bidding the same value,α and ψ̄ are deterministic functions.

Given the bidst ∈ T and a corresponding rearrangementα, we let

σi(t) = tα(i), 1 ≤ i ≤ n+ 1

and
σ(t) = (σ1(t), σ2(t), · · · , σn+1(t))

whereσ(t) is the unique sorted vector oft with σ1(t) ≤ σ2(t) ≤ · · · ≤ σn+1(t), regardless of the possible
different choices ofα. Then the index chosen in step ii is a function of the bids given by

m̄(t) = max{m ∈ N |m · σm+1(t) ≤ 1}

wherem̄(t) is always well-defined because

1 · tα(2) ≤ 1 .

Similarly, the assigned service rate for those admitted users is also determined by

x̄(t) = tα(m̄(t)+1) .

Example 1. Let the bid vector bet = (t1, t2, t3, t4) = {0.5, 0.4, 0.3, 0.4}.
Step i. The rearrangement could beα = (α(1), α(2), α(3), α(4), α(5)) = (3, 2, 4, 1, 5). (α could also

be (3, 4, 2, 1, 5)) So tα(1) ≤ tα(2) ≤ tα(3) ≤ tα(4) ≤ tα(5) = 1 and the sorted vector oft is
σ(t) = (0.3, 0.4, 0.4, 0.5, 1).

Step ii. 2 × 0.4 = 0.8 ≤ 1 and 3 × 0.5 = 1.5 > 1, so m̄(t) = 2 and the winning set is̄ψ(t) = {2, 3}
sinceα = (3, 2, 4, 1, 5). (ψ̄(t) would be{3, 4} if α = (3, 4, 2, 1, 5).)

Step iii. The assigned service rate for either of the two winners is x̄(t) = tα(3) = t4 = 0.4. (Note that if
α = (3, 4, 2, 1, 5), then x̄(t) would still be0.4.)

Lemma 2. The mechanism̄A satisfies the P, CC, IR and weak-IC constraints.

The proof of Lemma 2 is deferred to Appendix VI-B. It follows from directly checking the P, CC, and
IR constraints. To verify weak-IC, we focus on the set of bid vectors with no equal bids from any two
users.
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Note thatĀ does not satisfy feasibility because it is not IC. To see this, just consider two users bidding
the same service rate. The chance of getting admitted is halffor either user. The chance of either user
getting admitted increases to 1 when he lower his bid by a small amount and the other user keeps the
original bid. Ā, however, is weakly-IC. More specifically, for anyt such that all bids are distinct,̄A
guarantees truth-telling.

We now show thatĀ admits at least half of the maximal possible number of users.

Theorem 1 (Scalability of Ā). For any true value of drop ratet ∈ T , if there exists some mechanism
with P, CC and IR that admitsm users, thenĀ can admit at least⌊m

2
⌋ users.

The proof of Theorem 1 is deferred to Appendix VI-C. The intuition behind it is that any algorithm
that tries to admit more thanm users will violate CC.

The problem about̄A is that it is only weakly-IC but not IC. This means that if equal bids exist, users
might have incentive to lie. For example, in a two-user case,if both users bid the same value, each of
them would have half chance of getting admitted. But if one ofthem lower his bid by a small amount,
he would win with the same assigned service rate and probability 1. Thus indistinguishable bids makēA
fail for IC.

B. Impossibility for Probabilistic Decisions of Equal Bids

We now show that to fulfill strict IC under some assumptions mentioned below, a weak-deterministic
mechanism has to be deterministic. That is, if several usersbid exactly the same value, then the only
choice for guaranteeing truth-telling is to either admit all or none of them.

Theorem 2 (Impossibility). For a mechanismA that satisfies P, IR, IC and anonymity,A is weakly-
deterministic if and only ifA is deterministic. That is,A admits either all or none of the equal bids.

The proof of Theorem 2 is deferred to Appendix VI-D. By definition we know that determinism implies
weak-determinism, so we only need to prove that weak-determinism implies determinism. To do that, we
prove by contradiction that if an auction is weakly-deterministic and not deterministic, then there exists
utility functions such that users have an incentive to lie.

This theorem indicates that for any feasible and weakly-deterministic scheme, the ratio between the
maximal possible number of users and the number of users admitted under the scheme is unbounded.

We should note that̄A is weakly-deterministic because users might be randomly admitted when bidding
the same. Then by Theorem 2, to achieve IC we need to design deterministic mechanisms, that is,
mechanisms with only deterministic outcomes.

In the next section, we will present a feasible scheme based on Ā. Before that, we first present some
properties any feasible scheme should have.

C. Highest Winning Bid Theorem

We further show that any deterministic mechanism with IC must be illustrated by ahighest winning
bid function.

Definition 9 (Highest winning bid mechanism). A deterministic mechanismA is a highest winning bid
mechanismif there exists some functionz : T−i → Ti such that for anyt−i ∈ T−i,

{

if si ≤ z(t−i) then i ∈ ψ(t−i, si) andxi(t−i, si) = z(t−i)

if si > z(t−i) then i /∈ ψ(t−i, si) andxi(t−i, si) = 0

whereψ(·) is the winning set function ofA defined in the definition of determinism (Definition 5).
The functionz(·) is called thehighest winning bid functionof A.
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Theorem 3 (Highest winning bid). A deterministic mechanism satisfies IC if and only if it is a highest
winning bid mechanism.

The proof of Theorem 3 is deferred to Appendix VI-E. It can be checked that a highest winning
mechanism satisfies IC, so we only need to prove the converse.To do that, we show that if a deterministic
mechanism satisfies IC, then we can always construct a highest winning bid function.

The highest winning bid theorem shows us what a deterministic truth-telling mechanism should look
like. Notice that no other assumptions are needed for this theorem, so it remains valid in a general
setting. More importantly, this theorem gives us an efficient approach to design deterministic truth-telling
mechanisms.

Although Theorem 3 does not work for̄A due to weak-determinism, we do have the following similar
result.

Lemma 3 (Supremum winning bid function for̄A). Under mechanismĀ, knowing others’ bidt−i, the
supremum of useri’s winning bids is given by

z̄(t−i) = max{σj(t−i)|jσj(t−i) ≤ 1} . (8)

The proof of Lemma 3 is deferred to Appendix VI-F. It follows from checking that under̄A, and for
all i, no bid larger than̄z(t−i) is admitted.

Note thatz̄(t−i) is not the highest winning bid for useri because bidding this value does not guarantee
winning.

IV. OUR PROPOSEDMECHANISM

We now introduce the mechanism̄A∗, which is a truth-telling mechanism based on the previousĀ. We
first constructĀ∗ by the so-calleddropping trick. After that we show thatĀ∗ is single-priced, feasible,
and has very similar behavior tōA.

A. Dropping Trick

The basic idea of the dropping trick is that since bidding exactly the supremum winning bid does
not guarantee winning due to the capacity constraint, we drop the function by a small amount whenever
necessary such that the capacity constraint is satisfied.

We would like to find a highest winning bid function̄z∗ : T−i → Ti based on the supremum winning
bid function z̄(·) of Ā. For anyt−i ∈ T−i, let σ0(t−i) = 0, σn(t−i) = 1, and let

m1(t−i) = max
j

{j|jσj(t−i) ≤ 1}

and
m2(t−i) = max

j
{j|(j + 1)σj(t−i) ≤ 1} .

Then, we can also write the supremum winning bid function forĀ as follows

z̄(t−i) = σm1(t−i)(t−i) .

It must be noted that from the definition ofm1(t−i) andm2(t−i), wheneverm1(t−i) 6= m2(t−i), it
must be the case thatm2(t−i) < m1(t−i). Thus, ifm1(t−i) 6= m2(t−i) we have from the definition of
m2(t−i) that

(m1(t−i) + 1)σm1(t−i)(t−i) > 1,

or equivalently,

z̄(t−i) = σm1(t−i)(t−i) >
1

m1(t−i) + 1
.
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For fixed parameters(dj, 1 ≤ j ≤ n − 1) with 0 < dj < 1, the highest winning bid function of̄A∗ is
defined as follows:

z̄∗(t−i) =

{

z̄(t−i) if m1(t−i) = m2(t−i)

z̄(t−i)
(

1− dm1(t−i)

)

+ 1
m1(t−i)+1

dm1(t−i) if m1(t−i) 6= m2(t−i)
(9)

or equivalently

z̄∗(t−i) =

{

σm1(t−i)(t−i) if σm1(t−i)(t−i) ≤
1

m1(t−i)+1

σm1(t−i)(t−i)
(

1− dm1(t−i)

)

+ 1
m1(t−i)+1

dm1(t−i) if σm1(t−i)(t−i) >
1

m1(t−i)+1
.

Thus, the parameterdm1(t−i) dropsthe value of̄z∗(t−i) to lay on the interval
(

1
m1(t−i)+1

, z̄(t−i)
)

whenever

m1(t−i) 6= m2(t−i).
Note that, compared to the supremum winning bid function ofĀ, we only do dropping whenm1(t−i) 6=

m2(t−i). We note thatĀ∗ is a deterministic mechanism based on the highest winning bid function z̄∗(·)
in (9) and by Theorem 3 we know that̄A∗ satisfies IC.

We would like to highlight the fact that neither̄A nor Ā∗ dominate the other in terms of maximizing
the number of admitted users. That is, for some bid vectorsĀ admits more users than̄A∗ does and for
some othersĀ∗ admits more thanĀ does. For example, consider the 3-user case and let the parameters
for Ā∗ bed1 = d2 = 0.1. For bid vector(0.79, 0.8, 0.9), the first user would be admitted bȳA with service
rate 0.8, but it would not be admitted bȳA∗ since z̄∗(0.8, 0.9) = 0.8− 0.1× (0.8 − 0.5) = 0.77 < 0.79.
Following a similar analysis for bid vector(0.1, 0.1, 0.9), we note thatĀ only admits one user since it
cannot admit two users with service rate 0.9, whileĀ∗ can admit two users sincēz∗(0.1, 0.9) = 0.1.

Example 2. Takedj = 0.1 for any 1 ≤ j ≤ n− 1 in (9). Again, let the bid vector bet = (t1, t2, t3, t4) =
{0.5, 0.4, 0.3, 0.4}. By (8) we can calculate the supremum winning bid underĀ for each user:

z̄(t−1) = z̄(0.4, 0.3, 0.4) = 0.4 ,

z̄(t−2) = z̄(0.5, 0.3, 0.4) = 0.4 ,

z̄(t−3) = z̄(0.5, 0.4, 0.4) = 0.4 ,

z̄(t−4) = z̄(0.5, 0.4, 0.3) = 0.4 .

Then the highest winning bid under̄A∗ for each user is

z̄∗(t−1) = z̄(t−1)− d2

(

z̄(t−1)−
1

3

)

.
= 0.3933 ,

z̄∗(t−2) = z̄(t−2)− d2

(

z̄(t−2)−
1

3

)

.
= 0.3933 ,

z̄∗(t−3) = z̄(t−3)− d2

(

z̄(t−3)−
1

3

)

.
= 0.3933 ,

z̄∗(t−4) = z̄(t−4)− d2

(

z̄(t−4)−
1

3

)

.
= 0.3933 .

Since only user 3’s bid is lower than or equal to his highest winning bid, we have the winning set
ψ̄∗(t) = {3} and x̄∗3(t) = 0.3933.

B. Properties ofĀ∗

We first notice that the dropping method above is chosen such that the mechanism remains single-priced.

Lemma 4. Ā∗ is single-priced.

The proof of Lemma 4 is deferred to Appendix VI-G.
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We then notice that the mechanism̄A∗ is indeed feasible.

Lemma 5. Ā∗ is feasible, and0 ≤ z̄∗(t−i) ≤ 1 for any t−i ∈ T−i.

The proof of Lemma 5 is deferred to Appendix VI-H. The key aspect of the proof is to show that the
CC constraint is fulfilled. To do that, the proof considers the case when the dropping trick is used and
when it is not. From that, and from the analysis ofĀ, the capacity constraint can be verified.

C. Performance Analysis

We now have two single-priced mechanisms and would like to compare these to some optimal, non-
truthful mechanisms that maximize the number of admitted users. We first introduce two optimal omni-
scient auctions [15].

Definition 10. Given bid vectort, the optimal single price omniscient auctionF admits the lowestm∗
F

users with
m∗

F = max{m|mσm(t) ≤ 1} .

Compared toĀ, F use the highest winning bid as the universal price instead ofthe lowest losing bid. It
must be noted though thatF is non-deterministic and non-truthful.

Definition 11. Given bid vectort, theoptimal multiple price omniscient auctionT admits the lowestm∗
T

users with each winner’s price equal to his own bid.

It is easy to see thatT is not single-priced, non-deterministic and non-truthful, and admits the maximum
number of users. To sum up, we list all the mechanisms we want to compare and their corresponding
properties in Table I.

Optimal Deterministic Single Price Weak-IC IC
F ✓ ✗ ✓ ✗ ✗
T ✓ ✗ ✗ ✗ ✗
Ā ✗ ✗ ✓ ✓ ✗
Ā

∗ ✗ ✓ ✓ ✓ ✓

TABLE I
COMPARISON OF THEMECHANISMS

Definition 12. Given bid vectort, the admittanceof a mechanismA is the expected number of users
admitted byA, and we denote it by|A(t)|.

We consider both Bayesian analysis and worst case analysis as follows.
1) Worst Case Analysis:First, by the scalability ofĀ we have

|Ā(t)| ≥

⌊

|T (t)|

2

⌋

for any t ∈ T . This bound is tight since we can consider the bid vector withm+ 1 users bidding0 and
m users bidding1

m
, in which case|Ā(t)| = m and |T (t)| = 2m+ 1.

For single price mechanisms, we have the following worst case results.

Lemma 6. For any t ∈ T ,
|F(t)| − 1 ≤ |Ā(t)| ≤ |F(t)| .

The proof of Lemma 6 is deferred to Appendix VI-I. It follows from the definition ofF(t) andĀ(t).
It is interesting to highlight that the bounds are tight since they are achievable.
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Lemma 7. For any n ∈ N andm < n, there exists some bid vectort such that

|Ā∗(t)| = 0 , |F(t)| ≥ m .

That is to say, the worst case performance ofĀ∗ could be arbitrarily bad.

The proof of Lemma 7 is deferred to Appendix VI-J. It uses the fact that inĀ∗(t) all identical bids
must be either accepted or rejected, while this is not the case for F(t). Note that while the worst case
performance ofĀ∗ can be bad, we will next show that the probability of getting aworst case can be
made very small by setting small parameters forĀ∗.

2) Bayesian Analysis:We have shown that̄A has roughly the same performance thanF in terms of
maximizing the number of admitted users.

Now we show thatĀ∗ has very close performance tōA. Assume that the drop rate vectort is drawn
from a distribution with joint probability density function f : T → R

+. Then, we have the following
theorem.

Theorem 4. If the density functionf is upper-bounded byK, the probability thatĀ∗ behaves differently
from Ā is at mostdnK, whered = max1≤j≤n−1 dj.

The proof of Theorem 4 is deferred to Appendix VI-K. It is based on the fact that if the density function
is bounded, then the problem simplifies to bounding the Lebesgue measure of the set of bids wherēA∗

behaves differently fromĀ.
We notice from Theorem 4 that the probability of different behaviors between the two mechanisms can

be made arbitrarily small by choosing small parameters(dj , 1 ≤ j ≤ n− 1).

V. CONCLUSION

In this paper, we studied the problem of designing a strategy-proof non-monetary auction mechanism for
wireless networks. The motivation is to let the users tell the truth when bidding their resource requirements,
and to admit as many users as possible. We gave a general modelfor the problem, analyzed the problem
and found some properties that any strategy-proof auction mechanism should satisfy. Finally we proposed
a feasible mechanism which is truthful even with equal bids,and showed that it could admit at least half
of the maximum number of users with high probability in an asymptotic sense.

As possible topic for future work, discrete pricing models might be considered rather than continuous
pricing models. Also, the assumption of weak-determinism could be weakened, and more specific utility
functions could be considered for better performance. Furthermore, the lower bound of the number of
admitted users might be improved.
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VI. A PPENDIX

A. Proof of Lemma 1

Proof: Let mechanism(p, x) satisfy P, IR, IC. Suppose(p, x) is not monotonic, then there exist
i ∈ N , t−i ∈ T−i, andsi, s′i ∈ Ti such thatsi > s′i and

∑

φ:i∈φ

pφ(t−i, si) >
∑

φ:i∈φ

pφ(t−i, s
′
i) . (10)

We consider the following utility function:

ui(ti, xi) =

{

d if xi ≥ ti
0 if xi < ti

,

whered is a positive constant. Let the true service rate value of user i be qi = s′i, then

U(p, x, qi, si, t−i) = U(p, x, s′i, si, t−i)

=
∑

φ:i∈φ

ui(s
′
i, xi,φ(t−i, si))pφ(t−i, si)

= d
∑

φ:i∈φ

pφ(t−i, si) (11)

> d
∑

φ:i∈φ

pφ(t−i, s
′
i) (12)

=
∑

φ:i∈φ

ui(s
′
i, xi,φ(t−i, s

′
i))pφ(t−i, s

′
i) (13)

= U(p, x, s′i, s
′
i, t−i)

= U(p, x, ti, ti, t−i)

where (11) comes fromxi,φ(t−i, si) ≥ si ≥ s′i when pφ(t−i, si) > 0, (13) comes fromxi,φ(t−i, s′i) ≥ s′i
whenpφ(t−i, s′i) > 0, and (12) comes from (10). This contradicts IC. Thus,(p, x) must be monotonic.

B. Proof of Lemma 2

Proof:
i. Probability constraint (P):

The probability constraint is obviously satisfied. For those t such that the winning set̄ψ(t) is
determined,

∑

φ⊂N p̄φ(t) = p̄ψ̄(t)(t) = 1. For thoset such that there areM possible winning sets,
the probability for each of them would be1

M
and

∑

φ⊂N p̄φ(t) =M · 1
M

= 1.
ii. Capacity constraint (CC):
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For anyt ∈ T and anyφ ⊂ N with p̄φ(t) > 0,
∑

i∈φ

x̄i,φ(t) = m̄(t) · x̄(t)

= m̄(t) · tα(m̄(t)+1)

≤ m̄(t) ·
1

m̄(t)

= 1 .

Also x̄i,φ(t) ≥ 0. Thus,Ā satisfies CC.
iii. Individual rationality (IR):

For anyt ∈ T , anyφ ⊂ N with p̄φ(t) > 0, and anyi ∈ φ,

x̄i,φ(t) = x̄(t) = tα(m̄(t)+1) ≥ ti .

iv. Weak-incentive compatibility (weak-IC):
We only consider the set ofdistinguishablebid vectors

TD = {t ∈ T |ti 6= tj∀i 6= j},

that is, the set of bid vectors with no equal bids from any two users. Fort ∈ TD and i ∈ N , the
result of useri bidding si would be

p̄i(t−i, si) =











1 if si < x̄(t)
1
2

if si = x̄(t)

0 if si > x̄(t)

with assigned service ratēxi(t−i, si) = x̄(t) if admitted. Note that̄pi(t−i, si) = 1
2

when si = x̄(t)
since there is only one other user who bidsx̄(t).
We first consider the case ofi ∈ ψ̄(t). We then haveti < x̄(t). If si < x̄(t), then useri still gets
admitted with the same assigned service rate. Ifsi > x̄(t), then useri gets rejected. Ifsi = x̄(t),
then useri either gets admitted with the same assigned service rate, orget rejected, both of which
have probability 1/2. So useri cannot get better utility in the first case.
We then consider the case ofi /∈ ψ̄(t). Now we haveti > x̄(t). If si < x̄(t), then useri gets admitted
with assigned service ratēx(t) lower than true valueti. If si > x̄(t), the useri still does not get
admitted. Ifsi = x̄(t), then useri either gets admitted with assigned service rate too low to accept,
or does not get admitted at all, both of which have probability 1/2. So useri cannot get better utility
in the second case.
Thus, for anyt ∈ TD, no user has incentive to lie. AsT\TD has measure zero, we have weak-IC.

C. Proof of Theorem 1

Proof: SupposeĀ admits onlym users, that is,

m̄(t) = m

and some other mechanismA = (p, x) has a chance of admitting at least2m+ 2 users given bid vector
t, that is,

∃φ ⊂ N , |φ| ≥ 2m+ 2, pφ(t) > 0 .
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Then we have
∑

i∈φ

xi,φ(t) ≥
∑

i∈φ

ti (14)

≥
2m+2
∑

i=1

σi(t)

≥
2m+2
∑

i=m+2

σi(t)

≥ (m+ 1)σm+2(t)

> 1 (15)

where the inequality (14) comes from IR and (15) comes from the definition of the mechanism.
ThusA admits at most2m+ 1 users. This is equivalent to the statement that if some mechanism with

P, CC and IR admitsm users,Ā can at least admit⌊m
2
⌋ users.

D. Proof of Theorem 2

Proof: We first prove the following lemma.

Lemma 8. A mechanismA = (p, x) is deterministic if and only if for anyt ∈ T and anyi ∈ N ,
∑

φ:i∈φ

pφ(t) ∈ {0, 1} . (16)

Proof: The determinism ofA implies (16) because we have
∑

φ:i∈φ pφ(t) = pψ(t)(t) = 1 for i ∈ ψ(t),
and

∑

φ:i∈φ pφ(t) = 0 for i /∈ ψ(t).
If we have (16) for a mechanismA, then we let

ψ̃(t) = {i ∈ N |
∑

φ:i∈φ

pφ(t) = 1}

and claim thatA is deterministic with the winning set functioñψ(t).
Indeed, suppose there existsψ ⊂ N such thatpψ(t) > 0 and ψ̃(t) 6= ψ. Then there existsi ∈

(ψ̃(t)\ψ) ∪ (ψ\ψ̃(t)). If i ∈ ψ̃(t)\ψ,
∑

φ:i∈φ

pφ(t) =
∑

φ:i∈φ
φ 6=ψ

pφ(t)

≤ 1− pψ(t)

< 1

which contradicts the fact thati ∈ ψ̃(t). If i ∈ ψ\ψ̃(t),
∑

φ:i∈φ

pφ(t) ≥ pψ(t) > 0

which also contradicts the fact thati /∈ ψ̃(t). So for anyψ, pψ(t) > 0 implies pψ(t) = 1 andψ = ψ̃(t).
HenceA is deterministic with winning set functioñψ(t).

By definition we readily have that determinism leads to weak-determinism.
On the other hand, supposeA is weakly-deterministic but not deterministic. By Lemma 8,there exists

r ∈ T and i ∈ N such that
0 <

∑

φ:i∈φ

pφ(r) < 1 .
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We first show that for anyr′i < ri, we have
∑

φ:i∈φ

pφ(r−i, r
′
i) = 1 .

Indeed, let

r̃i =

{

maxj∈N{rj|rj < ri} if rj < ri for somej ∈ N

0 otherwise
.

Then for anyr′i ∈ (r̃i, ri), r′i is a unique bid in(r−i, r′i), so by monotonicity and weak-determinism we
have

∑

φ:i∈φ pφ(r−i, r
′
i) = 1. Again by monotonicity we also have

∑

φ:i∈φ pφ(r−i, r
′
i) = 1 for r′i ≤ r̃i.

Let
Ψi(r) = {φ ⊂ N|i ∈ φ, pφ(r) > 0} .

ThenΨi(r) is the set of possible winning sets that includes useri, given bid vectorr.
Now fix r′i < ri, there are two cases. One is that there existsψ ∈ Ψi(r−i, r

′
i) with xi,ψ(r−i, r

′
i) < ri,

and the other one is that for anyψ ∈ Ψi(r−i, r
′
i), xi,ψ(r−i, r

′
i) ≥ ri. We want to prove that both cases lead

to contradiction.
For the first case, there existsψ ∈ Ψi(r−i, r

′
i) with xi,ψ(r−i, r

′
i) < ri. Fix r′′i ∈ (xi,ψ(r−i, r

′
i), ri). We

consider the following utility function:

ui(ti, xi) =

{

ui(xi) if xi ≥ ti
0 if xi < ti

(17)

with

ui(xi) =

{

d if xi ≥ r′′i
d
r′′
i

xi if xi < r′′i
, (18)

whered is a positive constant. Then for true valuest−i = r−i, ti = r′i and possibly lying bidsi = r′′i ,

Ui(p, x, ti, ti, t−i) =
∑

φ:i∈φ

ui(ti, xi,φ(t−i, ti))pφ(t−i, ti)

=
∑

φ:i∈φ,φ 6=ψ

ui(ti, xi,φ(t−i, ti))pφ(t−i, ti)

+ ui(ti, xi,ψ(t−i, ti))pψ(t−i, ti)

≤ d
∑

φ:i∈φ,φ 6=ψ

pφ(t−i, ti)

+

(

d

r′′i
xi,ψ(r−i, r

′
i)

)

pψ(t−i, ti)

< d
∑

φ:i∈φ,φ 6=ψ

pφ(t−i, ti) + dpψ(t−i, ti)

= d
∑

φ:i∈φ

pφ(t−i, ti)

= d = Ui(p, x, ti, si, t−i) .

That is, useri with true valueti has incentive to lie to bidsi.
For the second case, for anyψ ∈ Ψi(r−i, r

′
i), we havexi,ψ(r−i, r′i) ≤ ri. We consider the following

utility function:

ui(ti, xi) =

{

d if xi ≥ ti
0 if xi < ti

,
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whered is a positive constant. Let the true valuest−i = r−i, ti = ri, and the possible lying bidsi = r′i.
We have

Ui(p, x, ti, ti, t−i) = d
∑

φ:i∈φ

pφ(t)

< d = d
∑

φ:i∈φ

pφ(t−i, si) = Ui(p, x, ti, si, t−i) .

That is, useri with true valueti has incentive to lie to bidsi. This contradiction completes the proof.

E. Proof of Theorem 3

Proof: Here we assume that a user always wins by the bidsi = 0, that is, for anyi ∈ N and any
t−i ∈ T−i,

∑

φ:i∈φ

pφ(0, t−i) = 1 .

Indeed, this is reasonable because by bidding a service rateof 0 the user is willing to drop all packets,
thus the AP should always be able to admit this user. Also,xi,φ(t−i, 0) ≥ 0 is true, so IR is always
satisfied.

i. Suppose a deterministic mechanismA = (p, x) satisfies IC. Let the winning set function beψ(·).
We construct a functionz(·) as follows. For anyt−i ∈ T−i, consider the winning bid set for useri

Wi(t−i) = {si|i ∈ ψ(t−i, si)} .

ThenWi(t−i) 6= ∅ since 0 ∈ Wi(t−i). We assert that for anysi ∈ Wi(t−i), the assigned service
rate xi(t−i, si) is the same (recall that the assigned service rate for deterministic mechanisms can
be denoted by single subscript, as in (7)). Indeed, if there exist si, s′i ∈ Wi(t−i) with xi(t−i, si) 6=
xi(t−i, s

′
i), we must havesi 6= s′i. We may assumexi(t−i, si) > xi(t−i, s

′
i). Let ti = s′i, then given

that other users bidt−i, user i with true valueti has incentive to lie to bidsi, since the assigned
service rate would be higher. Thus the following function

z(t−i) = {xi(t−i, si)|si ∈ Wi(t−i)}

is well defined.
Now we want to show thatz(·) is the highest winning bid function of(p, x). This is equivalent to
showing thatWi(t−i) = [0, z(t−i)]. For anysi ≤ z(t−i), if si /∈ Wi(t−i), then the user with true
value ti = si has incentive to bid any winning bids′i ∈ Wi(t−i) since the assigned service rate
z(t−i) ≥ ti, which contradicts IC. For anysi > z(t−i), if si ∈ Wi(t−i), then the assigned service
rate isxi(t−i, si) = z(t−i) < si, which violates IR. ThusWi(t−i) = [0, z(t−i)], that is,A is a highest
winning bid mechanism with highest winning bid functionz(·).

ii. SupposeA is a highest winning bid mechanism with highest winning bid function z : T−i → Ti.
Then when other users’ bidst−i are fixed, useri with true valueti ≤ z(t−i) has no incentive to lie,
because biddingsi ≤ z(t−i) results in the same assigned service rate and biddingsi > z(t−i) kicks
useri out. Meanwhile, useri with true valueti > z(t−i) does not have incentive to lie either, since
biddingsi ≤ z(t−i) results in a assigned service rate too low to accept and bidding si > z(t−i) keeps
useri out of admittance. ThusA satisfies IC.

F. Proof of Lemma 3

Proof: This can be checked by directly going through the process ofĀ. If ti < z̄(t−i), we can see
that x̄(t) = z̄(t−i) > ti, so useri wins. If ti > z̄(t−i), we havex̄(t) ≤ ti, so useri loses. If ti = z̄(t−i),
useri wins with some probability between 0 and 1, which depends on the number of users biddinḡz(t−i).
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G. Proof of Lemma 4

Proof: By (9), we can see that the highest winning bid function ofĀ∗ is actually a function of
σm1(t−i)(t−i) and its rankingm1(t−i), that is,

z̄∗(t−i) = g
(

σm1(t−i)(t−i), m1(t−i)
)

(19)

so the highest winning bid function is determined once them1(t−i)’th highest bid and its ranking is
determined.

SupposeĀ∗ is not single-priced, then there existst ∈ T and i, j ∈ N such that

ti ≤ z̄∗(t−i), tj ≤ z̄∗(t−j), z̄
∗(t−i) 6= z̄∗(t−j) . (20)

Given t̃ ∈
∏

k 6=i,k 6=j Tk, let
f(t) = z̄∗(t̃, t) ,

then we first claim that for anỹt, there exists somet0 ∈ [0, 1] such that
{

f(t) ≤ t for t > t0
f(t) = t0 for t ≤ t0

. (21)

First, consider the casef(0) = 0. Then for anyt > 0, if f(t) > t, then there existsk ∈ {1, 2, . . . , n−1}
such that











σk(t̃, t) = z̄(t̃, t) ≥ z̄∗(t̃, t) = f(t)

kσk(t̃, t) ≤ 1

(k + 1)σk+1(t̃, t) > 1

,

which implies, by changingt to 0, we have










σk(t̃, 0) = σk(t̃, t)

kσk(t̃, 0) = kσk(t̃, t) ≤ 1

(k + 1)σk+1(t̃, 0) = (k + 1)σk+1(t̃, t) > 1

,

that is,
m1(t̃, 0) = m2(t̃, t) and σm1(t̃,0)(t̃, 0) = σm1(t̃,t)(t̃, t)

and then by (19) we have
f(t) = f(0) = 0 < t,

which contradicts the assumption thatf(t) > t. So f(t) ≤ t for any t > 0. Thus we havet0 = 0 in (21).
Now we consider the casef(0) > 0. Then for anyt > f(0), if f(t) > t, then there existsk ∈

{1, 2, . . . , n− 1} such that










σk(t̃, t) = z̄(t̃, t) ≥ z̄∗(t̃, t) = f(t)

kσk(t̃, t) ≤ 1

(k + 1)σk+1(t̃, t) > 1

,

which implies, by changingt to 0, we again have










σk(t̃, 0) = σk(t̃, t)

kσk(t̃, 0) = kσk(t̃, t) ≤ 1

(k + 1)σk+1(t̃, 0) = (k + 1)σk+1(t̃, t) > 1

,

that is,
m1(t̃, 0) = m2(t̃, t) and σm1(t̃,0)(t̃, 0) = σm1(t̃,t)(t̃, t)
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and again by (19) we have
f(t) = f(0) < t,

which contradicts the assumption thatf(t) > t. So f(t) ≤ t for any t > f(0).
For t′ ≤ f(0), sincef(0) = σm1(t̃,0)(t̃, 0), we have

m1(t̃, t
′) = m1(t̃, 0) and σm1(t̃,t′)(t̃, t

′) = σm1(t̃,0)(t̃, 0).

Then by (19),f(t′) = f(0) and thus we sett0 = f(0) in (21). Therefore the claim is proved.
We then show that̄A∗ is single-priced. For any bid vectort, let t̃ be the bids int other thanti andtj ,

and lett0 be such that (21) holds for̃t, then by (20)

ti ≤ z̄∗(t−i) = z̄∗(t̃, tj) = f(tj)

and
tj ≤ z̄∗(t−j) = z̄∗(t̃, ti) = f(ti) .

First consider the case ifti > t0 and tj > t0. We have by (21)

ti ≥ f(ti) ≥ tj ≥ f(tj) ≥ ti

and thenti = tj and z̄∗(t−i) = f(tj) = f(ti) = z̄∗(t−j).
Then consider the case ifti > t0 and tj ≤ t0. Then by (21),

t0 = f(tj) ≥ ti

which contradictst0 < ti, so this case is not possible.
Then consider the last case ifti ≤ t0 and tj ≤ t0. By (21),

z̄∗(t−i) = f(tj) = t0 = f(ti) = z̄∗(t−j).

Thus we always havēz∗(t̃, ti) = z̄∗(t̃, tj), which contradicts the previous assumption. Therefore,Ā∗ is
single-priced.

H. Proof of Lemma 5

Proof: P comes from determinism. IR comes from the definition of highest winning bid mechanisms.
IC comes from Theorem 3. So only the proof of CC requires some more effort.

For givent, we divide the winning users into two parts: those whose price is dropped, denoted byA
and those whose price is not dropped, denoted byB. Then

A = {i ∈ ψ̄∗(t)|z̄∗(t−i) = z̄(t−i)}

B = {i ∈ ψ̄∗(t)|z̄∗(t−i) < z̄(t−i)}

whereψ̄∗(·) is the winning set function forĀ∗. ThenA ∩B = ∅ andA ∪ B = ψ̄∗(t).
If B = ∅, then for anyi ∈ ψ̄∗(t), let m = m1(t−i) and we have

(m+ 1)σm+1(t−i) > 1

(m+ 1)σm(t−i) ≤ 1

then
σm+1(t−i) > σm(t−i) = z̄(t−i) = z̄∗(t−i)

and
|ψ̄∗(t)| ≤ m+ 1 .
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Then we have
∑

j∈ψ̄∗(t)

x̄∗j(t) = |ψ̄∗(t)| · z̄∗(t−i) (22)

≤ (m+ 1)σm(t−i)

≤ 1

where (22) follows becausēA∗ is single-priced and the other two inequalities come from the analysis we
have above.

If B 6= ∅, then there existsi ∈ ψ̄∗(t) such that

ti ≤ z̄∗(t−i) < z̄(t−i) = σm(t−i)

wherem = m1(t−i). By the definition ofm1(·) we have

mσm(t−i) ≤ 1 .

By the single price property of̄A∗ we have

|ψ̄∗(t)| ≤ |{j : tj ≤ z̄∗(t−i)}| (23)

≤ |{j : tj < z̄(t−i)}|

≤ m

where (23) comes from the single price property and the othertwo inequalities are due to the analysis
above. Again by the single price property we have

∑

j∈ψ̄∗(t)

x̄∗j (t) = |ψ̄∗(t)| · z̄∗(t−i)

≤ mσm(t−i)

≤ 1 .

Thus Ā∗ is feasible.
From (9) we have

1 ≥ z̄(t−i) ≥ z̄∗(t−i) ≥ σm(t−i)−

(

σm(t−i)−
1

m+ 1

)

≥ 0.

That is,0 ≤ z̄∗(t−i) ≤ 1 for any t−i ∈ T−i.

I. Proof of Lemma 6

Proof: For anyt, let m = |F(t)|, then

mσm(t) ≤ 1

and then
(m− 1)σm(t) ≤ 1

so |Ā(t)| ≥ m− 1 = |F(t)| − 1. Also,

(m+ 1)σm+2(t) ≥ (m+ 1)σm+1(t) > 1

so |Ā(t)| ≤ |F(t)|.

J. Proof of Lemma 7

Proof: Just consider the case when alln users bid 1
m

. ThenF would admitm out of then users
randomly, whileĀ∗ cannot admit any of then users.
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K. Proof of Theorem 4

Proof: Let T be the vector of random variables with values taken inT , and as usual letTi and
T−i be the corresponding components. Note thatT ⊂ [0, 1]n. Then the probability thatĀ∗ and Ā have
different results is

D = Pr (z̄∗(T−i) < Ti < z̄(T−i) for somei)

≤
n

∑

i=1

Pr (z̄∗(T−i) < Ti < z̄(T−i))

=
n

∑

i=1

∫

Bi

f(t)dt

≤
n

∑

i=1

L(Bi)K

where
Bi = {t ∈ T |z̄∗(t−i) < ti < z̄(t−i)}

andL(·) denotes the Lebesgue measure. Then

L(Bi) =

∫

Bi

1dt

=

∫

T−i

∫ z̄(t−i)

z̄∗(t−i)

1dtidt−i

=

∫

{σ1(t−i)>
1

2
}

d1

(

σ1(t−i)−
1

2

)

dt−i

+

∫

{ 1

2
≥σ2(t−i)>

1

3
}

d2

(

σ2(t−i)−
1

3

)

dt−i

+ . . .

+

∫

{ 1

n−1
≥σ2(t−i)>

1

n
}

dn−1

(

σn−1(t−i)−
1

n

)

dt−i

≤
1

2
d1 +

(

2

3
−

1

2

)

d2 + · · ·+

(

n− 1

n
−
n− 2

n− 1

)

dn−1

≤ max
1≤j≤n−1

dj

(

1−
1

n

)

≤ max
1≤j≤n−1

dj .

Thus
D ≤ dnK,

whered = max1≤j≤n−1 dj.
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