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Abstract. In recent years, geographic information has entered the main-
stream, deeply altering the pre-existing patterns of its production, dis-
tribution, and consumption. Through web mapping, millions of online
users utilise spatial data in interactive digital maps. The typical unit of
visualisation of geo-data is a viewport, defined as a bi-dimensional image
of a map, fixed at a given scale, in a rectangular frame. In a viewport,
the user performs analytical tasks, observing individual map features, or
drawing high-level judgements about the objects in the viewport as a
whole. Current geographic information retrieval (GIR) systems aim at
facilitating analytical tasks, and little emphasis is put on the retrieval
and indexing of visualised units, i.e. viewports. In this paper we outline
a holistic, viewport-based GIR system, offering an alternative approach
to feature-based GIR. Such a system indexes viewports, rather than in-
dividual map features, extracting descriptors of their high-level, overall
semantics in a vector space model. This approach allows for efficient
comparison, classification, clustering, and indexing of viewports. A case
study describes in detail how our GIR system models viewports repre-
senting geographical locations in Ireland. The results indicate advantages
and limitations of the viewport-based approach, which allows for a novel
exploration of geographic data, using holistic semantics.

Keywords: Geographic Information Retrieval, Viewport, Holistic se-
mantics, Geo-semantics, OpenStreetMap, Vector space model

1 Introduction

The term neogeography aptly describes the recent explosion of novel geographic
practices, involving the mass production and consumption of geographic infor-
mation over the Internet [31]. One of the most striking aspects of this nexus
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(07/SRC/I1168) by Science Foundation Ireland under the National Development
Plan. The authors gratefully acknowledge this support.
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of phenomena is the rapid diffusion of interactive web maps, enabled by en-
hancements in web technologies in the early 2000s [6]. In parallel, the amount
of spatially-referenced information available online has kept increasing at an
explosive rate, resulting in spatial information overload.

In order to satisfy the users’ spatial information need, the development of
effective geographic information retrieval techniques has become a core effort for
both academia and industry. The discipline of text information retrieval emerged
to find documents matching desired criteria in large collections [17]. Similarly,
geographic information retrieval (GIR) aims at identifying relevant geographic
objects in vast dataset, indexing locations, toponyms, and minimum bounding
rectangles [12,22]. Several efforts have been made to enrich GIR systems with
geographic knowledge, linking geographic data to ontologies [10,15,2,14]. How-
ever, as Leveling puts it, large-scale evaluations indicate that “more geographic
knowledge typically had little or no effect on performance of GIR systems or
that it even decreases performance compared to traditional (textual) informa-
tion retrieval baselines” [12, p.29].

Popular GIR systems, such as Google Maps, Bing Maps, and Yahoo! Maps,3

focus on the indexing of aspects of the geographic features, to allow efficient
retrieval of individual features based on their textual meta-data, such as place
name and street address [21]. The user is presented with a rectangular frame
often called viewport, containing a pre-rendered image of a map that displays
features based on their visibility at the current scale. Several actions can be ap-
plied on the web map, including text searches, panning - changing the bounding
box location - and zooming - changing the map scale level in discrete, prede-
fined steps. Beyond the details of each system, geographic data is most typically
visualised and consumed in viewports, rendered at a specific map scale. In a
trial-and-error process, users perform actions in order to satisfy their spatial
information need [22].

Such web GIR systems can be utilised to examine aspects of objects, for ex-
ample to observe the structure of a large building or a lake. This type of cognitive
activity is generally considered to be an analytical process: complex objects are
divided into their constituent parts and mutual relationships, in order to reach
the desired piece of information. It has been argued that analytical thinking
dominates Western culture [20,19]. This predominance notwithstanding, various
forms of holism have emerged in psychology, cognitive science, and geography as
an important mode of perception, learning, and thinking [33,25,1]. In particular,
the field of landscape ecology strongly claims that landscape, as Antrop and Van
Eetvelde put it, “should be considered a complex whole that is more than the
sum of its composing parts” [1, p. 43].

In a holistic process, the emphasis is not on individual objects but on the set
of objects considered as a unified whole. In GIR, users often judge the overall
semantic content of a large area to evaluate it against their information need.
Holistic judgements on geographic areas are done in several instances. For ex-

3 http://maps.google.ie, http://www.bing.com/maps, http://maps.yahoo.com (ac-
cessed on 24/1/2012)
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ample, a user might want to evaluate possible areas when looking for houses
on sale. If the user is interested in seaside towns, they want to retrieve areas
matching an overall semantic content, such as a small urban settlement located
on the coast, with a high density of amenities, beaches, etc, without focusing
on specific, individual features. Similarly, a geographer might compare several
viewports to study large-scale phenomena affecting the landscape. As in these
use cases the focus is on entire viewports rather than on specific features, users
can benefit from a holistic semantic query tool.

For all the aforementioned reasons, we think that a computable measure
of semantic similarity between viewports, taken as holistic units of geographic
information, and not between individual features, offers a different approach to
GIR. However, this approach does not aim at superseding text-based retrieval,
but rather at offering an additional tool that can be integrated with existing
GIR methods. In this paper we describe a novel technique to extract holistic
semantic descriptions of viewports, and the computation of their similarity, as a
foundation of a holistic, viewport-based GIR system.

The remainder of this paper is organised as follows: Section 2 surveys related
work in the area of GIR, viewports, and holistic cognition. Section 3 reports the
core of the proposed approach, while Section 4 illustrates a case study walk-
through in the computation of holistic semantic descriptors in a typical web
map. Finally section 5 presents concluding remarks, and outlines directions for
future research.

2 Related work

Web mapping is one of driving technologies that brought geographic information
into the mainstream, enabling the explosion of neogeography since 2005 [31].
Haklay et al give an account of the recent developments in Internet web mapping,
including map mash-ups, crowdsourcing, geostack, and folksonomies, under the
umbrella-term ‘Web Mapping 2.0’ [6]. A major innovation is that map users are
not only consumers of geographic information, but also producers of the so-called
‘Volunteered Geographic Information’ [5].

In such web mapping services, geographic data is distributed through a view-
port, a rectangular viewing frames that represent a geographic area at a given
scale. Typically, users can zoom and pan, updating the viewport. The concept of
viewport is inscribed in a long-standing representational tradition of the screen.
Manovich traces a compelling genealogy of the screen, seen as a flat, rectangular
surface “acting as a window into another space” [16, p. 115].

While interacting with map viewports, users aim at fulfilling their spatial
information need. This process is often focused on specific individual map fea-
tures, decomposing the represented landscape analytically. However, the field
of landscape ecology strongly argues that landscape is perceived holistically, as
a complex whole. Antrop states that the holistic approach was stimulated by
aerial photography, which represents the landscape in its holistic complexity [1].
Naveh, in his broad discussion on landscape ecology and system theory, identifies
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holism as “perceiving all parts in their full context”, and criticises analytical,
reductionist approaches “focused on single, isolated parts of the system” [18, p
.13]. Moreover, in cognitive science and psychology, holistic cognition is believed
to play a major role in perception [29,20].

To be interpreted by humans, the geographic information represented in view-
ports has to convey some intelligible meaning. The semantics of geographic data
has been discussed extensively by Kuhn, who points out the difficulties of ground-
ing meaning in symbolic systems [11]. It is a tautology to state that meaning
is crucial in geographic information retrieval (GIR), which aims at identifying
relevant features in large datasets [22]. To date, most GIR systems focus on
individual map features, with particular emphasis on text-based retrieval [4].

In order to compare, classify, index and cluster geographic objects by their
semantics, several analytical approaches have been devised [23,8]. Schwering sur-
veys and classifies the similarity measures for geographic data [26]. In these ap-
proaches, the similarity of individual semantic geographic concepts are compared
based on their commonalities, differences, positions in taxonomies, and so on.
While such models can compute plausible similarities between specific features
or feature types, they do not consider the computation of holistic similarity of
the map fragments that are, ultimately, displayed to and manipulated by the
users in rectangular viewports.

When presented to users, viewports are bi-dimensional images. For this rea-
son, our approach can be seen as analogous to techniques used in image process-
ing systems [30] to compare raster images. However, while such techniques are
based on the analysis of low-level image features, such as colour, to compute the
similarity of raster viewports, our focus is on the semantics of specific objects.
Therefore, our GIR system focuses exclusively on vector data, regardless of the
particular visual display of the rendered viewport.

Moreover, viewports show geo-information at a specific map scale. In a typical
web map, a viewport is associated with a scale and includes different types of
features depending on specific visibility rules. None of the traditional semantic
similarity measures discussed above take scale into account, as they focus on
abstract psychological classes rather than on viewports. Our system, on the
other hand, captures the scale of a viewport by building a semantic descriptor
that includes only features that are present (i.e. represented) at the viewport
scale – but independently of how they are represented.

To the best of our knowledge, no GIR system focuses on the holistic semantics
of map viewports. To explore this concept, the next Section outlines a holistic
information retrieval system, based on viewport semantic descriptors.

3 A viewport-based, holistic GIR system

In this Section we detail our proposal of a viewport-based GIR system, by exam-
ining the structure of a typical web map, and constructing vector-based semantic
descriptors for viewports. In a session in our GIR system, the user can retrieve
viewports that are similar to a query viewport, indicated as fulfilling the users’
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Fig. 1. The architecture of a viewport-based, holistic GIR system. The user submits
a query viewport to the system, and the system retrieves the most similar viewports
from a set of precomputed semantic descriptors.

spatial information need. The system compares the query viewport with pre-
computed viewports, and returns to the user the most similar viewports it has
found. This GIR architecture is schematised in Figure 1.

3.1 Viewports

When using GIR systems, users are presented with geographic data displayed in
viewports, defined as a rectangular, bi-dimensional images rendered on a screen.
To capture the semantic content of a viewport, it is useful to start from the
visualisation structure of a typical web map. In order to test our approach, we
utilised the OpenStreetMap vector dataset, released under a Creative Commons
license [7]. As a representative of typical web mapping, we selected the Cloud-
Made service, which renders OpenStreetMap data as interactive online maps.4

As opposed to other commercial geo-services, this service enables exploration of
the internal structure of a viewport, and its underlying geographic content.

In the CloudMade maps, the scale can be set to 19 discrete zoom levels,
ranging from scale 1:446M (zoom level 0) to 1:1700 (zoom level 18). The map
scale is controlled by Equation 1, where y is either the distance in meters or
the map scale, and z is the zoom level. The constant C is 78, 271 in the case of
meters per pixels, and 223 · 106 in the case of map scale. This equation allows
the conversion between map scale, screen pixels, and zoom levels:

y = C 21−z z ∈ [0, 18] (1)

4 http://maps.cloudmade.com (accessed on 24/1/2012)
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Zoom Level Meters per pixel Scale Visible Types Description

1 78271 1 : 223M 2 Region
3 19568 1 : 55M 2 –
5 4892 1 : 14M 3 Country
7 1123 1 : 3.5M 5 –
9 306 1 : 871K 10 County

11 76 1 : 217K 23 –
13 19 1 : 54K 44 Neighbourhood
15 5 1 : 13K 64 –
17 1 1 : 3400 93 Building

Table 1. Overview of the zoom levels of a CloudMade web map. Total number of
feature types: 101.

At each zoom level, the map displays certain types of features, e.g. at the
region level, only countries and seas are shown. For the purpose of our study, the
geographic dataset has been subdivided into 101 feature types, closely modelled
on the visualisation rules of the CloudMadeMap.5 For example, types include
restaurant, stadium, and prison. The visibility of each type per zoom level is
defined as a range, e.g. restaurants are visible when z ∈ [16, 18], while stadiums,
being generally larger objects, in range z ∈ [14, 18]. For the sake of clarity, all
the notations used in this paper are displayed in Table 2. Intuitively, the number
of visible types increases as the scale decreases. The characteristics of each zoom
level are summarised in Table 1.

In this context, a viewport vbb,z is defined by a bounding box bb, specified by
the latitude/longitude coordinates of its bottom-left and top-right corners, and
a zoom level z ∈ [0, 18] as defined in Table 1. As stated in Section 1, a viewport
can be seen as the visualisation unit of geographic data in a web map. A user
session on a web map consists of a sequence of manipulative actions on the
map, such as panning and zooming, resulting in the visualisation of a sequence
of viewports {v1 . . . vn}. In our GIR system, the user can select a viewport by
drawing a bounding box on the map, and the selected viewport vs is used as a
query, described in the next Section.

3.2 Holistic viewport descriptors

In order to retrieve semantically similar viewports, our GIR system constructs
a holistic semantic descriptor for each viewport v in a vector space model. To
extract the overall semantic content from a viewport, the system performs spatial
queries on the OpenStreetMap dataset. Given the input viewport v, the system
will perform spatial queries to retrieve Fv, all the visible features in that viewport
(Equation 2):

∀t ∈ Sz, q(bb, z, t)→ Ft, Fv = {Ft1 . . . Ft|Sz|} (2)

5 The visibility rules are defined at http://maps.cloudmade.com/editor (accessed on
24/1/2012)



A holistic semantic similarity measure for viewport in interactive maps 7

z Zoom level ∈ [0, 18] (see Table 1 for details).

bb Bounding box, specified by the latitude/longitude coordinates of
its bottom-left and top-right corners.

v A viewport on bounding box bb at zoom level z. hv and wv is the
viewport height and width in screen pixels.

t A type of map feature (e.g. restaurant, prison, etc). In this work
101 types were defined.

σ(z) Function mapping the visibility of feature types at zoom level z.
Sz ← σ(z).

Sz Set of visible t at zoom level z. Sz = {t0 . . . tn}, where ∀t is visible
at zoom level z.

Dv Semantic descriptor of viewport v.

q(bb, z, t) Spatial query on bounding box bb, zoom level z, and feature type
t. q(bb, z, t)→ Ft

F Set of all existing map features.

Ft Set of features of type t, Ft = {f0 . . . fn}
Fv Set of features visible in viewport v. Fv = {Ft1 . . . Ftn}
I(t) Self-information of type t, assuming a random distribution of types

in the map.

a(f) Area of feature f .

Vg Set of viewports extracted from a geographic area g.
Table 2. Notations

The service can now compute a holistic descriptor Dv, combining all the
visible types Sz in a multidimensional vector as in Equation 3, where n is the
cardinality |Sz|, t ∈ Sz, and w are non-negative normalised weights.

Dv = w1t1 + w2t2 + . . .+ wn−1tn−1 + wntn, w ∈ [0, 1],

n∑
i=1

wi = 1 (3)

In order to characterise Dv, we propose four ways to compute the weights w:
linear, logarithmic, information-theoretic, and surface-based approaches.

(a) Linear weights. The simplest approach consists of assigning them pro-
portionally to the cardinality of sets Ft ∈ Fv, using the normalised cardinality:

wi =
|Fti |
n∑
j=1

|Ftj |
(4)

The main limitation of this approach lies in the fact that the statistical dis-
tribution of types t is heavily skewed in favour of very frequent features, such
as road. In a viewport on an urban area, the number of features road is often
greater than other types by several orders of magnitude, such as restaurants,
which matches our intuition on the fact that roads are very common map ob-
jects, while restaurants are less frequent. For example, it is uncommon to find
2 restaurants, and 200 roads in a viewport. In this case, the weighting function
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in Equation 4 would assign a very low weight to the type restaurant, and an
extremely high weight to secondary.

(b) Logarithmic weights. A variant that focuses on magnitude rather than
number of features is the following, where δ is a positive quantity that prevents
the nullification of a term if |Fti | = 1:

wi =
log(|Fti |+ δ)
n∑
j=1

log(|Ftj |+ δ)
, δ = 1 (5)

This logarithmic version is less sensitive to small changes in the statistical
distribution of types t, and tends to preserve the importance of infrequent fea-
tures.

(c) Information theoretical weights. A second variant to compute weights
wi taking into account the statistical occurrence of feature types, is based on
the information theoretical approach [27]. Given a set of spatial features F , the
probability p and the self-information I of feature type t randomly from the
dataset are defined as in Equation 6. The self-information of type t can then be
used to weight its importance in the vector, by combining it with the number of
features:

p(t) =
|Ft|
|F |

I(t) = −log(p(t)) wi =
I(ti)|Fti |
n∑
j=1

I(tj)|Ftj |
(6)

In this case, the importance of a type t in the descriptor Dv is increased or
reduced depending on its frequency in the dataset. Therefore features of type sec-
ondary carry low self-information, while features restaurant are emphasised. Al-
though this weighting approach intuitively seems the most promising among the
three we have presented (Equations 4, 5, and 6), it can assign very high weights
to rare features. While in some cases this might be a desirable behaviour (for
example to detect landmarks), in general it risks skewing the descriptor towards
unusual features, regardless of their actual semantic weight in the viewport.

(d) Area weights. With features modelled as a polygon, it is possible to
attribute a weight proportionally to the feature area, on the assumption that
large features should have higher semantic importance in the descriptor. Defining
the feature area as a(f), and a(Ft) as the sum of all the areas of the features in
the set, the surface weights are computed as:

wi =
a(Fti)
n∑
j=1

a(Ftj )
a(Ft) =

∑
a(f), ∀f ∈ Ft (7)

In this approach, the feature area is weighted against the area of the other
features, and not of the viewport. Thus, the weight can account for overlapping
features.

The effectiveness of these four approaches to weight the semantic types in
the viewport descriptor, summarised in Table 3, largely depends on the specific
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Approach Key Parameter Description

(a) Linear Number of features When types have different mag-
nitude, large magnitudes take a
large section of the descriptor.

(b) Logarithmic Log of number of
features

Represent the magnitude of
types. Low sensitivity when
types have the same magnitude.

(c) Self-Information Self-Information of
feature type

Common feature have low
weight, while unusual feature
types have very high weight.

(d) Area Sum of feature areas Large features have high weight.
Not computable when feature is
not a polygon (e.g. for points of
interest)

Table 3. Weighting approaches in semantic viewport descriptor Dv

application context. As each approach captures different aspects of the holistic
semantics of a viewport, and presents specific limitations, the weights can be
computed by averaging different approaches. Without doubt, one of the main
advantages of such vector-based viewport semantic descriptors is the wide range
of techniques to compare, cluster, and classify them, discussed in the next Sec-
tion.

3.3 Sampling the Viewport Space

In order to describe the semantics of a web map viewport, we have defined a
vector-based descriptorDv, in four variants (linear, algorithmic, self-information,
and surface). Given a web map covering a certain geographic area g, e.g. Ireland,
we aim at extracting a number of descriptors that represent its semantics. The
viewport space is the set of all possible viewports in g at zoom level z. The area
g can be sampled in a number of viewports Vg = {v1 . . . vn}, where n is the
desired number of viewports. The theoretical number of viewports that can be
extracted in a geographic area delimited by a bounding box bbg at zoom level
z, where hg, wg are the height and width of the geographic area converted into
pixels with Equation 1. hv and wv are the height and width of the viewport in
pixels:

|Vg| = (hg − hv)(wg − wv) (8)

For example, a geographic area g delimited by a bounding box of size ≈
300 × 230 km2 corresponds at z = 9 (county level) to a screen of 4096 × 3072
pixels. Sampling g with 1024×768 pixel viewports, a common resolution for web
maps, the possible viewports amount to ≈ 7.6 million. With higher zoom levels,
the number of possible viewports increase rapidly following the power law in
Equation 1. It is therefore evident that a sampling technique has to be utilised
to extract a computable number of viewports, in particular for high zoom levels.
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The most intuitive way of choosing viewports is based on user interests.
Viewports in which user activity is performed are automatically included in the
sample. However, to overcome the cold start problem that arises in this case,
a general sampling mechanism is necessary to index g. A possible technique
is that of random sampling, based on the law of large numbers. Even though
it is difficult to compute all the possible viewports, it is possible to extract a
sufficient number of random viewports to represent accurately the whole set of
viewports, setting the sample size to a limit β, as shown in Equation 9. In order
to determine β, a confidence level and a confidence interval have to be chosen.

|Vg|β =
β

|Vg|
(hg − hv)(wg − wv) 0 < β < |Vg| (9)

Similarly, it is possible to sample g by defining an arbitrary grid γ of pixels
hγ and wγ , which reduces the number of viewports as follows:

|Vg|γ =
(hg − hv)(wg − wv)

hγwγ
0 < hγ < hg, 0 < wγ < wg (10)

A third possibility is a combination of grid and random sampling. The geo-
graphic area g is divided into an arbitrary number of grid cells, and each cell is
sampled randomly. The choice of the sampling technique (random, grid-based or
both) has to be done on an empirical basis, depending on the specific application
context. Once a sample Vg has been selected, the corresponding descriptors Dv

can be computed. Subsequently, the system can compare, cluster, and retrieve
viewports (see Figure 1). The next Section describes comparison techniques for
the semantic descriptors.

3.4 Comparing Viewport Descriptors

A geographic area g can sampled as a set of viewports Vg, with the techniques
described in the previous Section. The corresponding descriptors Dv can then be
pre-computed through one of the approaches presented in Section 3.2. The sim-
ilarity of two viewports is therefore the similarity of their descriptors (Equation
11).

s(va, vb) = s(Dva , Dvb) s(va, vb) = s(vb, va) 0 ≤ s(va, vb) ≤ 1 (11)

Given that these descriptors are multidimensional vectors, encoding semantic
aspects of the viewports, it is possible to compare them with well-known tech-
niques in a vector space [24,9,32]. In the viewport semantic vector space, every
viewport can be modelled as a row in a multidimensional matrix |Vg| × |t|, hav-
ing a column for each feature type t. Vector similarity is traditionally computed
using linear algebra techniques, such as the Euclidean, cosine, Chebyshev, and
Manhattan distances [3,13].

In a semantic information retrieval system in which the user submits a view-
port vq as a query, the most similar k viewports must be retrieved and displayed
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to them. To do so, these distance measures can be efficiently computed between
the descriptor of the query viewport Dvq and all the pre-computed descriptors
Dv, where v ∈ Vg. Additionally, the similarity computation can be constrained
in several ways to match specific user information needs. Among others, common
constraints are the maximum or minimum distance from the query viewport vq,
a zoom level range (z ∈ [zmin, zmax]), and a weight constraint on a feature type
(wmin < wt < wmax).

The next Section presents a case study, in which the descriptors are used
to capture the holistic semantics of viewports taken from the Dublin area in
Ireland, and are used to retrieve semantically similar viewports.

4 A case study walkthrough

To capture a holistic impression of semantics in a web map, we have defined
semantic descriptors as vectors Dv that represent the overall semantic content
of the viewport v in which the map is displayed. This Section illustrates an inter-
action with our viewport information retrieval system (see Figure 1), suggesting
possible applications, strengths and weaknesses of the approach.

We noted certain tasks that users perform on web maps are not only an-
alytical, i.e. focused on the decomposition of large objects into simpler parts,
but are also holistic, treating a geographic area as a unified entity. Analytical
tasks involve the examination of specific target objects, and so on. On the other
hands, examples of spatial holistic tasks are the classification of an urban area
versus a rural area, in which the user needs not to focus on individual objects,
but classify the area as a whole. These holistic tasks should not be considered in
opposition to analytical tasks, but they are intertwined in the complex cognitive
interplay that occur in the interaction with information retrieval systems.

In a holistic geographic information retrieval, the user can retrieve, instead of
specific geographic features, viewports that represent visually geographic areas
rendered at a given zoom level. In this case, the user’s information need is not a
specific spatial information, e.g. where is the target object, or what is the area
of the target object, etc, but is an implicit semantic judgement on viewports
displayed on the screen. A viewport representing a geographic area that fulfills
the user’s information need, e.g. a seaside town or a commercial port, is used
as a query viewport to retrieve viewports conveying similar semantic content.
To achieve this, the system has to be able to model this implicit judgement on
geographic content displayed in a viewport v.

Sample viewports. In this case study we consider a small set of viewports
selected from a bounding box bb, corresponding to the surroundings of Dublin.
This geographic area g contains a total of ≈ 20, 000 features. Five sample view-
ports were extracted at zoom level z = 15, including a Dublin suburb, a park, a
port, and two seaside towns. Five semantic descriptors Dv were then computed
for each of the six viewports v, linear, logarithmic, information-theoretic, sur-
face, and a mean of the first four, limiting for the sake of illustration the number
of feature type to 10 out of the 64 visible types. The self-information of each
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Viewport Feat Type Linear Log Area Self-Info Mean

v1 building .495 .321 .162 .388 .341

Milltown: suburb of
Dublin, with hospital,
college, and residential
estates.

coastline – – – – –
commercial .029 .113 .034 .058 .058
hospital .01 .056 .111 .021 .05
industrial – – – – –
park .01 .056 .043 .025 .033
port – – – – –
road .427 .309 – .462 .3
town .01 .056 .59 .021 .169
wood .019 .089 .06 .025 .048

v2 building .229 .272 .035 .156 .173

Phoenix Park: Large
urban park with zoo, polo
grounds, and American
embassy.

coastline – – – – –
commercial – – – – –
hospital – – – – –
industrial – – – – –
park .029 .086 .789 .064 .242
port – – – – –
road .257 .285 – .242 .196
town – – – – –
wood .486 .358 .175 .539 .389

v3 building .087 .16 .089 .047 .096

Howth: seaside town with
tourist attractions, cliffs,
and trekking trails.

coastline .442 .268 – .542 .313
commercial – – – – –
hospital – – – – –
industrial – – – – –
park .029 .096 .276 .052 .113
port – – – – –
road .308 .243 – .233 .196
town .01 .048 .309 .015 .095
wood .125 .184 .325 .111 .186

v4 building .296 .207 .158 .175 .209

Dun Laoghaire: seaside
town with a small port, a
private school, and a
hospital.

coastline .194 .183 – .257 .158
commercial .143 .165 .175 .214 .174
hospital .01 .042 .088 .017 .039
industrial .02 .067 .026 .028 .035
park .01 .042 .018 .02 .022
port .01 .042 .184 .021 .064
road .306 .209 – .251 .191
town .01 .042 .351 .017 .105
wood – – – – –

v5 building .17 .19 .12 .08 .14

Dublin Port: docks of
the Dublin port, where
large ships load and
unload containers.

coastline .136 .176 – .144 .114
commercial .386 .244 .326 .461 .354
hospital – – – – –
industrial .227 .209 .174 .251 .215
park – – – – –
port .011 .048 .38 .019 .115
road .068 .133 – .044 .062
town – – – – –
wood – – – – –

Table 4. Viewport semantic descriptors Dv for 5 sample viewports, with weights
computed using four approaches, and their mean. Symbol ‘–’ corresponds to 0.
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Viewport Cosine Euclidean
Name ? v1 v2 v3 v4 v5 v1 v2 v3 v4 v5
Milltown v1 – – – – – – – – – –
Phoenix Park v2 .55 – – – – .52 – – – –
Howth v3 .54 .65 – – – .55 .59 – – –
Dun Laoghaire v4 .82 .38 .68 – – .72 .48 .66 – –
Dublin Port v5 .37 .15 .29 .73 – .46 .35 .45 .68 –

Table 5. Similarity of sample viewports. The matrices are symmetrical, and their
diagonal values are equal to 1. The euclidean similarity has been computed as 1 − d,
where d is the euclidean distance.

feature type was computed on g, and not on the entire OpenStreetMap dataset.
The viewports and corresponding descriptors are reported in Table 4.

Looking at the weights of the descriptors, it is possible to trace behaviour,
pros and cons of each of the four weighting mechanism proposed in Section 3.2.
The linear weights reflect the number of features visible in the viewport. For this
reason, important feature such as the Phoenix Park in v2 rank very low, and
roads rank very high in most viewports. This is because roads are represented in
numerous small chunks, while large objects such as a park consist of one large
polygon, and the linear weights do not take this aspect into account.

This problem is partly addressed by the logarithmic weights, which smooth
the results by increasing the importance of types with few features and by de-
creasing that of types with many occurrences in the viewport. In v3, the log-
arithmic weight of building has been doubled, while that of coastline, another
type of feature modelled in small chunks, has been reduced. However, despite
the smoothing, the resulting weights are still strongly biased towards types such
as road, and building, while large and infrequent features are squeezed into small
weights.

The area-based technique tends to correct this bias. In v2, the type park,
which is almost ignored by the previous weighting mechanisms, is the most
important in the viewport. Thanks to its large area, this type gains a lot of
influence in the descriptor. As it is possible to notice by the frequent 0 values in
the area column, only a subset of features are polygons and can be included in
this descriptor, resulting in a limited information problem.

The behaviour of the self-information weights is more difficult to interpret.
For types that occur very frequently in g, such as road and building, I(t) is
low (3.51 and 4.85), while less frequent types have higher I(t) (12.21 for port,
and 11.56 for park). This is correct, but when the self-information values are
multiplied by the number of features, they smooth the results to a limited extent.
In the case of viewport v2, according to the self information weights, buildings are
more important than parks, maintaining the bias of the linear and logarithmic
weights. As it is expected, the mean weights are heavily smoothed, but maintain
some of the bias of the linear, logarithmic, and self-information weights.

Viewport similarity. The semantic similarity of the viewports can be com-
puted via the cosine distance between their descriptors, as shown in Table 5. In
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this case, the two vector similarity measures rank the pairs in the same way.
The pairs with highest similarities are 〈v1, v4〉, and 〈v4, v5〉. Viewports v1 and v4
are semantically very similar, and this result is satisfactory. The pair 〈v4, v5〉 is
surprising, because a tourist seaside town appears very different to a commer-
cial port. This result is easily explained with the omission of feature types that
would increase the distance between the two viewports, such as restaurants,
tourist attractions, amenities, which are strongly present in v4 but not in v5.
The two viewports share the fact of including the seaside, the presence of a port,
many buildings and commercial activities, all aspects that are captured by the
10 feature types considered in this case study.

On the other hand, the least similar pairs are 〈v2, v5〉, and 〈v3, v5〉. This
seems to be a valid result, as these pairs represent very different areas, sharing
very few feature types. Based on this case study, it can be concluded that the
holistic semantic descriptors proposed in this paper are a promising approach to
compute semantic similarity of viewports.

5 Conclusions and future work

In this paper, we have proposed a technique to extract semantic descriptors
for viewports, which can be used in a viewport-based, holistic GIR system (see
Section 3). Instead of focusing on specific geographic features as in traditional
GIR systems, our system aims at capturing the overall semantic content in a
viewport. Thus, viewports are treated in a manner similar to documents in text-
based IR. Based on the work presented in this paper, the following conclusions
can be drawn:

– The vector-based semantic descriptors capture the overall semantic content
of a viewport in a holistic mode, without focusing on specific individual
features. The user retrieves viewports that present similar characteristics to
the query viewport that is submitted to the system.

– The viewports display a map at a given zoom level. The corresponding de-
scriptor captures the semantic content displayed at the specific zoom level.
This enables the semantic analysis of the viewports, taking the map scale
into account.

– Four weighting mechanisms are proposed to extract semantic content from a
viewport. Such weights can be combined to achieve different representation
of the same viewport. Being based on the well-known vector space model,
our approach can benefit from a wide range of techniques to index, compare,
classify, and cluster large sets of vectors. Descriptors can be used to perform
collaborative filtering, and user profiling.

– Our holistic GIR system offers an additional technique to retrieve relevant
geographic information from a large dataset. It is not conceived as antago-
nistic to traditional GIR, but rather as a complementary approach that can
be combined with existing analytical techniques to enable retrieval through
holistic semantics.



A holistic semantic similarity measure for viewport in interactive maps 15

The case study outlined in Section 4 indicates that the system is able to
capture the holistic semantic of a viewport. However, further work is necessary
to assess its accuracy and recall on a big spatial dataset, in the context of realistic
information needs. The limitations of the presented approach can be overcome by
incorporating more sophisticated semantic techniques for vector space models,
such as latent semantic analysis [32,28]. Besides, other holistic metrics be added
to the descriptors, such as heterogeneity, entropy, and fractal dimension [1].

The holistic GIR system presented in this paper provides a different approach
to traditional geographic information retrieval, modelling the overall semantic
content of a viewport in a vector space model. Treating viewports as documents
enables the exploration of digital maps from a holistic perspective, stressing the
need for reconsidering the undisputed centrality of analytic approaches.
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