Skip to main content

Image Reconstruction in Electrical Impedance Tomography (EIT) with Projection Error Propagation-based Regularization (PEPR): A Practical Phantom Study

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7135))

Abstract

Resistivity reconstruction of practical phantoms is studied with Projection Error Propagation-based Regularization (PEPR) method to improve the image quality in Electrical Impedance Tomography (EIT). PEPR method calculates the regularization parameter as a function of the projection error produced due to the mismatch between experimental measurements and the calculated data. The regularization parameter in the reconstruction algorithm automatically adjusts its magnitude depending on the noise level present in measured data as well as the ill-posedness of the Hessian matrix. Resistivity images are reconstructed from the practical phantom data using the Electrical Impedance Diffuse Optical Reconstruction Software (EIDORS). The resistivity images reconstructed with PEPR method are compared with the Single step Tikhonov Regularization (STR) and Modified Levenberg Regularization (LMR) techniques. The results show that, the PEPR technique reduces the reconstruction errors in each iteration and improves the reconstructed images with better contrast to noise ratio (CNR), percentage of contrast recovery (PCR), coefficient of contrast (COC) and diametric resistivity profile (DRP).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Webster, J.G.: Electrical impedance tomography, 1st edn. Adam Hilger Series of Biomedical Engineering. Adam Hilger, New York (1990)

    Google Scholar 

  2. Holder, D.S.: Electrical impedance tomography: methods, history and applications (Series in Medical Physics and Biomedical Engineering), 1st edn. Institute of Physics Publishing (2004)

    Google Scholar 

  3. Bayford, R.H.: Bioimpedance Tomography (Electrical Impedance Tomography). Annual Review of Biomedical Engineering 8, 63–91 (2006)

    Article  Google Scholar 

  4. Cheney, M., Isaacson, D., Newell, J.C.: Electrical Impedance Tomography. SIAM Review. Society for Industrial and Applied Mathematics 41(1), 85–101 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Borcea, L.: Electrical impedance tomography. Topical Review. Inverse Prob.18, R99-R136 (2002)

    Google Scholar 

  6. Denyer, C.W.L.: Electronics for Real-Time and Three-Dimensional Electrical Impedance Tomographs. PhD Thesis. Oxford Brookes University (1996)

    Google Scholar 

  7. Holder, D.S.: Clinical and Physiological Applications of Electrical Impedance Tomography, 1st edn. Taylor & Francis. UCL Press, UCL (1993)

    Google Scholar 

  8. Li, Y., Rao, L., He, R., Xu, G., Wu, Q., Yan, W., Dong, G., Yang, Q.: A Novel Combination Method of Electrical Impedance Tomography Inverse Problem for Brain Imaging. IEEE Transactions on Magnetics 41(5), 1848–1851 (2005)

    Article  Google Scholar 

  9. Zarafshani, A., Huber, N., Béqo, N., Tunstall, B., Sze, G., Chatwin, C., Wang, W.: A Flexible Low-Cost, High-Precision, Single Interface Electrical Impedance Tomography System for Breast Cancer Detection Using FPGA. Journal of Physics: Conference Series 224, 012169, 1–4 (2010)

    Article  Google Scholar 

  10. Bagshaw, A.P., Liston, A.D., Bayford, R.H., Tizzard, A., Gibson, A.P., Tidswell, A.T., Sparkes, M.K., Dehghani, H., Binnie, C.D., Holder, D.S.: Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method. NeuroImage 20, 752–764 (2003)

    Article  Google Scholar 

  11. Linderholm, P., Marescot, P., Loke, M.H., Renaud, P.: Cell Culture Imaging Using Microimpedance Tomography. IEEE Transactions on Biomedical Eng. 55(1), 138–146 (2008)

    Article  Google Scholar 

  12. Dickin, F., Wang, M.: Electrical resistance tomography for process applications. Measurement Science and Technology 7, 247–260 (1996)

    Article  Google Scholar 

  13. Brown, B.H.: Medical impedance tomography and process impedance tomography: a brief review. Measurement Science & Technology 12, 991–996 (2001)

    Article  Google Scholar 

  14. Hou, W.D., Mo, Y.L.: Increasing image resolution in electrical impedance tomography. Electronics Letters 38, 701–702 (2002)

    Article  Google Scholar 

  15. Wei-Dong, H., Yu-Long, M.: New Regularization Method in Electrical Impedance Tomography. Journal of Shanghai University 6(3), 211–215 (2002)

    Article  Google Scholar 

  16. Vauhkonen, M., Vadász, D., Karjalainen, P.A., Somersalo, E., Kaipio, J.P.: Tikhonov Regularization and Prior Information in Electrical Impedance Tomography. IEEE Transactions on Medical Imaging 17(2), 285–293 (1998)

    Article  Google Scholar 

  17. Pogue, B.W., Willscher, C., McBride, T.O., Osterberg, U.L., Paulsen, K.D.: Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography. Medical Physics 27, 2693–2700 (2000)

    Article  Google Scholar 

  18. Hanke, M.: A regularizing Levenberg–Marquardt scheme, with applications to inverse groundwater filtration problems. Inverse Problems 13, 79–95 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bera, T.K., Biswas, S.K., Rajan, K., Nagaraju, J.: Improving Image Quality in Electrical Impedance Tomography (EIT) Using Projection Error Propagation-Based Regularization (PEPR) Technique: A Simulation Study. Journal of Electrical Bioimpedance 2, 2–12 (2011)

    Google Scholar 

  20. Holder, D.S., Hanquan, Y., Rao, A.: Some practical biological phantoms for calibrating multifrequency electrical impedance tomography. Physiol. Measurement 17, A167–A177 (1996)

    Article  Google Scholar 

  21. Bera, T.K., Nagaraju, J.: A Reconfigurable Practical Phantom for Studying the 2-D Electrical Impedance Tomography (EIT) Using a FEM Based Forward Solver. In: International Conference on Biomedical Applications of Electrical Impedance Tomography (2009)

    Google Scholar 

  22. Bera, T.K., Nagaraju, J.: A Simple Instrumentation Calibration Technique for Electrical Impedance Tomography (EIT) Using A 16-Electrode Phantom. In: Annual IEEE Conference on Automation Science and Engineering, pp. 347–352 (2009)

    Google Scholar 

  23. Bera, T.K., Nagaraju, J.: Resistivity Imaging of A Reconfigurable Phantom With Circular Inhomogeneities in 2D-Electrical Impedance Tomography. Meas’t 44(3), 518–526 (2011)

    Article  Google Scholar 

  24. Bera, T.K., Nagaraju, J.: A Study of Practical Biological Phantoms with Simple Instrumentation for Electrical Impedance Tomography (EIT). In: IEEE International Instrumentation and Measurement Technology Conference, pp. 511–516 (2009)

    Google Scholar 

  25. Vauhkonen, M., Lionheart, W.R.B., Heikkinen, L.M., Vauhkonen, P.J., Kaipio, J.P.: A MATLAB package for the EIDORS project to reconstruct two dimensional EIT images. Physiological Measurement 22, 107–111 (2001)

    Article  Google Scholar 

  26. Niu, H., Guo, P., Ji, L., Zhao, Q., Jiang, T.: Improving image quality of diffuse optical tomography with a projection-error-based adaptive regularization mtd. Optics Express, 12423–12434 (2008)

    Google Scholar 

  27. Guo, P., Lyu, M.R., Chen, C.L.P.: Regularization parameter estimation for feedforward neural networks. IEEE Trans. on Systems, Man, and Cybernetics - Part B: Cybernetics. 33, 35–44 (2003)

    Article  Google Scholar 

  28. Bera, T.K., Nagaraju, J.: Studying the Elemental Resistivity Profile of Electrical Impedance Tomography (EIT) Images to Assess the Reconstructed Image Quality. In: Venugopal, K.R., Patnaik, L.M. (eds.) ICIP 2011. CCIS, vol. 157, pp. 621–630. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bera, T.K., Biswas, S.K., Rajan, K., Nagaraju, J. (2012). Image Reconstruction in Electrical Impedance Tomography (EIT) with Projection Error Propagation-based Regularization (PEPR): A Practical Phantom Study. In: Thilagam, P.S., Pais, A.R., Chandrasekaran, K., Balakrishnan, N. (eds) Advanced Computing, Networking and Security. ADCONS 2011. Lecture Notes in Computer Science, vol 7135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29280-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29280-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29279-8

  • Online ISBN: 978-3-642-29280-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics