Skip to main content

Mobile Sensing Enabled Robust Detection of Security Threats in Urban Environments

  • Conference paper
Quality, Reliability, Security and Robustness in Heterogeneous Networks (QShine 2010)

Abstract

Mobile sensing enables data collection from large numbers of participants in ways that previously were not possible. In particular, by affixing a sensory device to a mobile device, such as smartphone or vehicle, mobile sensing provides the opportunity to not only collect dynamic information from environments but also detect the environmental hazards. In this paper, we propose a mobile sensing wireless network for surveillance of security threats in urban environments, e.g., environmental pollution sources or nuclear radiation materials. We formulate the security threats detection as a significant cluster detection problem. To make our approach robust to unreliable sensing data, we propose an algorithm based on the Mean Shift method to identify the significant clusters and determine the locations of threats. Extensive simulation studies are conducted to evaluate the effectiveness of the proposed detection algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kinkade, S., Verclas, K.: Wireless technology for social change: Trends in mobile use by NGOs. UN Foundation–Vodafone Group Foundation Partnership, United Kingdom (2008) (retrieved November 15, 2008)

    Google Scholar 

  2. World Health Organization (WHO): WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide: Global Update 2005 (2006)

    Google Scholar 

  3. Panofsky, W.: Nuclear proliferation risks, new and old. Issues in Science and Technology 19(4), 73–74 (2003)

    Google Scholar 

  4. IAEA: Trafficking in Nuclear and Radioactive Material in 2005 (2006), http://www.iaea.org/NewsCenter/News/2006/traffickingstats2005.html

  5. Campbell, A., Eisenman, S., Lane, N., Miluzzo, E., Peterson, R.: People-centric urban sensing. In: Proceedings of the 2nd Annual International Workshop on Wireless Internet, p. 18. ACM, New York (2006)

    Chapter  Google Scholar 

  6. Johnson, P., Kapadia, A., Kotz, D., Triandopoulos, N., Hanover, N.: People-centric urban sensing: Security challenges for the new paradigm. Technical report, Citeseer (2007)

    Google Scholar 

  7. Burke, J., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., Srivastava, M.: Participatory sensing. In: World Sensor Web Workshop, pp. 1–5 (2006)

    Google Scholar 

  8. Archer, D., Beauchamp, B., Mauger, G., Nelson, K., Mercer, M., Pletcher, D., Riot, V., Schek, J., Knapp, D.: Adaptable radiation monitoring system and method. US Patent App. 10/874,127 (June 21, 2004)

    Google Scholar 

  9. Glenn, F.: Radiation detection and measurement. John Wiley&Sons, New York (1989)

    Google Scholar 

  10. Morelande, M., Ristic, B., Gunatilaka, A.: Detection and parameter estimation of multiple radioactive sources. In: International Conference on Information Fusion (2007)

    Google Scholar 

  11. Nemzek, R., Dreicer, J., Torney, D.: Distributed sensor networks for detection of mobile radioactive sources. In: IEEE Nuclear Science Symposium Conference Record, vol. 3, pp. 1463–1467. IEEE, Los Alamitos (2004)

    Google Scholar 

  12. Brennan, S., Mielke, A., Torney, D., Maccabe, A.: Radiation detection with distributed sensor networks. IEEE Computer 37(8), 57–59 (2004)

    Article  Google Scholar 

  13. Cheng, J., Xie, M., Chen, R., Roberts, F.: A mobile sensor network for the surveillance of nuclear materials in metropolitan areas. Technical report, DIMACS Technical Report, Rutgers University (2009)

    Google Scholar 

  14. Purdue University: Cell phone sensors detect radiation to thwart nuclear terrorism. ScienceDaily (January 24, 2008)

    Google Scholar 

  15. Glaz, J., Naus, J., Wallenstein, S.: Scan statistics. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  16. Balakrishnan, N., Koutras, M.: Runs and scans with applications. Wiley, New York (2002)

    MATH  Google Scholar 

  17. Fu, J., Lou, W.: Distribution theory of runs and patterns and its applications: a finite Markov chain imbedding approach. World Scientific Pub. Co. Inc., Singapore (2003)

    Book  MATH  Google Scholar 

  18. DematteIš, C., Molinari, N., Daurès, J.: Arbitrarily shaped multiple spatial cluster detection for case event data. Computational Statistics & Data Analysis 51(8), 3931–3945 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wein, L., Wilkins, A., Baveja, M., Flynn, S.: Preventing the importation of illicit nuclear materials in shipping containers. Risk Analysis 26

    Google Scholar 

  20. Langendoen, K., Reijers, N.: Distributed localization in wireless sensor networks: a quantitative comparison. Comput. Networks 43(4), 499–518 (2003)

    Article  MATH  Google Scholar 

  21. Comaniciu, D.: An algorithm for data-driven bandwidth selection. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(2), 281–288 (2003)

    Article  Google Scholar 

  22. Yang, X., Liu, J.: Unsupervised texture segmentation with one-step mean shift and boundary Markov random fields* 1. Pattern Recognition Letters 22(10), 1073–1081 (2001)

    Article  MATH  Google Scholar 

  23. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 564–575 (2003)

    Google Scholar 

  24. Peng, N., Yang, J., Liu, Z.: Mean shift blob tracking with kernel histogram filtering and hypothesis testing. Pattern Recognition Letters 26(5), 605–614 (2005)

    Article  Google Scholar 

  25. Chen, H., Meer, P.: Robust fusion of uncertain information. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 35(3), 578–586 (2005)

    Article  Google Scholar 

  26. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(8), 790–799 (1995)

    Article  Google Scholar 

  27. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 603 (2002)

    Article  Google Scholar 

  28. Parzen, E.: On estimation of a probability density function and mode. The Annals of Mathematical Statistics, 1065–1076 (1962)

    Google Scholar 

  29. Rosenblatt, M.: Remarks on some nonparametric estimates of a density function. The Annals of Mathematical Statistics 27(3), 832–837 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sheather, S., Jones, M.: A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statistical Society. Series B (Methodological) 53(3), 683–690 (1991)

    MathSciNet  MATH  Google Scholar 

  31. Park, B., Marron, J.: Comparison of data-driven bandwidth selectors. Journal of the American Statistical Association 85(409), 66–72 (1990)

    Article  Google Scholar 

  32. Fukunaga, K.: Introduction to statistical pattern recognition. Academic Pr., London (1990)

    MATH  Google Scholar 

  33. Leung, Y., Zhang, J., Xu, Z.: Clustering by scale-space filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1396–1410 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Yang, J., Cheng, J., Chen, Y. (2012). Mobile Sensing Enabled Robust Detection of Security Threats in Urban Environments. In: Zhang, X., Qiao, D. (eds) Quality, Reliability, Security and Robustness in Heterogeneous Networks. QShine 2010. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29222-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29222-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29221-7

  • Online ISBN: 978-3-642-29222-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics