Skip to main content

An Integrated Approach for Healthcare Planning over Multi-dimensional Data Using Long-Term Prediction

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7231))

Abstract

The mining of temporal aspects over multi-dimensional data is increasingly critical for healthcare planning tasks. A healthcare planning task is, in essence, a classification problem over health-related attributes across temporal horizons. The increasingly integration of healthcare data through multi-dimensional structures triggers new opportunities for an adequate long-term planning of resources within and among clinical, pharmaceutical, laboratorial, insurance and e-health providers. However, the flexible nature and random occurrence of health records claim for the ability to deal with both structural attribute-multiplicity and arbitrarily-high temporal sparsity. For this purpose, two solutions using different structural mappings are proposed: an adapted multi-label classifier over denormalized tabular data and an adapted multiple time-point classifier over multivariate sparse time sequences. This work motivates the problem of long-term prediction in healthcare, and places key requirements and principles for its accurate and efficient solution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antunes, C.: Pattern Mining over Nominal Event Sequences using Constraint Relaxations. Ph.D. thesis, Instituto Superior Tecnico (2005)

    Google Scholar 

  2. Antunes, C.: Temporal pattern mining using a time ontology. In: EPIA, pp. 23–34. Associação Portuguesa para a Inteligência Artificial (2007)

    Google Scholar 

  3. Antunes, C.: An ontology-based framework for mining patterns in the presence of background knowledge. In: ICAI, pp. 163–168. PTP, Beijing (2008)

    Google Scholar 

  4. Begleiter, R., El-Yaniv, R., Yona, G.: On prediction using variable order markov models. J. Artif. Int. Res. 22, 385–421 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Bellazzi, R., Ferrazzi, F., Sacchi, L.: Predictive data mining in clinical medicine: a focus on selected methods and applications. Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery 1(5), 416–430 (2011)

    Article  Google Scholar 

  6. Ben Taieb, S., Sorjamaa, A., Bontempi, G.: Multiple-output modeling for multi-step-ahead time series forecasting. Neurocomput. 73, 1950–1957 (2010)

    Article  Google Scholar 

  7. Bengio, S., Fessant, F., Collobert, D.: Use of modular architectures for time series prediction. Neural Process. Lett. 3, 101–106 (1996)

    Article  Google Scholar 

  8. Berthold, M., Hand, D.J. (eds.): Intelligent Data Analysis: An Introduction. Springer-Verlag New York, Inc., Secaucus (1999)

    MATH  Google Scholar 

  9. Bontempi, G., Ben Taieb, S.: Conditionally dependent strategies for multiple-step-ahead prediction in local learning. Int. J. of Forecasting 27(2004), 689–699 (2011)

    Article  Google Scholar 

  10. Brahim-Belhouari, S., Bermak, A.: Gaussian process for nonstationary time series prediction. Computational Statistics and Data Analysis 47(4), 705–712 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Chapman & Hall, New York (1984)

    MATH  Google Scholar 

  12. Brown, P.J., Vannucci, M., Fearn, T.: Multivariate bayesian variable selection and prediction. Journal of the Royal Statistical Society 60(3), 627–641 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2, 121–167 (1998)

    Article  Google Scholar 

  14. Carrasco, R.C., Oncina, J.: Learning Stochastic Regular Grammars by Means of a State Merging Method. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS, vol. 862, pp. 139–152. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  15. Cheng, H., Tan, P.-N., Gao, J., Scripps, J.: Multistep-Ahead Time Series Prediction. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 765–774. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Cortez, P., Rocha, M., Neves, J.: A Meta-Genetic Algorithm for Time Series Forecasting. In: Proc. of AIFTSA 2001, EPIA 2001, Porto, Portugal, pp. 21–31 (2001)

    Google Scholar 

  17. Cotofrei, P., Neuchâtel, U.: Rule extraction from time series databases using classification trees. In: Proc. of the 20th IASTED, pp. 327–332. ACTA Press (2002)

    Google Scholar 

  18. Dietterich, T.G., Michalski, R.S.: Discovering patterns in sequences of events. Artif. Intell. 25, 187–232 (1985)

    Article  Google Scholar 

  19. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.J.: Querying and mining of time series data: experimental comparison of representations and distance measures. Proceedings of the VLDB Endowment 1(2), 1542–1552 (2008)

    Google Scholar 

  20. Dong, G., Li, J.: Efficient mining of emerging patterns: discovering trends and differences. In: 5th ACM SIGKDD, KDD, pp. 43–52. ACM, NY (1999)

    Google Scholar 

  21. Eddy, S.R.: Profile hidden markov models. Bioinformatics/Computer Applications in the Biosciences 14, 755–763 (1998)

    Article  Google Scholar 

  22. Fang, Y., Koreisha, S.G.: Updating arma predictions for temporal aggregates. Journal of Forecasting 23(4), 275–296 (2004)

    Article  Google Scholar 

  23. Freksa, C.: Temporal reasoning based on semi-intervals. A. Int. 54, 199–227 (1992)

    Article  MathSciNet  Google Scholar 

  24. Guimarães, G.: The Induction of Temporal Grammatical Rules from Multivariate Time Series. In: Oliveira, A.L. (ed.) ICGI 2000. LNCS (LNAI), vol. 1891, pp. 127–140. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  25. Guyet, T., Garbay, C., Dojat, M.: Knowledge construction from time series data using a collaborative exploration system. J. of Biomedical Inf. 40, 672–687 (2007)

    Article  Google Scholar 

  26. Hsu, C.N., Chung, H.H., Huang, H.S.: Mining skewed and sparse transaction data for personalized shopping recommendation. Mach. Learn. 57, 35–59 (2004)

    Article  Google Scholar 

  27. Ji, Y., Hao, J., Reyhani, N., Lendasse, A.: Direct and Recursive Prediction of Time Series Using Mutual Information Selection. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 1010–1017. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  28. Kersting, K., De Raedt, L., Gutmann, B., Karwath, A., Landwehr, N.: Relational Sequence Learning. In: De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.H. (eds.) Probabilistic ILP 2007. LNCS (LNAI), vol. 4911, pp. 28–55. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  29. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling, 2nd edn. John Wiley & Sons, Inc., NY (2002)

    Google Scholar 

  30. Kleinfeld, D., Sompolinsky, H.: Associative neural network model for the generation of temporal patterns: Theory and application to central pattern generators. Biophysical Journal 54(6), 1039–1051 (1988)

    Article  Google Scholar 

  31. Koch, I., Naito, K.: Prediction of multivariate responses with a selected number of principal components. Comput. Stat. Data Anal. 54, 1791–1807 (2010)

    Article  MathSciNet  Google Scholar 

  32. Lavrac, N., Dzeroski, S.: Inductive Logic Programming: Techniques and Applications. Ellis Horwood, New York (1994)

    MATH  Google Scholar 

  33. Laxman, S., Sastry, P.S.: A survey of temporal data mining. Sadhana-academy Proceedings in Engineering Sciences 31, 173–198 (2006)

    MathSciNet  MATH  Google Scholar 

  34. Laxman, S., Sastry, P.S., Unnikrishnan, K.P.: Discovering frequent episodes and learning hidden markov models: A formal connection. IEEE Trans. on Knowl. and Data Eng. 17, 1505–1517 (2005)

    Article  Google Scholar 

  35. Lee, T.S., Chiu, C.C., Chou, Y.C., Lu, C.J.: Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Computational Statistics & Data Analysis 50(4), 1113–1130 (2006)

    Article  MathSciNet  Google Scholar 

  36. Lesh, N., Zaki, M.J., Ogihara, M.: Mining features for sequence classification. In: Proc. of the 5th ACM SIGKDD, pp. 342–346. ACM, NY (1999)

    Google Scholar 

  37. Liu, J., Yuan, L., Ye, J.: An efficient algorithm for a class of fused lasso problems. In: Proc. of the 16th ACM SIGKDD, KDD, pp. 323–332. ACM, NY (2010)

    Google Scholar 

  38. Mannila, H., Toivonen, H., Inkeri Verkamo, A.: Discovery of frequent episodes in event sequences. Data Min. Knowl. Discov. 1, 259–289 (1997)

    Article  Google Scholar 

  39. Marcellino, M., Stock, J.H., Watson, M.W.: A comparison of direct and iterated multistep ar methods for forecasting macroeconomic time series. Journal of Econometrics 135(1-2), 499–526 (2006)

    Article  MathSciNet  Google Scholar 

  40. Mörchen, F.: Time series knowledge mining. W. in Dissertationen, G&W (2006)

    Google Scholar 

  41. Mörchen, F.: Tutorial cidm-t temporal pattern mining in symbolic time point and time interval data. In: CIDM. IEEE (2009)

    Google Scholar 

  42. Quinlan, J.R.: Learning with continuous Classes. In: 5th Australian Joint Conf. on Artificial Intelligence, pp. 343–348 (1992)

    Google Scholar 

  43. Silberschatz, A., Tuzhilin, A.: What makes patterns interesting in knowledge discovery systems. IEEE Trans. on Knowl. and Data Eng. 8, 970–974 (1996)

    Article  Google Scholar 

  44. Sorjamaa, A., Hao, J., Reyhani, N., Ji, Y., Lendasse, A.: Methodology for long-term prediction of time series. Neurocomput. 70, 2861–2869 (2007)

    Article  Google Scholar 

  45. Sorjamaa, A., Lendasse, A.: Time series prediction using dirrec strategy. In: ESANN, pp. 143–148 (2006)

    Google Scholar 

  46. Sun, R., Giles, C.L.: Sequence learning: From recognition and prediction to sequential decision making. IEEE Intelligent Systems 16, 67–70 (2001)

    Article  Google Scholar 

  47. Sun, R., Peterson, T.: Autonomous learning of sequential tasks: experiments and analyses. IEEE Transactions on Neural Networks 9(6), 1217–1234 (1998)

    Article  Google Scholar 

  48. Sutton, R.S.: Learning to predict by the methods of temporal differences. Machine Learning 3, 9–44 (1988)

    Google Scholar 

  49. Sutton, R., Barto, A.: Reinforcement learning: an introduction. Adaptive computation and machine learning. MIT Press (1998)

    Google Scholar 

  50. Taieb, S.B., Bontempi, G., Sorjamaa, A., Lendasse, A.: Long-term prediction of time series by combining direct and mimo strategies. In: Proc. of the 2009 IJCNN, pp. 1559–1566. IEEE Press, Piscataway (2009)

    Google Scholar 

  51. Wang, W., Yang, J., Muntz, R.: Temporal association rules on evolving numerical attributes. In: Proc. of the 17th ICDE, pp. 283–292. IEEE CS, USA (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Henriques, R., Antunes, C. (2012). An Integrated Approach for Healthcare Planning over Multi-dimensional Data Using Long-Term Prediction. In: He, J., Liu, X., Krupinski, E.A., Xu, G. (eds) Health Information Science. HIS 2012. Lecture Notes in Computer Science, vol 7231. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29361-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29361-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29360-3

  • Online ISBN: 978-3-642-29361-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics