Skip to main content

On the Radon Number for P 3-Convexity

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7256))

Abstract

The generalization of classical results about convex sets in ℝn to abstract convexity spaces, defined by sets of paths in graphs, leads to many challenging structural and algorithmic problems. Here we study the Radon number for the P 3-convexity on graphs. P 3-convexity has been proposed in connection with rumour and disease spreading processes in networks and the Radon number allows generalizations of Radon’s classical convexity result. We establish hardness results, describe efficient algorithms for trees, and prove a best-possible bound on the Radon number of connected graphs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandelt, H.-J., Pesch, E.: A Radon theorem for Helly graphs. Arch. Math. 52, 95–98 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barbosa, R.M., Coelho, E.M.M., Dourado, M.C., Rautenbach, D., Szwarcfiter, J.L.: On the Carathéodory number for the convexity of paths of order three. Electronic Notes in Discrete Mathematics 38, 105–110 (2011)

    Article  Google Scholar 

  3. Bukh, B.: Radon partitions in convexity spaces, arXiv:1009.2384

    Google Scholar 

  4. Centeno, C.C., Dourado, M.C., Penso, L.D., Rautenbach, D., Szwarcfiter, J.L.: Irreversible conversion of graphs. Theor. Comput. Sci. 412, 3693–3700 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chellali, M., Favaron, O., Hansberg, A., Volkmann, L.: k-Domination and k-Independence in Graphs: A Survey. Graphs Combin., doi:10.1007/s00373-011-1040-3

    Google Scholar 

  6. Cook, S.A.: The complexity of theorem-proving procedures. In: ACM, Proc. 3rd Ann. ACM Sympos. Theory Computing, Shaker Heights, Ohio, pp. 151–158 (1971)

    Google Scholar 

  7. Dreyer, P.A., Roberts, F.S.: Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion. Discrete Appl. Math. 157, 1615–1627 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duchet, P.: Convex sets in graphs. II: Minimal path convexity. J. Comb. Theory, Ser. B 44, 307–316 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Duchet, P.: Discrete convexity: Retractions, morphisms and the partition problem. In: Balakrishnan, R., et al. (eds.) Proceedings of the Conference Graph Connections, Cochin, India, January 28-31, 1998, pp. 10–18. Allied Publishers Limited, New Delhi (1999)

    Google Scholar 

  10. Eckhoff, J.: The partition conjecture. Discrete Math. 221, 61–78 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Erdős, P., Fried, E., Hajnal, A., Milner, E.C.: Some remarks on simple tournaments. Algebra Univers. 2, 238–245 (1972)

    Article  Google Scholar 

  12. Farber, M., Jamison, R.E.: Convexity in graphs and hypergraphs. SIAM J. Algebraic Discrete Methods 7, 433–444 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jamison, R.E.: Partition numbers for trees and ordered sets. Pac. J. Math. 96, 115–140 (1981)

    MATH  Google Scholar 

  14. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations 1972, pp. 85–103. Plenum Press, New York (1972)

    Chapter  Google Scholar 

  15. Moon, J.W.: Embedding tournaments in simple tournaments. Discrete Math. 2, 389–395 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  16. Parker, D.B., Westhoff, R.F., Wolf, M.J.: On two-path convexity in multipartite tournaments. European J. Combin. 29, 641–651 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Radon, J.: Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten. Math. Ann. 83, 113–115 (1921)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tverberg, H.: A generalization of Radon’s theorem. J. Lond. Math. Soc. 41, 123–128 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  19. Varlet, J.C.: Convexity in tournaments. Bull. Soc. R. Sci. Liège 45, 570–586 (1976)

    MathSciNet  MATH  Google Scholar 

  20. van de Vel, M.L.J.: Theory of Convex Structures. North-Holland, Amsterdam (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dourado, M.C., Rautenbach, D., dos Santos, V.F., Schäfer, P.M., Szwarcfiter, J.L., Toman, A. (2012). On the Radon Number for P 3-Convexity. In: Fernández-Baca, D. (eds) LATIN 2012: Theoretical Informatics. LATIN 2012. Lecture Notes in Computer Science, vol 7256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29344-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29344-3_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29343-6

  • Online ISBN: 978-3-642-29344-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics