Disjunction Category Labels

Deian Stefan', Alejandro Russo?, David Mazieres', and John C. Mitchell!

1 Stanford University
2 Chalmers University of Technology

Abstract. We present disjunction category (DC) labels, a new label for-
mat for enforcing information flow in the presence of mutually distrusting
parties. DC labels can be ordered to form a lattice, based on proposi-
tional logic implication and conjunctive normal form. We introduce and
prove soundness of decentralized privileges that are used in declassifying
data, in addition to providing a notion of privilege-hierarchy. Our model
is simpler than previous decentralized information flow control (DIFC)
systems and does not rely on a centralized principal hierarchy. Addition-
ally, DC labels can be used to enforce information flow both statically
and dynamically. To demonstrate their use, we describe two Haskell im-
plementations, a library used to perform dynamic label checks, compat-
ible with existing DIFC systems, and a prototype library that enforces
information flow statically, by leveraging the Haskell type checker.

Keywords: Security, labels, decentralized information flow control, logic

1 Introduction

Information flow control (IFC) is a general method that allows components of
a system to be passed sensitive information and restricts its use in each com-
ponent. Information flow control can be used to achieve confidentiality, by pre-
venting unwanted information leakage, and integrity, by preventing unreliable
information from flowing into critical operations. Modern IFC systems typically
label data and track labels, while allowing users exercising appropriate privileges
to explicitly downgrade information themselves. While the IFC system cannot
guarantee that downgrading preserves the desired information flow properties,
it is possible to identify all the downgrading operations and limit code audit to
these portions of the code. Overall, information flow systems make it possible to
build applications that enforce end-to-end security policies even in the presence
of untrusted code.

We present disjunction category (DC) labels: a new label format for enforcing
information flow in systems with mutually distrusting parties. By formulating
DC labels using propositional logic, we make it straightforward to verify con-
ventional lattice conditions and other useful properties. We introduce and prove
soundness of decentralized privileges that are used in declassifying data, and
provide a notion of privilege-hierarchy. Compared to Myers and Liskov’s decen-
tralized label model (DLM) [21], for example, our model is simpler and does not

rely on a centralized principal hierarchy. Additionally, DC labels can be used
to enforce information flow both statically and dynamically, as shown in our
Haskell implementations.

A DC label, written (S, I), consists of two Boolean formulas over principals,
the first specifying secrecy requirements and the second specifying integrity re-
quirements. Information flow is restricted according to implication of these for-
mulas in a way that preserves secrecy and integrity. Specifically, secrecy of in-
formation labeled (S, I) is preserved by requiring that a receiving channel have
a stronger secrecy requirement S’ that implies S, while integrity requires the
receiver to have a weaker integrity requirement I’ that is smplied by I. These
two requirements are combined to form a can-flow-to relation, which provides a
partial order on the set of DC labels that also has the lattice operations meet
and join.

Our decentralized privileges can be delegated in a way that we prove preserves
confidentiality and integrity properties, resulting in a privilege hierarchy. Unlike
[21], this is accomplished without a notion of “can act for” or a central principal
hierarchy. Although our model can be extended to support revocation using
approaches associated with public key infrastructures, we present a potentially
more appealing selective revocation approach that is similar to those used in
capability-based systems.

We illustrate the expressiveness of DC labels by showing how to express
several common design patterns. These patterns are based in part on security
patterns used in capability-based systems. Confinement is achieved by labeling
data so that it cannot be read and exfiltrated to the network by arbitrary princi-
pals. A more subtle pattern that relies on the notion of clearance is used to show
how a process can be restricted from even accessing overly-sensitive information
(e.g., private keys); this pattern is especially useful when covert channels are
a concern. We also describe privilege separation and user authentication pat-
terns. As described more fully later in the paper, privilege separation may be
achieved using delegation to subdivide the privileges of a program and compart-
mentalize a program into components running with fewer privileges. The user
authentication pattern shows how to leverage a login client that users trust with
their username and password (since the user supplies them as input), without
unnecessarily creating other risks.

We describe two Haskell implementations: a library used to perform dynamic
label checks, compatible with existing DIFC systems, and a prototype library
that enforces information flow statically by leveraging Haskell’s type checker.

The remainder of the paper is structured as follows. In Section 2, we introduce
DC labels and present some of their properties. Section 3 presents semantics and
soundness proofs for our DC label system. Design patterns are presented and
explained in Section 5, with the implementations presented in Section 6. We
summarize related work in Section 7 and conclude in Section 8.

({Preparer}, {Preparer})

e &

({Bob}, {Bob}) ({Bob}, {Bob V Preparer})
Bob Speadsheet =
l BT ’ Cremesy] | CD
[({Bob A Preparer}, {Bob V Preparer})

Fig.1: A tax preparation system with mutually distrusting parties.

2 DC Label Model

In a DIFC system, every piece of data is labeled, or “tagged.” Labels provide
a means for tracking, and, more importantly, controlling the propagation of
information according to a security policy, such as non-interference [10].

DC labels can be used to express a conjunction of restrictions on informa-
tion flow that represents the interests of multiple stake-holders. As a result, DC
labels are especially suitable for systems in which participating parties do not
fully trust each other. Fig. 1 presents an example, originally given in [21], that
illustrates such a system. Here, user Bob firstly inputs his tax information into
the Spreadsheet program, which he fully trusts. The data is then exported to
another program, called WebTuz, for final analysis. Though conceptually sim-
ple, several challenges arise since Bob does not trust WebTax with his data.
Without inspecting WebTax, Bob cannot be sure that his privacy policies are
respected and his tax information is not exfiltrated to the network. Analogously,
the WebTax author, called Preparer, does not entrust Bob with the source code.
Furthermore, the tax preparation program relies on a proprietary database and
Preparer wishes to assert that even if the program contains bugs, the proprietary
database information cannot be leaked to the public network. It is clear that even
for such a simple example the end-to-end guarantees are difficult to satisfy with
more-traditional access control mechanisms. Using IFC, however, these security
policies can be expressed naturally and with minimal trust. Specifically, the
parties only need to trust the system IFC-enforcement mechanism; programs,
including WebTax, can be executed with no implicit trust. We now specify DC
labels and show their use in enforcing the policies of this example.

As previously mentioned, a DC label consists of two Boolean formulas over
principals. We make a few restrictions on the labels’ format in order to obtain
a unique representation for each label and an efficient and decidable can-flow-to
relationship.

Definition 1 (DC Labels). A DC label, written (S,I), is a pair of Boolean

formulas over principals such that:

— Both S and I are minimal formulas in conjunctive normal form (CNF), with
terms and clauses sorted to give each formula a unique representation, and

— Neither S nor I contains any negated terms.

In a DC label, S protects secrecy by specifying the principals that are allowed
(or whose consent is needed) to observe the data. Dually, I protects integrity
by specifying principals who created and may currently modify the data. For
example, in the system of Fig. 1, Bob and Preparer respectively label their data
({Bob}, {Bob}) and ({Preparer}, {Preparer}), specifying that they created the
data and they are the only observers.

Data may flow between differently labeled entities, but only in such a way
as to accumulate additional secrecy restrictions or be stripped in integrity ones,
not vice versa. Specifically there is a partial order, written C (“can-flow-t0”),
that specifies when data can flow between labeled entities. We define C based
on logical implication (=) as follows:

Definition 2 (can-flow-to relation). Given any two DC labels Ly = (S1,11)
and Loy = {So, I5), the can-flow-to relation is defined as:

Sy — S L = b,
(S1,I1) E (S2,I2)

In other words, data labeled (S1, I;) can flow into an entity labeled (Ss, I2)
as long as the secrecy of the data, and integrity of the entity are preserved.
Intuitively, the C relation imposes the restriction that any set of principals who
can observe data afterwards must also have been able to observe it earlier. For
instance, it is permissible to have So = {Bob A Preparer} and S; = Bob, because
So = 51, and Bob’s consent is still required to observe data with the new
label. Dually, integrity of the entity is preserved by requiring that the source
label impose more restrictions than that of the destination.

In our model, public entities (e.g., network interface in Fig. 1) have the
default, or empty label, (True, True), written Lpyu,. Although specified by the
label (S, I), it is intuitive that data labeled as such can be written to a public
network with label Ly, only with the permission of a set of principals satisfying
the Boolean formula S. Conversely, data read from the network can be labeled
(S, I) only with the permission of a set of principals satisfying I.

In an IFC system, label checks using the can-flow-to relation are performed
at every point of possible information flow. Thus, if the WebTax program of
Fig. 1 attempts to write Bob or Preparer’s data to the network interface, ei-
ther by error or malfeasance, both label checks ({Bob},{Bob}) C Ly, and
({Preparer} , {Preparer}) T Ly, will fail. However, the system must also label
the intermediate results of a WebTax computation (on Bob and Preparer’s joint
data) such that they can only be observed and written to the network if both
principals consent.

The latter labeling requirement is recurring and directly addressed by a core
property of many IFC systems: the label lattice property [4]. Specifically, for any
two labels L1, Lo the lattice property states that there is a well defined, least
upper bound (join), written Ly U Lo, and greatest lower bound (meet), written

Ll |_|L27 such that Lz E Ll |_|L2 and L1 [l LQ E Lz for Ll and i = 1, 2. We define
the join and meet for DC labels as follows.

Definition 3 (Join and meet for DC labels). The join and meet of any two
DC labels Ly = (S1,11) and Ly = (Sa, 1) are respectively defined as:

LUy, = <Sl A So, I \/IQ>
LinLy = <Sl V So, I /\I2>

where each component of the resulting labels is reduced to CNF.

Intuitively, the secrecy component of the join protects the secrecy of L; and
Lo by specifying that both set of principals, those appearing in S; and those
in So, must consent for data labeled S; A So to be observed. Conversely, the
integrity component of the join, I1 V I5, specifies that either principals of I; or
I5 could have created and modify the data. Dual properties hold for the meet
L1M Ly, alabel computation necessary when labeling an object that is written to
multiple entities. We note that although we use I V I5 informally, by definition,
a DC label component must be in CNF. Reducing logic formulas, such as I; V I5,
to CNF is standard [23], and we do not discuss it further.

Revisiting the example of Fig. 1, we highlight that the intermediate results
generated by the WebTax program from both Bob and Preparer’s data are la-
beled by the join ({Bob}, {Bob})L({Preparer} , {Preparer}) which is reduced to
({Bob A Preparer}, {Bob V Preparer}). The secrecy component of the label con-
firms our intuition that the intermediate results are composed of both party’s
data and thus the consent of both Bob and Preparer is needed to observe it. In
parallel, the integrity component agrees with the intuition that the intermediate
results could have been created from Bob or Preparer’s data.

2.1 Declassification and endorsement

We model both declassification and endorsement as principals explicitly decid-
ing to exercise privileges. When code exercises privileges, it means code acting
on behalf of a combination of principals is requesting an action that might vi-
olate the can-flow-to relation. For instance, if the secrecy component of a label
is {Bob A Preparer}, then by definition code must act on behalf of both Bob
and the Preparer to transmit the data over a public network. However, what
if the Preparer unilaterally wishes to change the secrecy label on data from
{Bob A Preparer} to {Bob} (as to release the results to Bob)? Intuitively, such
a partial declassification should be allowed, because the data still cannot be
transmitted over the network without Bob’s consent. Hence, if the data is even-
tually made public, both Bob and the Preparer will have consented, even if not
simultaneously.

We formalize such partial declassification by defining a more permissive pre-
order, Cp (“can-flow-to given privileges P”). L1 Cp Lo means that when exer-
cising privileges P, it is permissible for data to flow from an entity labeled L,

to one labeled Ls. Ly C Lo trivially implies Ly Cp Lo for any privileges P, but
for non-empty P, there exist labels for which L; CEp Ly even though Ly [Z Lo.

We represent privileges P as a conjunction of principals for whom code is act-
ing. (Actually, P can be a more general Boolean formula like label components,
but the most straight-forward use is as a simple conjunction of principals.) We
define C p as follows:

Definition 4 (can-flow-to given privileges relation). Given a Boolean for-
mula P representing privileges and any two DC labels Ly = (S1,11) and Ly =
(So, I2), the can-flow-to given privileges P relation is defined as:

PASy; — 5 PN = I
(S1,11) Cp (S2, 1)

Recall that without exercising additional privileges, data labeled (S, I) can be
written to a public network, labeled Ly, only with the permission of a set
of principals satisfying the Boolean formula S, while data read from a public
network can be labeled (S, I) only with the permission of a set of principals
satisfying I. Considering additional privileges, it is easy to see that (S,I) Cp
Ly iff P = S and, conversely, Loy, Cp (S, I) iff P = I. In other words,
code exercising privileges P can declassify and write data to the public network
if P implies the secrecy label of that data, and can similarly incorporate and
endorse data from the public network if P implies the integrity label.

In our WebTax example, the Spreadsheet program runs on behalf of Bob and
exercises the {Bob} privilege to endorse data sent to WebTax. Conversely, the
WebTax program is executed with the {Preparer} privilege which it exercises
when declassifying results from {BobAPreparer} to {Bob}; as expected, to allow
Bob to observe the results, this declassification step is crucial.

It is a property of our system that exporting data through multiple exercises
of privilege cannot reduce the overall privilege required to export data. For
instance, if (S,I) Cp, (S',I') Cp, Lpub, it must be that Py A P = S, since
P, = S and Py AS" = S. A similar, and dual, property holds for multiple
endorsements.

The mechanisms provided by Cp corresponds to the who dimension of de-
classification [25], i.e., whoever has the privileges P can use the relationship Cp
to release (endorse) information. With minimal encoding, it is also possible to
address the what and when dimension using C p. Specifically, the what dimension
can be addressed by carefully designing the data type in such a way that there
is an explicit distinction on what part of the data is allowed to be released. The
when dimension, on the other hand, consists on designing the trusted modules in
such a way that certain privileges can only be exercised when some, well-defined,
events occurs.

In our model, privileges can be delegated. Specifically, a process may delegate
privileges to another process according to the following definition:

Definition 5 (Can-delegate relation). A process with privilege P can dele-
gate any privilege P’ such that P — P’.

In other words, it is possible to delegate a privilege P’ that is at most as strong
as the parent privilege P. In Section 5, we give a concrete example of using
delegation to implement a privilege separation.

2.2 Ownership and categories

Our definition of DC label components as conjunctions of clauses, each imposing
an information flow restriction, is similar to the DStar [31] label format which
uses a set of categories, each of which is used to impose a flow restriction. Though
the name category may be used interchangeably with clause, our categories differ
from those of DStar (or even DLM) in that they are disjunctions of principals—
hence the name, disjunction category labels.

The principals composing a category are said to own the category—every
owner is trusted to uphold or bypass the restriction imposed by the category.
For instance, the category [Bob V Alice] is owned by both Alice and Bob. We
can thus interpret the secrecy component {[Bob V Alice] A Preparer} to specify
that data can be observed by the Preparer in collaboration with either Bob or
Alice. Though implicit in our definition of a DC label, this joint ownership of a
category allows for expressing quite complex policies. For example, to file joint
taxes with Alice, Bob can simply labels the tax data ({[Bob V Alice]}, {Bob}),
and now the WebTax results can be observed by both him and Alice. Expressing
such policies in other systems, such as DLM or DStar, can only be done through
external means (e.g., by creating a new principal AliceBob and encoding its
relationship to Alice and Bob in a centralized principal hierarchy).

In the previous section we represent privileges P as a conjunction of principals
for whom code is acting. Analogous to a principal owning a category, we say that
a process (or computation) owns a principal if it acting or running on its behalf.
(More generally, the code is said to own all the categories that compose P.)

3 Soundness

In this section, we show that the can-flow-to relation (C) and the relation (Ep)
for can-flow-to given privileges P satisfy various properties. We first show that
C, given in Definition 2, is partial order.

Lemma 1 (DC labels form a partially ordered set). The binary relation
C over the set of all DC labels is a partial order.

Proof. Reflexivity and transitivity follow directly from the Reflexivity and tran-
sitivity of (=). By Definition 1, the components of a label, and thus the label,
have a unique representation. Directly, the antisymmetry property holds.

Recall from Section 2 that for any two labels L; and Lo there exists a join
L1 U Ly and meet Ly M Lo. The join must be the least upper bound of L; and
Lo, with L1 © Ly U Lo, and Lo T Ly U Lo; conversely, the meet must be the
greatest lower bound of Ly and Lo, with Ly MLy E Ly and Ly M Ly C Lo, We
prove these properties and show that DC labels form a lattice.

Proposition 1 (DC labels form a bounded lattice). DC labels with the
partial order relation T, join LI, and meet M form a bounded lattice with minimum
element 1 = (True, False) and mazimum element T = (False, True).

Proof. The lattice property follows from Lemma 1, the definition of DC labels,
and the definition of the join and meet as given in Definition 3.

It is worth noting that the DC label lattice is actually product lattice, i.e.,
a lattice where components are elements of a secrecy and (a dual) integrity
lattice [29].

In Section 2.1 we detailed declassification and endorsement of data in terms
of exercising privileges. Both actions constitute bypassing restrictions of = by
using a more permissive relation C p. Here, we show that this privilege-exercising
relation, as given in Definition 4, is a pre-order and that privilege delegation
respects its restrictions.

Proposition 2 (The Cp relation is a pre-order). The binary relation Cp
over the set of all DC labels is a pre-order.

Proof. Reflexivity and transitivity follow directly from the reflexivity and transi-
tivity of (=). Unlike C, however, C p is not necessarily antisymmetric (show-
ing this, for a non-empty P, is trivial).

Informally, exercising privilege P may allow a principal to ignore the distinc-
tion between certain pairs of clauses, hence C p is generally not a partial order.
Moreover, the intuition that C p, for any non-empty P, is always more permissive
than C follows as a special case of the following proposition.

Proposition 3 (Privileges substitution). Given privileges P and P’, if P —>
P’ then P can always be substituted in for P’. Specifically, for all labels Ly and
LQ, ZfP = P’ and Ly Cpr Ly then Ly Cp Lo.

Proof. First, we note that if P = P’, then for any X, X', such that X AP’ —
X', the proposition X AP =—> X AP’ = X’ holds trivially. By Definition 4,
Ly, Epr Lo is equivalent to: So AP/ = S; and I[; AP’ = I,. However, from
P = P/, we have SoAP =—> SoAP — Si,and AP — LAP — L.
Correspondingly, we have L1 Ep Lo.

Informally, if a piece of code exercises privileges P’ to read or endorse a piece of
data, it can do so with P as well. In other words, Cp is at least at as permissive
as Cpr. Letting P’ = True, it directly follows that for any non-empty P, i.e., for
P # True, the relation Cp is more permissive than C. Moreover, negating the
statement of the proposition (if Ly Zp Lo then Ly Zp/ L) establishes that if
exercising a privilege P does not allow for the flow of information from L, to Lo,
then exercising a privilege delegated from P will also fail to allow the flow. This
property is especially useful in guaranteeing soundness of privilege separation.

4 Model Extensions

The base DC label model, as described in Section 2, can be used to implement
complex DIFC systems, despite its simplicity. Furthermore, the model can easily
be further extended to support features of existing security (IFC and capability)
systems, as we detail below.

4.1 Principal hierarchy

As previously mentioned, DLM [21] has a notion of a principal hierarchy defined
by a reflexive and transitive relation, called acts for. Specifically, a principal p
can act for another principal p’, written p = p/, if p is at least as powerful as p’:
p can read, write, declassify, and endorse all objects that p’ can; the principal
hierarchy tracks such relationships.

To incorporate this feature, we modify our model by encoding the principal
hierarchy as a set of axioms I'. Specifically, if p = p/, then (p =) €
I'. Consequently, I" is used as a hypothesis in every proposition. For example,
without the principal hierarchy) - p1 = [p2Vps] does not hold, but if p; = po
then (pr = p2), ' p1 = [p2 V p3] does hold. We, however, note that our
notion of privileges and label component clauses (disjunction categories) can be
used to capture such policies, that are expressible in DLM only through the use
of the principal hierarchy. Compared to DLM, DC labels can be used to express
very flexible policies (e.g., joint ownership) even when I" = ().

4.2 Using DC labels in a distributed setting

For scalability, extending a system to a distributed setting is crucial. Addressing
this issue, Zeldovich et al. [31], provide a distributed DIFC system, called DStar.
DStar is a framework (and protocol) that extends OS-level DIFC systems to a
distributed setting. Core to DStar is the notion of an exporter daemon, which,
among other things, maps DStar network labels to OS local labels such as DC
labels, and conversely. DC labels (and privileges) are a generalization of DStar
labels (and privileges)—the core difference being the ability of DC labels to rep-
resent joint ownership of a category with disjunctions, a property expressible in
DStar only with privileges. Hence, DC labels can directly be used when extend-
ing a system to a distributed setting. More interestingly, however, we can extend
DStar, while remaining backwards compatible (since every DStar label can be
expressed using a DC label), to use disjunction categories and thus, effectively,
use DC labels as network labels—this extension is part of our future work.

4.3 Delegation and pseudo-principals

As detailed in Section 2.1, our decentralized privileges can be delegated and thus
create a privilege hierarchy. Specifically, a process with a set of privileges may
delegate a category it owns (in the form of a single-category privilege), which
can then be further granted or delegated to another process.

In scenarios involving delegated privileges, we introduce the notion of a
pseudo-principal. Pseudo-principals allows one to express providence on data,
which is particularly useful in identifying the contributions of different compu-
tations to a task. A pseudo-principal is simply a principal (distinguished by the
prefix #) that cannot be owned by any piece of code and can only be created
when a privilege is delegated. Specifically, a process that owns principal p may
delegate a single-category privilege {[p V #c]} to a piece of code ¢. The disjunc-
tion is used to indicate that the piece of code c¢ is responsible for performing a
task been delegated by the code owing p, which also does not trust ¢ with the
privilege p. Observe that the singleton {#c} cannot appear in any privilege, and
as a result, if some data is given to p with the integrity restriction [pV #¢], then
the piece of code ¢ must have been the originator. In a system with multiple
components, using pseudo-principals, one can enforce a pipeline of operations,
as shown by the implementation of a mail delivery agent in Section 6.

We note that pseudo-principals are treated as ordinary principals in label
operations. Moreover, in our implementation, the distinction is minimal: prin-
cipals are strings that cannot contain the character ‘#’, while pseudo-principals
are strings that always have the prefix ‘#’.

4.4 Privilege revocation

In dynamic systems, security policies change throughout the lifetime of the sys-
tem. It is common for new users to be added and removed, as is for privileges
to be granted and revoked [2]. Although our model can be extended to sup-
port revocation similar to that of public key infrastructures [11], we describe a
selective revocation approach, common to capability-based systems [24].

To allow for the flexibility of selective revocation, it is necessary to keep track
of a delegation chain with every category in a delegated privilege. For example,
if processes A and C respectively delegate the single-principal privileges {a} and
{c} to process B, B’s privilege will be encoded as {({A — B},a), {C — B},¢)}.
Similarly, if B delegates {[a V ¢]} to D, the latter’s privilege set will be {({4 —
B — D,C — B — D}, laVc])}. Now, to selectively revoke a category, a process
updates a system-wide revocation set ¥ with a pair consisting of the chain prefix
and a privilege (it delegated) to be revoked. For example, A can revoke B’s
ownership of {a} by adding ({4 — B},a) to ¥. Consequently, when B or D
perform a label comparison involving privileges, i.e., use C p, the revocation set
¥ is consulted: since A — B is a prefix in both cases, and a = a and
a = [aV ¢], neither B nor D can exercise their delegated privileges. More
generally, ownership of single-category privilege {¢} with chain z is revoked if
there is a pair (y,v) € ¥ such that the chain y is a prefix of a chain in x
and ¢y = c¢. We finally note that, although this description of revocation
relies on a centralized revocation set ¥, selective revocation, in practice, can be
implemented without a centralized set, using patterns such as Redell’s “caretaker
pattern” [24,18] with wrapper, or membrane, objects transitively applying the
revocation [19, 18].

5 Security Labeling Patterns

When building practical IFC systems, there are critical design decisions involv-
ing: (1) assigning labels to entities (data, channels, etc.), and (2) delegating
privileges to executing code. In this section, we present patterns that can be
used as a basis for these design decisions, illustrated using simplified examples
of practical system applications.

5.1 Confinement and access control

A very common security policy is confinement: a program is allowed to compute
on sensitive data but cannot export it [16,26]. The tax-preparation example of
Section 2 is a an examples of a system that enforces confinement.

In general, we may wish to confine a computation and guarantee that it does
not release (by declassification) user A’s sensitive data to the public network or
any other channel. Using the network as an illustrative example, and assuming
A’s sensitive data is labeled L 4, confinement may be achieved by executing the
computation with privileges P chosen such that La Zp Lpus. A complication is
that most existing IFC systems (though not all, see, e.g., [6,14]) are susceptible
to covert channel attacks that circumvent the restrictions based on labels and
privileges. For example, a computation with no privileges might read sensitive
data and leak information by, e.g., not terminating or affecting timing behavior.
To address confinement in the presence of covert channels, we use the notion of
clearance [5], previously introduced and formalized in [30, 30, 28] in the context
of TFC.

Clearance imposes an upper bound on the sensitivity of the data that the
computation can read. To prevent a computation from accessing (reading or
writing) data labeled L4, we set the computation’s clearance to some Lo such
that L4 [Z Lo. With this restriction, the computation may read data labeled
Lp only if Lp C Le. Observe that in a similar manner, clearance can be used
to enforce other forms of discretionary access control. —~

5.2 Privilege separation |

Using delegation, a computation may be com- ;
partmentalized into sub-computations, with the vy
privileges of the computation subdivided so (True, {AV #R}>i
that each sub-computation runs with least privi- s
lege. Consider, for example, a privilege-separated AV#STE
mail delivery agent (MDA) that performs spam (True. {[AV#R]A[AV #S]})y
filtering. F

As with many real systems, the example MOEN;
MDA of Fig. 2 is composed of different, and pos- v
sibly untrustworthy, modules. In this example, A1 ADP
the components are a network receiver, R, and a J
spam filter, S. Instead of combining the compo- Fig. 2: Simple MDA.

nents into a monolithic MDA, the MDA author
can segregate the untrustworthy components and execute then with the principle

of least privilege. This avoids information leaks and corruption due to negligence
or malfeasance on the component authors’ part. Specifically, the receiver R is
executed with the delegated privilege {[A V #R]}, and the spam filter S is ex-
ecuted with the privilege {[A V #5]}. As a consequence, R and S cannot read
A’s sensitive information and leak it to the network, corrupt A’s mailbox, nor
forge data on A’s behalf.

Additionally, the MDA can enforce the policy that a mail message always
passes through both receiver R and spam filter S. To this end, the MDA includes
a small, trusted forwarder F', running with the privilege {A}, which endorses
messages on behalf of A and writes them to the mailbox only after checking that
they have been endorsed by both R and S. In a similar manner, this example can
be further extended to verify that the provenance of a message is the network
interface, or that the message took a specific path (e.g., R then S, but not S
then R), among other.

5.3 User authentication

Another common requirement of security sys- p——— L
tems is user authentication. We consider SE2E%
password-based login as an example, where (L}, {L} Cr
a successful authentication corresponds to | Ay Yy v
granting the authenticated user the set of s.h v Hf|s) =
privileges associated with their credentials. quy
Furthermore, we consider authentication in HUANLYL{UALY v | Ca,
the context of (typed) language-level DIFC cr v @
systems; an influential OS-level approach has
been considered in [30]. Shown in Fig. 3 is an
example system which consists of a login client

L, and an authentication service Ay . {ULUALY Y

' To authenticate user .U , .the logir.l client .
invokes the user authentication service Ay,
which runs with the {U} privilege. Concep- LLIEN;
tually, when invoked with U’s correct creden- ({L}, True) U<
tials, Ay grants (by delegating) the caller the
{U} privilege. However, in actuality, the login Fr
client and authentication service are in mutual KIS0
distrust: L does not trust Ay with U’s pass- (L}, {L}) awis
word, for Ay might be malicious and simply
wish to learn the password, while A;; does not
trust L to grant it the {U} privilege without ‘
first verifying credentials. Consequently, the Fig. 3: User authentication.
authentication requires several steps.

We note that due to the mutual distrust, the user’s stored salt s and password
hash h = H(p||s) is labeled with both, the user and login client’s, principals,
i.e.,, h and s have label ({U A L},{U A L}). Solely, labeling them ({U},{U})
would allow Ay to carry out an off-line attack to recover p. The authentication
procedure is as follows.

1. The user’s input password p’ to the login client is labeled ({L},{L}), and
along with a closure C, is passed to the authentication service Agr. As further
detailed below, closures are used in this example as a manner to exercise
privileges under particular conditions and operations.

2. Ay reads U’s stored salt s and password hash h. It then computes the hash
' = H(p'||s) and compares h’ with h. The label of this result is simply the
join of h and h': ({U A L},{L}). Since Ay performed the computation, it
endorses the result by adding U to its integrity component; for clarity, we
name this result v, as show in Fig 3.
Remark: At this point, neither L nor Ay are able to read and fully declassify
the secret password-check result v. Moreover, without eliminating the mutual
distrust, neither L nor S can declassify v directly. Consider, for example,
if Ay is malicious and had, instead, performed a comparison of H(p'||s)
and H(p"||s), for some guessed password p”. If L were to declassify the
result, Ay would learn that p = p”, assuming the user typed in the correct
password, i.e., p = p’. Hence, we rely on purely functional (and statically-
typed) closures to carry out the declassification indirectly.

3. When invoking Ay, L passed a declassification closure Cp, which has the
{L} privilege locally bound. Now, Ay invokes Cp, with v and its own declas-
sification closure C4,, .

4. Cp, declassifies v (Dy, in Fig. 3) to ({U},{U A L}), and then invokes Cj4,,
with the new, partially-declassified result.

5. The Cy,, closure has the {U} privilege bound and upon being invoked, sim-
ply verifies the result and its integrity (Vi in Fig. 3). If the password is correct
v is true and then Cy,, returns the privilege {U} labeled with ({L}, True);
otherwise it returns the empty privilege set. It is important that the in-
tegrity of v be verified, for a malicious L could provide a closure that forges
password-check results, an attempt to wrongfully gain privileges.

6. The privilege returned from invoking C4,, is endorsed by Cy, (E}, in Fig. 3),
only if its secrecy component is L. This asserts that upon returning the
privilege from Cp, Ay cannot check if the privilege is empty or not, and
thus infer the comparison result.

7. It only remains for Ay to forward the labeled privilege back to L.

We finally note that the authentication service is expected to keep state that
tracks the number of attempts made by a login client, as each result leaks a bit
of information; to limit the number of unsuccessful attempts requires the use of
a (minimal) code that is trusted by both L and Ay, as shown in [30].

6 Implementing DC labels

We present two Haskell implementations of DC labels®. The first, dclabel, is a
library that provides a simple embedded domain specific language for construct-
ing and working with dynamic labels and privileges. Principals in the dclabel

3 Available at http://www.scs.stanford.edu/~deian/dclabels

library are represented by strings, while label components are lists of clauses
(categories), which, in turn, are lists of principals. We use lists as sets for sim-
plicity and because Haskell supports list comprehension; this allowed for a very
simple translation from the formal definitions of this paper to (under 180 lines of)
Haskell code. We additionally implemented the instances necessary to use DC la-
bels with the label-polymorphic dynamic DIFC library, LIO [28]. Given the sim-
plicity of the implementation, we believe that porting it to other libraries, such
as [17,13], can be accomplished with minimal effort. Finally, we note that our
implementation was thoroughly tested using the QuickCheck?* library, however
formal verification of the implementation using Zeno [27], a Haskell automated
proof system, was unsuccessful. This is primarily due to Zeno’s infancy and lack
of support for analyzing Haskell list comprehension. A future direction includes
implementing DC labels in Isabelle or Coq from which a provably-correct Haskell
implementation can be extracted.

Although we have primarily focused on dynamic IFC, in cases where covert
channels, runtime overhead, or failures are not tolerable, DC labels can also be
used to enforce IFC statically. To this end, we implement dclabel-static, a
prototype IFC system that demonstrates the feasibility of statically enforcing
DIFC using secrecy-only DC labels, without modifying the Haskell language or
the GHC compiler. Since DC labels are expressed using propositional logic, a
programming language that has support for sum, product, and function types
can be used, without modification, to enforce information flow control according
to the Curry-Howard correspondence [12,9]. According to the correspondence,
disjunction, conjunction and implication respectively correspond to sum, prod-
uct, and function types. Hence, for a secrecy-only DC label, to prove L1 C Lo,
i.e., Ly = Lj, we need only construct a function that has type Lo — Ly:
successfully type-checking a program directly corresponds to verifying that the
code does not violate TFC.

The library exports various type classes and combinators that facilitates the
enforcement of static IFC. For example, we provide type constructors to cre-
ate labels from principals—a principal in this system is a type for which an
instance of the Principal type class is defined. To label values, we associate
labels with types. Specifically, a labeled type is a wrapper for a product type,
whose first component is a label, and whose second component, the value, can-
not be projected without declassification. The library further provides a function,
relabel, which, given a labeled value (e.g., (L1,3)), a new label Lo, and a proof
of L1 C Ly (a lambda term of type Ly — Lq), returns the relabeled value (e.g.,
(L2, 3)). Since providing such proofs is often tedious, we supply a tool called
dcAutoProve, that automatically inserts proofs of can-flow-to relations for ex-
pressions named auto, with an explicit type signature. Our automated theorem
prover is based a variant of Gentzen’s LJ sequent calculus [7].

4 http://hackage.haskell.org/package/QuickCheck

7 Related work

DC labels closely resemble DLM labels [21] and their use in Jif [22]. Like DC
labels, DLM labels express both secrecy and integrity policies. Core to a DLM
label are components that specify an owner (who can declassify the data) and a
set of readers (or writers). Compared to our disjunction categories, DLM does
not allow for joint ownership of a component—they rely on a centralized principal
hierarchy to express partial ownership. However, policies (natural to DLM) which
allow for multiple readers, but a single owner, in our model, require a labeling
pattern that relies on the notion of clearance, as discussed in Section 5 and
used in existing DIFC systems [30, 31, 28]. Additionally, unlike to DLM labels as
formalized in [20], DC labels form a bounded lattice with a join and meet that
respectively correspond to the least upper bound and greatest lower bound; the
meet for DLM labels is not always the greatest lower bound.

The language Paralocks [3] uses Horn clauses to encode fine-grained IFC
policies following the notion of locks: certain flows are allowed when correspond-
ing locks are open. Constraining our model to the case where a privilege set is
solely a conjunction of principals, Paralocks be easily used to encode our model.
However, it remain an open problem to determine if disjunctive privileges can
be expressed in their notion of state.

The Asbestos [8] and HiStar [30] operating systems enforce DIFC using As-
bestos labels. Asbestos labels use the notion of categories to specify information
flow restrictions in a similar manner to our clauses/categories. Unlike DC labels,
however, Asbestos labels do not rely on the notion of principals. We can map a
subset of DC labels to Asbestos labels by mapping secrecy and integrity cate-
gories to Asbestos levels 3 and 0, respectively. Similarly ownership of a category
maps to level . This mapping is limited to categories with no disjunction, which
are equivalent to DStar labels [31], as discussed in Section 4. Mapping disjunc-
tion categories can be accomplished by using the system’s notion of privileges.
Conversely, both Asbestos and DStar labels are subsumed by our model. More-
over, compared to these systems we give precise semantics, prove soundness of
the label format, and show its use in enforcing DIFC statically.

Capability-based systems such as KeyKOS [1], and E [19] are often used
to restrict access to data. Among other purposes, capabilities can be used to
enforce discretionary access control (DAC), and though they can enforce MAC
using patterns such as membranes, the capability model is complimentary. For
instance, our notion of privilege is a capability, while a delegated privilege loosely
corresponds to an attenuated capability. This notion of privileges as capabilities
is like that of Flume [15]. However, whereas they consider two types of privilege
(essentially one for secrecy and another for integrity), our notion of privilege
directly corresponds to ownership and conferring the right to exercise it in any
way. Moreover, delegated privileges and the notion of disjunction provides an
equal abstraction.

8 Conclusion

Decentralized information flow control can be used to build applications that
enforce end-to-end security policies using untrusted code. DIFC systems rely on
labels to track and enforce information flow. We present disjunction category la-
bels, a new label format useful in enforcing information flow control in systems
with mutually distrusting parties. In this paper, we give precise semantics for
DC labels and prove various security properties they satisfy. Furthermore, we
introduce and prove soundness of decentralized privileges that are used in declas-
sifying and endorsing data. Compared to Myers and Liskov’s DLM, our model is
simpler and does not rely on a centralized principal hierarchy, our privilege hier-
archy is distributed. We highlight the expressiveness of DC labels by providing
several common design and labeling patterns. Specifically, we show how to em-
ploy DC labels to express confinement, access control, privilege separation, and
authentication. Finally, further illustrating flexibility of the model, we describe
two Haskell implementations: a library used to perform dynamic label checks,
compatible with existing DIFC systems, and a prototype library that enforces
information flow statically by leveraging Haskell’s module and type system.

Acknowledgments This work was supported by DARPA CRASH and PROCEED,
Google, the Swedish research agency VR, the NSF, and the AFOSR. D. Stefan is
supported by the DoD through the NDEG Fellowship Program.

References

1. A. C. Bomberger, A. P. Frantz, W. S. Frantz, A. C. Hardy, N. Hardy, C. R. Landau,
and J. S. Shapiro. The KeyKOS nanokernel architecture. In Proc. of the USENIX
Workshop on Micro-Kernels and Other Kernel Architectures, April 1992.

2. D. Boneh, X. Ding, G. Tsudik, and C. Wong. A method for fast revocation of public
key certificates and security capabilities. In Proceedings of the 10th conference on
USENIX Security Symposium-Volume 10, pages 22—22. USENIX Association, 2001.

3. N. Broberg and D. Sands. Paralocks: role-based information flow control and
beyond. In SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 10, pages 431-444, 2010.

4. D. E. Denning. A lattice model of secure information flow. Communications of the
ACM, 19(5):236-243, May 1976.

5. Department of Defense. Trusted Computer System Ewvaluation Criteria (Orange
Book), DoD 5200.28-STD edition, December 1985.

6. D. Devriese and F. Piessens. Noninterference through secure multi-execution. In
2010 IEEE Symposium on Security and Privacy, pages 109-124. IEEE, 2010.

7. R. Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. Journal of
Symbolic Logic, pages 795-807, 1992.

8. P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler, E. Kohler,
D. Mazieres, F. Kaashoek, and R. Morris. Labels and event processes in the
Asbestos operating system. In Proc. of the 20th ACM Symposium on Operating
Systems Principles, pages 17-30, Brighton, UK, October 2005. ACM.

9. J. Gallier. Constructive logics part i: A tutorial on proof systems and typed A-
calculi. Theoretical computer science, 110(2):249-339, 1993.

10. J. Goguen and J. Meseguer. Security policies and security models. In I. C. S. Press,
editor, Proc of IEEE Symp. on Security and Privacy, pages 11-20, April 1982.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

C. Gunter and T. Jim. Generalized certificate revocation. In Proceedings of the 27th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 316-329. ACM, 2000.

W. Howard. The formulae-as-types notion of construction. To HB Curry: essays
on combinatory logic, lambda calculus and formalism, pages 479-490, 1980.

M. Jaskelioff and A. Russo. Secure multi-execution in Haskell. In Proc. Andrei
Ershov International Conference on Perspectives of System Informatics, LNCS.
Springer Verlag, June 2011.

V. Kashyap, B. Wiedermann, and B. Hardekopf. Timing-and termination-sensitive
secure information flow: Exploring a new approach. In Security and Privacy (SP),
2011 IEEFE Symposium on, pages 413-428. IEEE, 2011.

M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler, and R. Mor-
ris. Information flow control for standard OS abstractions. In Proc. of the 21st
Symp. on Operating Systems Principles, October 2007.

B. W. Lampson. A note on the confinement problem. Communications of the
ACM, 16(10):613-615, 1973.

P. Li and S. Zdancewic. Arrows for secure information flow. Theoretical Computer
Science, 411(19):1974-1994, 2010.

M. Miller and J. Shapiro. Paradigm regained: Abstraction mechanisms for access
control. Advances in Computing Science-ASIAN 2003, pages 224-242, 2003.

M. S. Miller. Robust Composition: Towards a Unified Approach to Access Con-
trol and Concurrency Control. PhD thesis, Johns Hopkins University, Baltimore,
Maryland, USA, May 2006.

A. Myers and B. Liskov. Complete, safe information flow with decentralized labels.
In IEEE Security and Privacy, 1998., pages 186—197. IEEE, 1998.

A. C. Myers and B. Liskov. A decentralized model for information flow control. In
Proc. of the 16th ACM Symp. on Operating Systems Principles, 1997.

A. C. Myers and B. Liskov. Protecting privacy using the decentralized label model.
ACM Trans. on Computer Systems, 9(4):410-442, October 2000.

C. Papadimitriou. Complezity Theory. Addison Wesley, 1993.

D. Redell and R. Fabry. Selective revocation of capabilities. In Proceedings of the
International Workshop on Protection in Operating Systems, pages 192—209, 1974.
A. Sabelfeld and D. Sands. Dimensions and principles of declassification. In Proc.
IEEE Computer Security Foundations Workshop, pages 255-269, June 2005.

J. H. Saltzer and M. D. Schroeder. The protection of information in computer
systems. Proc. of the IEEE, 63(9):1278-1308, September 1975.

W. Sonnex, S. Drossopoulou, and S. Eisenbach. Zeno: A tool for the automatic ver-
ification of algebraic properties of functional programs. Technical report, Imperial
College London, Feb. 2011.

D. Stefan, A. Russo, J. C. Mitchell, and D. Maziéres. Flexible dynamic information
flow control in Haskell. In Haskell Symposium, pages 95-106. ACM SIGPLAN,
September 2011.

S. Zdancewic and A. C. Myers. Robust declassification. In Proc. IEEE Computer
Security Foundations Workshop, pages 15-23, June 2001.

N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Maziéres. Making information
flow explicit in HiStar. In Proc. of the 7th Symp. on Operating Systems Design
and Implementation, pages 263-278, Seattle, WA, November 2006.

N. Zeldovich, S. Boyd-Wickizer, and D. Maziéres. Securing distributed systems
with information flow control. In Proc. of the 6th Symp. on Networked Systems
Design and Implementation, pages 293-308, San Francisco, CA, April 2008.

