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Abstract

Consider an infinite graph with nodes initially labeled by indepen-
dent Bernoulli random variables of parameter p. We address the density
classification problem, that is, we want to design a (probabilistic or deter-
ministic) cellular automaton or a finite-range interacting particle system
that evolves on this graph and decides whether p is smaller or larger than
1/2. Precisely, the trajectories should converge to the uniform configu-
ration with only 0′s if p < 1/2, and only 1′s if p > 1/2. We present
solutions to that problem on Zd, for any d ≥ 2, and on the regular infinite
trees. For Z, we propose some candidates that we back up with numerical
simulations.

Keywords. Cellular automata, interacting particle systems, density
classification, percolation.

1 Introduction

Consider a finite or a countably infinite set of cells, which are spatially arranged
according to a group structure G. We are interested in the density classification
problem, which consists of deciding in a decentralised way, if an initial configu-
ration on G contains more 0’s or more 1’s. More precisely, the goal is to design
a deterministic or probabilistic dynamical system that evolves in the configu-
ration space {0, 1}G with a local and homogeneous updating rule and whose
trajectories converge to 0G or to 1G if the initial configuration contains more
0’s or more 1’s, respectively. To attack the problem, two natural instantiations
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of dynamical systems are considered, one with synchronous updates of the cells,
and one with asynchronous updates. In the first case, time is discrete, all cells
are updated at each time step, and the model is known as a Probabilistic Cellu-
lar Automaton (PCA) [3]. A Cellular Automaton (CA) is a PCA in which the
updating rule is deterministic. In the second case, time is continuous, cells are
updated at random instants, at most one cell is updated at any given time, and
the model is known as a (finite range) Interacting Particle System (IPS) [16].

The general spirit of the problem is that of distributed computing: gather-
ing a global information by exchanging only local information. The challenge
is two-fold: first, it is impossible to centralise the information (cells are indis-
tinguishable); second, it is impossible to use classical counting techniques (cells
contain only a binary information).

The density classification problem was originally introduced for rings of fi-
nite size (G = Z/nZ) and for synchronous models [17]. After experimentally
observing that finding good rules to perform this task was difficult, it was shown
that perfect classification with CA is impossible, that is, there exists no given
CA that solves the density classification problem for all values of n [14]. This
result however did not stop the quest for the best – although imperfect – mod-
els as nothing was known about how well CA could perform. The use of PCA
opened a new path [6, 18] and it was shown that there exist PCA that can solve
the problem with an arbitrary precision [4]. In the present paper, Prop. 1, we
complement the results from [14, 4] by showing that there exists no PCA that
solves the density classification problem for all values of n.

The challenge is now to extend the research to infinite groups (whose Cayley
graphs are lattices or regular trees). First, we need to specify the meaning of
“having more 0’s or more 1’s” in this context. Consider a random configuration
on {0, 1}G obtained by assigning independently to each cell a value 1 with
probability p and a value 0 with probability 1−p. We say that a model “classifies
the density” if the trajectories converge weakly to 1G for p > 1/2, and to
0G for p < 1/2. A couple of conjectures and negative results exist in the
literature. Density classification on Zd is considered in [2] under the name of
“bifurcation”. The authors study variants of the famous voter model IPS [16,
Ch. V] and they propose two instances that are conjectured to bifurcate. The
density classification question has also been addressed for the Glauber dynamic
associated to the Ising model at temperature 0, both for lattices and for trees [5,
11, 12]. The Glauber dynamic defines an IPS or PCA having 0G and 1G as
invariant measures. Depending on the cases, there is either a proof that the
Glauber dynamic does not classify the density, or a conjecture that it does with
a proof only for densities sufficiently close to 0 or 1.

The density classification problem has been approached with different per-
spectives on finite and infinite groups, as emphasised by the results collected
above. For finite groups, the problem is studied per se, as a benchmark for un-
derstanding the power and limitations of PCA as a computational model. The
community involved is rather on the computer science side. For infinite groups,
the goal is to understand the dynamics of specific models that are relevant
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in statistical mechanics. The community involved is rather on the theoretical
physics and probability theory side.

The aim of the present paper is to investigate how to generalise the finite
group approach to the infinite group case. We want to build models of PCA
and IPS, as simple as possible, that correct random noise in the initial config-
uration, even if the density of errors is close to 1/2. We consider the groups
Zd, whose Cayley graphs are lattices (Section 3), and the free groups, whose
Cayley graphs are infinite regular trees (Section 4). In all cases, except for Z,
we obtain both PCA and IPS models that classify the density. To the best of
our knowledge, they constitute the first known such examples. The case of Z
is more complicated and could be linked to the so-called positive rates conjec-
ture [8]. We provide some potential candidates for density classification together
with simulation experiments (Section 5).

2 Defining the density classification problem

Let (G, ·) be a finite or countable set of cells equipped with a group structure.
Set A = {0, 1}, the alphabet, and X = AG, the set of configurations. For x ∈ X
and u ∈ {0, 1}, denote by |x|u the number of occurences of u in x.

2.1 PCA and IPS

Given a finite set N ⊂ G, a transition function of neighbourhood N is a function
f : AN → A. The cellular automaton (CA) F of transition function f is the
application F : X → X defined by:

∀x ∈ X,∀g ∈ G, F (x)g = f((xg·v)v∈N ).

When the group G is Zd or Zn = Z/nZ, we denote as usual the law of G by the
sign +, so that the definition can be written: ∀x ∈ X,∀k ∈ Zd (resp. Zn), F (x)k =
f((xk+v)v∈N ).

Probabilistic cellular automata (PCA) are an extension of classical CA: the
transition function is now a function ϕ : AN → M(A), where M(A) denotes
the set of probability measures on A. At each time step, the cells are updated
synchronously and independently, according to a distribution depending on a
finite neighbourhood [3]. This defines an application F :M(X)→M(X). The
image of a measure µ is denoted by µF .

The analog of PCA in continuous time are (finite-range) interacting particle
systems (IPS) [16]. IPS are characterised by a finite neighbourhood N ⊂ G,
and a transition function f : AN → A (or ϕ : AN → M(A)). We attach
random and independent clocks to the cells of G. For a given cell, the instants
of R+ at which the clock rings form a Poisson process of parameter 1. Let xt

be the configuration at time t ≥ 0 of the process. If the clock at cell g rings
at instant t, the state of the cell g is updated into f((xtg·v)v∈N ) (or according
to the probability measure ϕ((xtg·v)v∈N )). This defines a transition semigroup
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F = (F t)t∈R+ , with F t : M(X) → M(X). If the initial measure is µ, the
distribution of the process at time t is given by µF t.

In a PCA, all cells are updated at each time step, in a “synchronous” way.
On the other hand, for an IPS, the updating is “asynchronous”. Indeed, the
probability of having two clocks ringing at the same instant is 0.

Observe that PCA are discrete-time Markov chains, while IPS are continuous-
time Markov processes. A measure µ is said to be an invariant mesasure of a
process F , resp. (Ft)t, if µF = µ, resp. µFt = µ for all t ∈ R+.

2.2 The density classification problem on Zn

The density classification problem was originally stated as follows: find a finite
neighbourhood N ⊂ Z and a transition function f : AN → A such that for
any integer n ≥ 1 and any configuration x ∈ AZn , when applying the CA F
of transition function f to x, the sequence of iterates (F k(x))k≥0 reaches the
fixed point 0 = 0n if |x|0 > |x|1 and the fixed point 1 = 1n if |x|1 > |x|0. Land
and Belew [14] have proved that there exists no CA that perfectly performs this
density classification task for all values of n. We now prove that this negative
result can be extended to the PCA. It provides at the same time a new proof
for CA as a particular case.

Denote by δx the probability measure that corresponds to a Dirac distribu-
tion centred on x.

Proposition 1. There exists no PCA or IPS that solves perfectly the density
classification problem on Zn, that is, for any integer n ≥ 1, and for any configu-
ration x ∈ AZn , (δxF

t)t≥0 converges to δ0 if |x|0 > n/2 and to δ1 if |x|1 > n/2.

Proof. We carry out the proof for PCA. For IPS, the argument is similar and
even simpler. Let us assume that F is a PCA that solves perfectly the density
classification problem on Zn. Let N be the neighbourhood of F , and let ` be
such that N ⊂ (−`, `). We will prove that for any x ∈ AZn (with n ≥ 2`), the
number of occurrences of 1 after application of F to x is almost surely equal to
|x|1. Let us assume that it is not the case. Then, we have:

∃x, y ∈ AZn , |x|1 6= |y|1, δxF (y) > 0 . (1)

Assume for instance that |y|1 > |x|1 (the case |y|1 < |x|1 is treated similarly).
We first assume that |x|1 = a > n/2. For some integers k ≥ 2,m ≥ 2`, let us
consider the configuration z = xk0m ∈ AZkn+m . We have |z|1 = ka. Let ys be
the suffix of length n− ` of y, and let yp be the prefix of length n− ` of y. By
applying (1), it follows that:

∃u, v, u′, v′ ∈ A`, δzF (uysy
k−2ypvu

′0m−2`v′) > 0 .

Set w = uysy
k−2ypvu′0m−2`v′. We have |w|1 ≥ k|y|1 − 2` ≥ k(a+ 1)− 2`. For

m big enough, if we set k to be the largest integer such that k(a− n/2) < m/2,
we have:

|z|1 = ka <
kn+m

2
, |w|1 ≥ k(a+ 1)− 2` >

kn+m

2
.
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So, with a positive probability, we can reach a configuration with more ones than
zeros starting from a configuration with more zeros than ones. Since F classifies
the density with probability 1, the new configuration can be considered as an
initial condition that needs to be classified and will thus almost surely evolve to
the fixed point 1, that is, a bad classification will occur, which contradicts our
hypothesis.

The case |x|1 = a < n/2 is analogous, except that we now consider config-
urations z of the form xk1m ∈ AZkn+m and choose the integers k,m such that
ka+m < (kn+m)/2 and k(a+ 1) +m− 2` > (kn+m)/2.

We have proved that for any x ∈ AZn (with n ≥ `), the number of occur-
rences of ones after application of F to x is almost surely equal to |x|1. This is
in contradiction with the fact that F classifies the density.

This proposition can be extended to larger dimensions: for any d ≥ 1, there
is no PCA or IPS that classifies perfectly the density on all the groups of the
form Zn1

× . . .× Znd
.

2.3 The density classification problem on infinite groups

Let us define formally the density classification problem on infinite groups.
We denote by µp the Bernoulli measure of parameter p, that is, the product

measure of density p on X = AG. A realisation of µp is obtained by assigning
independently to each element of G a label 1 with probability p and a label 0
with probability 1 − p. We denote respectively by 0 and 1 the two uniform
configurations 0G and 1G and by δx the probability measure that corresponds
to a Dirac distribution centred on x.

The density classification problem is to find a PCA or an IPS F , such that:p < 1/2 =⇒ µpF
t w−−−→
t→∞

δ0

p > 1/2 =⇒ µpF
t w−−−→
t→∞

δ1
. (2)

The notation
w−→ stands for the weak convergence of measures. In our case,

the interpretation is that for any finite subset K ⊂ G, the probability that at
time t, all the cells of K are labelled by 0 (resp. by 1) tends to 1 if p < 1/2
(resp. if p > 1/2). Or equivalently, that for any single cell, the probability that
it is labelled by 0 (resp. by 1) tends to 1 if p < 1/2 (resp. if p > 1/2).

2.4 From subgroups to groups

Next proposition has the following consequence: given a process that classifies
the density on Z2, we can design a new one that classifies on Zd for d > 2. The
idea is to divide Zd into Z2-layers and to apply the original process indepen-
dently on each layer.

Proposition 2. Let H be a subgroup of G, and let FH be a process (PCA or
IPS) of neighbourhood N and transition function f that classifies the density
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on AH . We denote by FG the process on AG having the same neighbourhood N
and the same transition function f . Then, FG classifies the density on AG.

Proof. Since H is a subgroup, the group G is partitioned into a union of classes
g1H, g2H, . . . We have N ⊂ H, so that if an element g ∈ G is in some class giH,
then for any v ∈ N , the element g · v is also in giH. Since FH classifies the
density, on each class giH, the process FG satisfies (2). Thus for any cell of G,
the probability that it is labelled by 0 (resp. by 1) tends to 1 if p < 1/2 (resp.
if p > 1/2).

3 Classifying the density on Z2: Toom’s rule

To classify the density on Z2, a natural idea is to apply the majority rule on a
cell and its four direct neighbours. Unfortunately, this does not work, neither
in the CA nor in the IPS version. Indeed, an elementary square of four cells in
state 1 on a background of 0’s is a fixed point for the process. For p ∈ (0, 1),
monochromatic elementary squares of both colors appear almost surely in the
initial configuration which makes the convergence to 0 or 1 impossible.

Another idea is to apply the majority rule on the four nearest neighbours
(excluding the cell itself) and to choose uniformly the new state of the cell
in case of equality. In the IPS setting, this process is known as the Glauber
dynamics associated to the Ising model. It has been conjectured to classify the
density, but the result has been proved only for values of p that are sufficiently
close to 0 or 1 [5].

To overcome the difficulty, we consider the majority CA but on the asym-
metric neighbourhood N = {(0, 0), (0, 1), (1, 0)}. We prove that this CA, known
as Toom’s rule [3, 7], classifies the density on Z2. Our proof relies on the prop-
erties of the percolation clusters on the triangular lattice [10]. We then define
an IPS inspired by this local rule and prove with the same techniques that it
also classifies the density.

3.1 A cellular automaton that classifies the density

Let us denote by maj : A3 → A, the majority function, so that maj(x, y, z) =
0 if x+ y + z < 2 and 1 if x+ y + z ≥ 2.

Theorem 1. The cellular automaton T : AZ2 → AZ2

defined by:

T (x)i,j = maj(xi,j , xi,j+1, xi+1,j)

for any x ∈ AZ2

, (i, j) ∈ Z2, classifies the density.

Proof. By symmetry, it is sufficient to prove that if p > 1/2, then (µpT n)n≥0
converges weakly to δ1.

Let us consider the triangular lattice of sites (vertices) Z2 and bonds (edges)
{{(i, j), (i, j+ 1)}, {(i, j), (i+ 1, j)}, {(i+ 1, j), (i, j+ 1)}, (i, j) ∈ Z2}. We recall
that a 0-cluster is a subset of connected sites labelled by 0 which is maximal for
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inclusion. The site percolation threshold on the triangular lattice is equal to 1/2
so that, for p > 1/2, there exists almost surely no infinite 0-cluster [10]. Thus,
if S0 denotes the set of sites labelled by 0, the set S0 consists almost surely of
a countable union S0 = ∪k∈NSk of finite 0-clusters. Moreover, the size of the
0-clusters decays exponentially: there exist some constants κ and γ such that
the probability for a given site to be part of a 0-cluster of size larger than n is
smaller than κe−γn, see [10].

Let us describe how the 0-clusters are transformed by the action of the CA.
For S ⊂ Z2, let 1S be the configuration defined by (1S)x = 1 if x ∈ S and
(1S)x = 0 otherwise. Let T (S) be the subset S′ of Z2 such that T (1S) = 1S′ .
By a simple symmetry argument, this last equality is equivalent to T (1Z2\S) =
1Z2\S′ . We observe the following.

• The rule does not break up or connect different 0-clusters (proved by
Gács [7, Fact 3.1]). More precisely, if S consists of the 0-clusters (Sk)k,
then the components of T (S) are the nonempty sets among (T (Sk))k.

• Any finite 0-cluster disappears in finite time: if S is a finite and connected
subset of Z2, then there exists an integer n ≥ 1 such that T n(S) = ∅.
This is the eroder property [3].

• Let us consider a 0-cluster and a rectangle in which it is contained. Then
the 0-cluster always remains within this rectangle. More precisely, if R is
a rectangle set, that is, a set of the form {(x, y) ∈ Z2 | a1 ≤ x ≤ a2, b1 ≤
y ≤ b2}, and if S ⊂ R, then for all n ≥ 1, T n(S) ⊂ R (proof by induction).

Let us now consider all the 0-clusters for which the minimal enveloping
rectangle contains the origin (0, 0). By the exponential decay of the size of the
clusters, one can prove that the number of such 0-clusters is almost surely finite.
Indeed, the probability that the point of coordinates (m,n) is a part of such a
cluster is smaller than the probability for this point to belong to a 0-cluster of
size larger than max(|m|, |n|). And since∑

(m,n)∈Z2

κe−γmax(|m|,|n|) < 4κ
∑
m∈N

(me−γm +
∑
n≥m

e−γn) <∞,

we can apply the Borel-Cantelli lemma to obtain the result. Let T0 be the
maximum of the time needed to erase these 0-clusters. The random variable
T0 is almost surely finite, and after T0 time steps, the site (0, 0) will always be
labelled by a 1. As the argument can be generalised to any site, it ends the
proof.

We point out that Toom’s CA classifies the density despite having many
different invariant measures. For example:

• Any configuration x that can be decomposed into monochromatic North-
East paths (that is, xi,j = xi,j+1 or xi,j = xi+1,j for any i, j) is a fixed
point and δx is an invariant measure.
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Figure 1: Illustration of the definition of the IPS.

• Let y be the checkerboard configuration defined by yi,j = 0 if i + j is
even and yi,j = 1 otherwise, and let z be defined by zi,j = 1− yi,j . Since
we have T (y) = z and T (z) = y, the two configurations y and z form a
periodic orbit and (δy + δz)/2 is an invariant measure.

3.2 An interacting particle system that classifies the den-
sity

We now define an IPS for which we use the same steps as above to prove that
it classifies the density.

Note that the exact IPS analog of Toom’s rule might classify the density
but the above proof does not carry over since, in some cases, different 0-clusters
may merge. To overcome the difficulty, we introduce a different IPS with a new
neighbourhood of size 7: the cell itself and the 6 cells that are connected to it
in the triangular lattice defined in the previous section.

For α ∈ A, set ᾱ = 1− α.

Theorem 2. Let us consider the following IPS: for a configuration x ∈ AZ2

,
we update the state of the cell (i, j) by applying the majority rule on the North-
East-Centre neighbourhood, except in the following cases (for which we keep the
state unchanged):

1. xi,j = xi−1,j+1 = xi+1,j−1 = x̄i,j+1 = x̄i+1,j and (xi,j−1 = x̄i,j or
xi−1,j = x̄i,j),

2. xi,j = xi−1,j+1 = xi,j−1 = x̄i,j+1 = x̄i+1,j = x̄i+1,j−1 and xi−1,j = x̄i,j,

3. xi,j = xi−1,j = xi+1,j−1 = x̄i,j+1 = x̄i+1,j = x̄i−1,j+1 and xi,j−1 = x̄i,j.

This IPS classifies the density.

The three cases for which we always keep the state unchanged are illustrated
below for the case where xi,j = 1 (central cell). In the first case, we allow to flip
the central cell if and only if the two cells marked by a dashed circle are also
labelled by 1. Otherwise, the updating could connect two different 0-clusters
and break up the 1-cluster to which the cell (i, j) belongs to. The second and
third cases are analogous.
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The proof is similar to the one of Theorem 1 but involves some additional
technical points.

Proof. We assume as before that p > 1/2. Like the CA of the previous section,
the new process that we have defined has the property not to break up or connect
different clusters. Furthermore, if we consider a 0-cluster and the smallest rect-
angle in which it is contained, we can check again that the 0-cluster will never go
beyond this rectangle. As before, we only need to prove that any finite 0-cluster
disappears almost surely in finite time to conclude the proof. We consider a
realisation of the trajectory of the IPS with initial density µp. We associate to
any finite 0-cluster C ⊂ Z2 the point v(C) = max{(i, j) ∈ C}, where the order
is the lexicographic order on the coordinates (we set v(∅) = (−∞,−∞)). The
point v(C) is thus the upmost point of C among its rightmost points. Let us
consider at time 0 some finite 0-cluster C0. We denote by Ct the state of this
cluster at time t.

Claim. The value v(Ct) is nonincreasing. Moreover, if t ≥ 0 is such that
Ct 6= ∅, then there exists almost surely a time t′ > t such that v(Ct′) < v(Ct).

Let us prove the claim. Let us denote by x ∈ AZ2

a configuration attained at
some time t, and let (i, j) = v(Ct). By definition of v(Ct), if a cell of coordinate
(i + 1, j′) is connected to a cell of Ct, then xi+1,j′ = 1. Either we have also
xi+1,j′+1 = 1 and the cell (i + 1, j′) will not flip. Or xi+1,j′+1 = 0, but in
this case, since (i + 1, j′ + 1) does not belong to Ct, xi,j′+1 = 1 and the cell
of Ct to which is connected (i + 1, j′) is necessarily (i, j′). So, xi,j′ = 0 and
xi+1,j′−1 = 1, once again by definition of v(Ct). Depending on the value of
xi+2,j′−1, either rule 1 or rule 2 forbids the cell (i + 1, j′) to flip. In the same
way, we can prove that if a cell of coordinate (i, j′), j′ > j is connected to Ct,
then it is not allowed to flip. This proves that v(Ct) is nonincreasing. In order
to prove the second part of the claim, we need to show that the cell (i, j) will
almost surely be flipped in finite time. By definition of (i, j) = v(Ct), we know
that xi,j+1 = xi+1,j = xi+1,j−1 = 1. The cell (i, j) will thus be allowed to
flip, except if xi−1,j+1 = xi,j−1 = 0 and xi−1,j = 1. But in that case, the cell
(i− 1, j) will end up flipping, except if xi−1,j−1 = xi−2,j+1 = 1, xi−2,j = 0, and
so on. Let Wn = {(i − n, j), (i − 1 − n, j + 1), (i − n, j − 1)}. If for each n,
the cells of Wn are in the state (n mod 2), then none of the cell (i − n, j) is
allowed to flip (see Figure 2.a). But recall now that the initial measure is µp.
There exists almost surely an integer n ≥ 0 such that the initial state of the cell
(i − n, j) is not (n mod 2). Let m(t) be the smallest integer n whose value at
time t is not n mod 2. Then, one can easily check that m(t) is non-increasing,
and that it reaches 0 in finite time. Thus, the cell (i, j) ends up flipping and we
have proved the claim.

The example of Figure 2.b illustrates how the proof works. Here, no cell of
the cluster Ct is allowed to flip, but since the cells on the right and on the top
of v(Ct) cannot flip either, v(Ct) does not increase. The cell at the left of v(Ct)
will end up flipping, and v(Ct) will then be allowed to flip.

Since we know that a 0-cluster cannot go beyond its enveloping rectangle, a
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Figure 2: Illustration of the proof of Theorem 2

direct consequence of the claim is that any 0-cluster disappears in finite time.
This allows us to conclude the proof in the same way as for the majority cellular
automaton.

4 Classifying the density on regular trees

Consider the finitely presented group Tn = 〈a1, . . . , an | a2i = 1〉. The Cayley
graph of Tn is the infinite n-regular tree. For n = 2k, we also consider the free
group with k generators, that is, T ′2k = 〈a1, . . . , ak | ·〉. The groups T2k and T ′2k
are not isomorphic, but they have the same Cayley graph.

4.1 Shortcomings of the nearest neighbour majority rules

For odd values of n, a natural candidate for classifying the density is to apply
the majority rule on the n neighbours of a cell. But it is proved that neither
the CA (see [12] for n = 3, 5, and 7) nor the IPS (see [11] for n = 3) classify the
density.

For n = 4, a natural candidate would be to apply the majority on the four
neighbours and the cell itself. We now prove that it does not work either.

Proposition 3. Consider the group T ′4 = 〈a, b | ·〉. Consider the majority CA
or IPS with neighbourhood N = {1, a, b, a−1, b−1}. For p ∈ (1/3, 2/3), the
trajectories do not converge weakly to a uniform configuration.

Proof. If p ∈ (1/3, 2/3), then we claim that at time 0, there are almost surely
infinite chains of zeros and infinite chains of ones that are fixed. Let us choose
some cell labelled by 1. Consider the (finite or infinite) subtree of 1’s originating
from this cell viewed as the root. If we forget the root, the random tree is
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exactly a Galton-Watson process. Indeed, the expected number of children of a
node is 3p and since 3p > 1, this Galton-Watson process survives with positive
probability. Consequently, there exists almost surely an infinite chain of ones at
time 0 somewhere in the tree. In the same way, since 3(1− p) > 0, there exists
almost surely an infinite chain of zeros.

As for Z2, we get round the difficulty by keeping the majority rule but
choosing a non-symmetrical neighbourhood.

4.2 A rule that classifies the density on T ′4

In this section, we consider the free group T ′4 = 〈a, b|·〉, see Fig. 3 (a).

Theorem 3. The cellular automaton F : AT ′4 → AT ′4 defined by:

F (x)g = maj(xga, xgab, xgab−1)

for any x ∈ AT ′4 , g ∈ T ′4, classifies the density.

Proof. We consider a realisation of the trajectory of the CA with initial distri-
bution µp. Let us denote by Xn

g the random variable describing the state of the
cell g at time n. Since the process is homogeneous, it is sufficient to prove that
Xn

1 converges almost surely to 0 if p < 1/2 and to 1 if p > 1/2. Let us denote
by h : [0, 1]→ [0, 1] the function that maps a given p ∈ [0, 1] to the probability
h(p) that maj(X,Y, Z) = 1 when X,Y, Z are three independent Bernoulli ran-
dom variables of parameter p. An easy computation provides h(p) = 3p2 − 2p3,
and one can check that the sequence (hn(p))n≥0 converges to 0 if p < 1/2 and
to 1 if p > 1/2.

We prove by induction on n ∈ N that for any k ∈ N, the family Ek(n) =
{Xn

u1u2...uk
| u1, u2, . . . , uk ∈ {a, ab, ab−1}} consists of independent Bernoulli

random variables of parameter hn(p). By definition of µp, the property is true
at time n = 0. Let us assume that it is true at some time n ≥ 0, and let us fix
some k ≥ 0. Two different elements of Ek(n+ 1) can be written as the majority
on two disjoint triples of Ek+1(n). The fact that the triples are disjoint is a
consequence of the fact that {a, ab, ab−1} is a code: a given word g ∈ G written
with the elementary patterns a, ab, ab−1 can be decomposed in only one way
as a product of such patterns. By hypothesis, the family Ek+1(n) is made of
i.i.d. Bernoulli variables of parameter hn(p), so the variables of Ek(n + 1) are
independent Bernoulli random variables of parameter hn+1(p). Consequently,
the process F classifies the density on T ′4.

Let us mention that from time n ≥ 1, the field (Xn
g )g∈G is not i.i.d. For

example, X1
1 and X1

ab−1a−1 are not independent since both of them depend on
X0
a .

On T ′2k = 〈a1, . . . , ak|·〉, one can either apply Prop. 2 to obtain a cellular
automaton that classifies the density, or define a new CA by the following for-
mula: F (x)g = maj(xga1 , xga1a2 , xga1a−1

2
, . . . , xga1ak , xga1a−1

k
) and check that it

is also classifies the density.
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Figure 3: The cellular automata described by Theorem 3 and Theorem 4

It is also possible to adapt the above proof to show that the IPS with the
same local rule also classifies the density.

4.3 A rule that classifies the density on T3

We now consider the group T3 = 〈a, b, c | a2 = b2 = c2 = 1〉.

Theorem 4. The cellular automaton F : AT3 → AT3 defined by:

F (x)g = maj(xgab, xgac, xgacbc)

for any x ∈ AT3 , g ∈ T3, classifies the density.

Proof. The proof is analogous to the previous case. We prove by induction on
n ∈ N that for any k ∈ N, that the family Ek(n) = {Xn

u1u2...uk
| u1, u2, . . . , uk ∈

{ab, ac, acbc}} consists of independent Bernoulli random variables of parameter
hn(p), the key point being that {ab, ac, acbc} is a code.

Once again, as explained in Prop. 2, since we have a solution on T3, we
obtain a CA that classifies the density for any Tn, n ≥ 3, by applying exactly
the same rule. The corresponding IPS on Tn also classifies the density.

5 Classifying the density on Z
The one-dimensional case appears as much more difficult than the other cases
and we are not aware of any solution to the density classification problem on Z.
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However, if we slightly change the formulation of the problem, simple solutions
do exist. We first give one such modification and then go back to the original
problem and describe three models, two CA and one PCA, that are conjectured
to classify the density. We also provide some preliminary analytical results as
well as experimental confirmations of these results by using numerical simula-
tions.

In the examples below, the traffic cellular automaton, rule 184 according
to Wolfram’s notation, plays a central role. It is the CA with neighborhood
N = {−1, 0, 1} and local function traf defined by:

x, y, z 111 110 101 100 011 010 001 000
traf(x, y, z) 1 0 1 1 1 0 0 0

This CA can be seen as a simple model of traffic flow on a single lane: the
cars are represented by 1’s moving one step to the right if and only if there are
no cars directly in front of them. It is a density-preserving rule.

5.1 An exact solution with weakened conditions

On finite rings, several models have been proposed that solve relaxed variants
of the density classification problem. We concentrate on one of these models
introduced in [15]. The original setting is modified since the model operates
on an extended alphabet, and the criterium for convergence is also weakened.
Modulo this relaxation, it solves the problem on finite rings Zn. We show the
same result on Z.

Proposition 4. Consider the cellular automaton F on the alphabet B = A2,
with neighbourhood N = {−1, 0, 1}, and local function f = (f1, f2) defined by:

f1(x, y, z) = traf(x1, y1, z1) ; f2(x, y, z) =


0 if x1 = y1 = 0

1 if x1 = y1 = 1

y2 otherwise

(3)

The projections µpF
n(AZ × ·) converge to δ0 if p < 1/2 and to δ1 if p > 1/2.

Intuitively, the CA operates on two tapes: on the first tape, it simply per-
forms the traffic rule; on the second tape, what is recorded is the last occurrence
of two consecutive zeros or ones in the first tape. If p < 1/2, then, on the first
tape, there is convergence to configurations which alternate between patterns
of types 0k and (10)`. Consequently, on the second tape, there is convergence
to the configuration δ0. We formalise the argument below.

Proof. Let T : AZ → AZ be the traffic CA, see above. Following an idea
of Belitsky and Ferrari [1], we define the recoding ψ : AZ → {−1, 0, 1}Z by
ψ(x)i = 1− xi− xi−1. Consider (ψ ◦Tn(x))n≥0, the recodings of the trajectory
of the CA originating from x ∈ {0, 1}Z. There is a convenient alternative way
to describe (ψ ◦ Tn(x))n≥0. It corresponds to the trajectories in the so-called
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Ballistic Annihilation model: 1 and −1 are interpreted as particles that we call
respectively positive and negative particles. Negative particles move one cell to
the left at each time step while positive particles move one cell to the right; and
when two particles of different types meet, they annihilate.

Consider the Ballistic Annihilation model with initial condition µpψ for p >
1/2. The density of negative particles is p2, while the density of positive particles
is (1 − p)2. During the evolution, the density of positive particles decreases to
0, while the density of negative particles decreases to 2p − 1. In particular,
the negative particles that will never disappear have density 2p− 1 (see [1] for
details). We can track back the position at time 0 of the “eternal” negative
particles. Let X be the (random) position of the first eternal particle on the
right of cell 0. After time X, the column 0 in the space-time diagram contains
only 0 or −1 values. This key point is illustrated in the figure below.

0 X

+1

+1

+1

−1

−1

−1

−1

−1

We now go back to the traffic CA with initial condition distributed according
to µp for p > 1/2 and concentrate on two consecutive columns of the space-time
diagram. The property tells us that after some almost surely finite time, the
columns contain only the patterns 11, 01, or 10.

For the CA defined by Eq. 3 with an initial condition distributed according
to a measure µ satisfying µ(· × AZ) = µp for p > 1/2, the above key point
gets translated as follows: in any given column of the space-time diagram, after
some a.s. finite time, the column contains only the letters (0, 1) or (1, 1). In
particular, µpF

t(AZ × ·) converges weakly to δ1 if p > 1/2.

5.2 Density classifier candidates on Z
The GKL cellular automaton. The Gács-Kurdyumov-Levin (GKL) cel-
lular automaton is the CA with neighbourhood N = {−3,−1, 0, 1, 3} defined
by

gkl(x)k =

{
maj(xk, xk+1, xk+3) if xk = 1

maj(xk, xk−1, xk−3) if xk = 0.

for any x ∈ AZ, k ∈ Z.
The GKL CA is known to be one of the best performing CA for the density

classification on finite rings (see Fig. 4). It has also been proven to have the
eroder property: if the initial configuration contains only a finite number of ones
(resp. zeros), then it reaches 0 (resp. 1) in finite time, see [9].
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GKL, d < 1/2 GKL, d > 1/2

Kari, d < 1/2 Kari, d > 1/2

Figure 4: Two space-time diagrams of GKL (top) and Kari’s PCA (bottom) for
n = 149. Initial condition with density 70/149 (left) and 77/149 (right).

Kari traffic cellular automaton. This CA is defined by the composition
of the two following rules applied sequentially at each time step: (a) apply the
traffic rule, (b) change the 1 into a 0 in every pattern 0010 and the 0 into a 1
in every pattern 1011 (see Fig. 4).

Like GKL, Kari traffic CA has a neighbourhood of radius 3. Both CA also
share the combined symmetry consisting in swapping 0 and 1 and right and
left. Kari traffic has also the eroder property and it appears to have comparable
qualities to GKL concerning the density classification task, see [15]. Kari traffic
CA is closely related to Kurka’s modified version of GKL [13].

The majority-traffic probabilistic cellular automaton. The majority-
traffic PCA of parameter α ∈ (0, 1) is the PCA of neighbourhoodN = {−1, 0, 1}
and local function:

ϕ(x, y, z) = α δmaj(x,y,z) + (1− α) δtraf(x,y,z).

In words, at each time step, we choose, independently for each cell, to apply the
majority rule with probability α and the traffic rule with probability 1−α (see
Fig. 5).

The majority-traffic PCA has been introduced by Fatès [4] who has proved
that it “classifies” the density on a finite ring with an arbitrary precision: for
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Figure 5: Two space-time diagrams of the majority-traffic PCA for α = 0.1 and
n = 149. The same initial condition with density 70/149 is used. The case seen
on the right is a rare event (evolution towards a bad classification).

any n ∈ N and any ε > 0, there exists a value αn,ε of the parameter such that
on Zn, the PCA converges to the right uniform configuration with probability
greater than 1− ε.

Conjecture 1. The GKL CA, the Kari traffic CA, and the majority-traffic
PCA with 0 < α < αc (for some 0 < αc ≤ 1/2) classify the density.

5.3 Invariant Measures

Following ideas developed by Kurka [13], we can give a precise description of
the invariant measures of these PCA.

Proposition 5. For the majority-traffic PCA and for Kari traffic CA, the
extremal invariant measures are δ0, δ1, and (δ(01)Z +δ(10)Z)/2. For GKL, on top
of these three measures, there exist extremal invariant measures of density p for
any p ∈ [1/3, 2/3].

Proof. Majority-traffic PCA. Let us consider the majority-traffic PCA P
of parameter α ∈ (0, 1). We denote by [x0, . . . , xn]k the cylinder set of all
configurations y ∈ AZ satisfying yk+i = xi for 0 ≤ i ≤ n. Let µ be any shift-
invariant measure. An exhaustive search shows that if at time 1, we observe the
cylinder [100]0 then there are only eight possible cylinders of size 5 at time 0,
that are:

[01100]−1, [10000]−1, [10001]−1, [10010]−1,

[10100]−1, [11000]−1, [11001]−1, [11100]−1.

If we weight each cylinder by the probability to reach [100]0 from them, we
obtain the following expression:

µP [100] = α(1− α)µ[01100] + (1− α)µ[10000] + (1− α)µ[10001] + (1− α)µ[10010]

+ αµ[10100] + α2µ[11000] + α2µ[11001] + α(1− α)µ[11100].
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Since the measure µ is supposed to be shift-invariant, we do not need to specify
the position of the cylinders: we denote by µ[x0, . . . , xn] the value µ([x0, . . . , xn]k)
which does not depend on k ∈ Z. Gathering the terms with the same coefficient,
we have:

µP [100] = (1− α)(µ[100]− µ[10011]) + αµ[10100] + α(1− α)µ[1100] + α2µ[1100]

= (1− α)(µ[100]− µ[10011]) + αµ[10100] + αµ[1100].

Some more rearrangements provide:

µP [100] = (1− α)(µ[100]− µ[10011]) + α(µ[100]− µ[00100])

= µ[100]− (1− α)µ[10011]− αµ[00100].

This proves that the sequence (µPn[100])n≥0 is non-increasing. Let us assume
that µP = µ. Then, µ[10011] = µ[00100] = 0.

Let us consider the cylinder [10n0011] for some n ≥ 2. If we apply the
majority rule on each cell except on the second cell from the left, then after
n iterations, we reach the cylinder [10011]. Since this occurs with a positive
probability, we obtain that for any n ≥ 0, µ[10n0011] = 0. This provides:
µ[0011] = µ[00011] = µ[000011] = . . . = µ[0n11] for any n ≥ 2. Consequently,
µ[0011] = 0. From a cylinder of the form [00(10)n11], if we choose to apply
the majority rule on each cell, then we reach the cylinder [0011] in n steps.
Thus, µ[00(10)n11] = 0 for any n ≥ 0. It follows that µ can be written as the
sum µ = µ0 + µ1 of two invariant measures, where µ0 charges only the subshift
Σ0 = {x ∈ AZ | ∀k ∈ Z, xkxk+1 6= 00} and µ1 the subshift Σ1 = {x ∈ AZ | ∀k ∈
Z, xkxk+1 6= 11}. Let us assume that µ[00] = 0 (which is the case for µ0). In
the same way that we have computed µP [110], we can compute µP [11], and we
obtain:

µP [11] = αµ[0110] + αµ[1110] + αµ[1101] + µ[1011] + µ[0111] + µ[1111]

= αµ[110] + αµ[1101] + µ[11]− µ[0011]

= µ[11] + αµ[110] + αµ[1101].

By hypothesis, µP = µ, so that the last equality implies that µ[110] = 0.
In all cases, if µ is a shift-invariant measure such that µP = µ, then µ[00] =

µ(0), µ[11] = µ(1) and µ[01] = µ[10] = µ((01)Z) = µ((10)Z).

Kari traffic CA. If at time 1, we observe the pattern 100 at position 0,
then, at time 0, that is to say before the application of Kari’s CA, this same
pattern was present at position −1. Indeed, one can check that none of the
cell of the pattern 100 can have been obtained by the transformation (b) (see
the definition of Kari traffic CA), so that one has just to consider the possible
history of 100 by the traffic CA. In the same way, one can prove that if at time
1, we observe the pattern 110 at position 0, then, at time 0, this same pattern
was present at position 1. Let µ be a shift-invariant measure such that µK = µ,
where K denotes Kari traffic CA. A consequence of the result on the patterns
100 and 110 that we have just described is that µKn+1[110x100] = 0 for any
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n ≥ 0 and any x ∈ An. But since µKn+1 = µ, we obtain µ[110x100] = 0 for
any word x on the alphabet A. Once again, we can write µ = µ0 +µ1 where µ0

and µ1 are two invariant measures defined on Σ0 and Σ1.
Let us consider a configuration of Σ0, that is, without the pattern 00. By

the traffic rule, each 0 of the configuration will move one cell to the left. Then
by rule 1, if a 0 is at distance greater than 2 from the next 0 on its right, it is
erased by rule (b). The result follows.

GKL. Any word x ∈ AZ that is a concatenation of the patterns u = 001 and
v = 011 is a fixed point of the GKL cellular automaton: if xn = 0, then either
xn−1 = 0 or xn−3 = 0 so that F (x)n = 0 and if xn = 1, then either xn+1 = 1
or xn+3 = 1 so that F (x)n = 1. As a consequence, GKL has extremal invariant
measures of density p for any p ∈ [1/3, 2/3].

To summarize, the majority-traffic and Kari traffic CA have a simpler set
of invariant measures. It does not rule out GKL as a candidate for solving the
density classification task, but rather indicates that it could be easier to prove
the result for majority-traffic or Kari traffic CA.

5.4 Experimental results

Conjecture 1 was first motivated by the observation of the space-time diagrams,
see Fig. 4 and 5. We provide some numerical results that support this conjec-
ture. For a given ring size n, we generate an initial configuration x by assigning
to each cell the state 1 with a probability p and the state 0 with probability
1− p. Let us denote by d(x) the actual density of 1 in the configuration x. We
let the system evolve until it reaches a fixed point 0 or 1 and see if the fixed
point is 0 for d(x) < 1/2 and 1 for d(x) > 1/2. The quality Q(n) corresponds
to the proportion of good classifications on a given ring of size n.

Figure 6 shows the evolution of Q(n), each value of Q(n) being evaluated
over 100 000 samples. For the three rules, the plots are in agreement with the
hypothesis that the asymptotic value of Q(n) is 1. From a qualitative point of
view, we observe that for all values of d the quality decreases before increasing,
but this is only a border phenomenon for very small ring sizes. We also observe
that when the initial density d increases from 0.45 to 0.48, the value of n needed
to attain a given quality Q(n) increases dramatically. For d = 0.49, the change
of derivative of the curve Q(n) becomes hardly visible. However, our belief is
that Q(n) will approach one as the lattice size grows, no matter how close p is
to the critical density 1/2. To see why this holds, consider the error rate err(d)
obtained as the probability to make a bad classification when the initial configu-
ration is equal to d. We experimentally observed that, as n grows, the function
err(d), which is defined for values k/n with k ∈ {0, . . . , n}, approaches a Bell
curve whose mean is centred on 1/2 and whose tail progressively approaches
the 0-axis (see Fig. 7). At the same time, for a fixed p, the probability p(k/n)
that the initial configuration has a density of ones equal to k/n follows a bino-
mial distribution of parameter p. We can thus calculate the global error rate
E(n) = 1−Q(n) with E(n) =

∑n
k=0 err(k/n)·p(k/n). Intuitively, it can be seen
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Figure 6: Experimental determination of the quality of classification Q(n) as a
function of ring size n. Cells are initialised with a probability p to be in state 1.
Each point represents an average computed out 100 000 trajectories.
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Figure 7: Majority-traffic rule with α = 0.25: Evolution of the error rate as a
function of the initial density when doubling the ring size.

that as n grows to infinity, the two distributions err(k/n) and p(k/n) progres-
sively separate as their mean value is different and their variance approaches 0.
As a consequence, for larger values of n, the value E(n) progressively vanishes
and the quality approaches 1.

By contrast, there are other PCA, such as the rule which was originally
studied by Fukś [6], and which consists in doing a copy of the right or left
neighbour with a fixed probability p < 1/2, and the identity otherwise. This
rules preserves the density in average at each time step for finite rings (see
details in [4]). As a consequence, we have Q(n) = max (p, 1− p) which implies
that the increase of n does not improve the average performance of the system.
In the infinite case, the preservation of the density is exact and can not allow the
system to classify the density. We experimentally observed the same qualitative
behaviour for the rule used by Schüle [18] or for the Majority-Traffic rule for α >
1/2. We believe that there exists a strong relationship between the asymptotic
behaviour of the rule on finite rings and the ability to classify the density on Z.

5.5 Link with the positive rates “conjecture”

The difficulty of classifying the density on Z is related to the difficulty of the
ergodicity problem on Z. By definition, a PCA or an IPS has positive rates if
all its local probability transitions are different from 0 and 1. In Z2, there exist
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positive rates PCA and IPS that are non-ergodic (for instance, a “positive rates
version” of Toom’s rule [3]). It had been a long standing conjecture that all
positive rates PCA and IPS on Z are ergodic. Gács disproved the conjecture
by exhibiting a complex counter-example with several invariant measures, but
with an alphabet of cardinality 218 instead of 2 [8]. If we knew a process that
classifies the density on Z, it could pave the way to exhibit simple examples of
positive rates processes that are non-ergodic.
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