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Abstract

Complex network dynamics have been analyzed with models of systems of coupled switches or systems of coupled
oscillators. However, many complex systems are composed of components with diverse dynamics whose interactions drive
the system’s evolution. We, therefore, introduce a new modeling framework that describes the dynamics of networks
composed of both oscillators and switches. Both oscillator synchronization and switch stability are preserved in these
heterogeneous, coupled networks. Furthermore, this model recapitulates the qualitative dynamics for the yeast cell cycle
consistent with the hypothesized dynamics resulting from decomposition of the regulatory network into dynamic motifs.
Introducing feedback into the cell-cycle network induces qualitative dynamics analogous to limitless replicative potential
that is a hallmark of cancer. As a result, the proposed model of switch and oscillator coupling provides the ability to
incorporate mechanisms that underlie the synchronized stimulus response ubiquitous in biochemical systems.
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Introduction

The dynamics in systems ranging from intercellular gene

regulation to organogenesis are driven by complex interactions

(represented as edges) in subcomponents (represented as nodes) in

networks. If the structure of these networks is known, network-wide

models of coupled systems have been applied to predict their

qualitative dynamics. For example, models of coupled switches

based upon Glass networks [1] have been applied to model systems

such as neuronal synapses [2] and gene regulatory networks [3].

Similarly, models of coupled oscillators along networks based upon

the Kuramoto model [4] have been used to model synchronization

of oscillators in diverse systems reviewed in [5]. In biochemical

systems, in vivo oscillator synchronization has been observed in

synthetic oscillatory fluorescent bacteria [6,7], yeast gene regulatory

networks [8,9], and human cell fate decisions [10]. Such

spontaneous synchronization has also been attributed to the

development of the mammalian cardiac pacemaker cells (reviewed

in [11]) and cortical systems (reviewed in [12]) including notably the

circadian pacemaker (e.g., [13]). More recently, these network

models have been found to be insufficient to model more complex

dynamics in neuronal information transfer [12,14–17] and cardiac

arrhythmias [18–21]. These limitations extend to physical systems,

such as the coupled lasers studied in [22]. Therefore, numerous

studies have modified these network models to account for evolving

networks [15,23–28], dynamic frequencies [15,29,30], or phase

delays [16,31–33]. However, these mathematical modifications

typically do not encode the mechanism underlying the limitations in

the Kuramoto and Glass network models.

We hypothesize that the observed limitations in the standard

Kuramoto and Glass models arise from their exclusion of

coupling components with qualitatively different dynamics.

Several studies have inferred that biochemical systems contain

‘‘network motifs’’ with both oscillatory and switch-like dynamics

[34,35]. The dynamics of these motifs are inferred from the

topology of subgraphs in the networks of these systems. Their

structures are statistically overrepresented in biochemical net-

works [36,37] such as intracellular regulatory networks [38],

implicating evolutionary preservation (and thus utility) of these

network motifs [39]. The dynamics of these motifs have been

used to model yeast cell cycle regulation [40] and have been

further confirmed in synthetic, designed biochemical circuits

(reviewed in [41]). Because these heterogeneous network motifs

are all identified as components within a single biochemical

network, their interactions must drive the global dynamics of the

network [42]. Previously, [43] have shown that coupling small

sets of heterogeneous network motifs ensures the robustness of

motif dynamics and [42] have shown that coupling networks

changes their dynamics in isolation. However, the network-level

dynamics that result from coupling oscillatory and switch-like

components have not been studied comprehensively.

In this paper, we develop a theoretical framework to quantify

the network-wide dynamics resulting from coupling switches and

oscillators. This model is based upon introducing cross-coupling

between the Kuramoto and Glass models, due to their wide

success in modeling the dynamics in networks of oscillators and

networks of switches, respectively. Simulations with the proposed

model across state-space in an all-to-all network yields four

operational states: (1) switches remain ‘‘on’’ and oscillators

synchronize, (2) switches are ‘‘off’’ and oscillators freeze, (3)

switches fluctuate in sync with oscillators, and (4) switches fluctuate

transitionally until oscillators freeze. Further application of our

PLoS ONE | www.plosone.org 1 January 2012 | Volume 7 | Issue 1 | e29497



model to the network motifs identified in yeast in [44] recapitulates

the qualitative dynamics of the system observed in that study.

However, a simple rewiring of this cell-cycle network that

introduces feedback causes a cancer-like sustained re-activation

of the cell cycle machinery without regard for external signal

growth signals. These dynamics suggest that modeling cross-motif

coupling may predict critical processes in the dynamics of

biochemical networks with minimal parameterization.

The Kuramoto model of coupled oscillators
Quantitative studies of coupled oscillators often apply the

Kuramoto model of M oscillators coupled in an all-to-all network.

In this model, the change in time _hhi of the phase of the i th

oscillator, hi, is governed by

_hhi~v̂viz
kh,h

M

XM
j~1

sin hj{hi

� �
, ð1Þ

where v̂vi is the natural frequency of the i th oscillator and kh,h§0
is the coupling strength of the oscillators [4]. Typically, the v̂vi

values are drawn from a normal distribution centered at 0 with

variance sv.

In the Kuramoto model, the phases of the oscillators will

synchronize if kh,h is above a threshold coupling strength k̂kh,h. Such

synchronization is quantified with the mean field of the oscillators as

rheiy~
1

M

XM
j~1

eihj : ð2Þ

Here y is the average phase of the oscillators and the coherence rh

represents the spread of the oscillators from that average phase.

Based upon eq. (2), rh~1 if each hi~y and rh~0 if the values of hi

are distributed uniformly between ½0,2p) [45].

Glass networks of coupled switches
Coupled sets of N switches, which adopt one of a set of binary

states, are modeled with Glass networks [1]. These models

describe the evolution of the i th switch (~xxi) as follows

_xxi~{xizFi ~xx1,~xx2, . . . ,~xxnð Þ , and ð3Þ

~xxi~0 if xiv0 ; 1 otherwise , ð4Þ

where _xxi represents the change in time of the value of each xi, which

are unobservable continuous variables that control the time of

switching between observable, discrete states in ~xxi. In this model, Fi

describes the change in state of the i th switch due to the coupling

with the other N switches in the network [1]. In specified network

structures and functions Fi, such Glass networks can exhibit complex

dynamics, including periodic and aperiodic orbits (e.g., [46]).

One type of Glass network, called a Hopfield network [2], has

dynamics applicable to the smooth-decay of signal in biochemical

switches [2]. The Hopfield model lets

Fi~kx,x

XN

j~1

wij~xxj{ti, ð5Þ

where wij takes values between {1 and 1 representing the relative

strength of the connection between switches i and j, kx,x is the

magnitude of coupling strengths, and ti the threshold for switch

activation. Similar to the Kuramoto model, sets of the switches will

synchronize for kx,x above a threshold k̂kx,x in appropriate network

topologies.

Results

Network model of coupled oscillators and switches
By combining the established models for switches and

oscillators, we model the dynamics of the heterogeneous system

of coupled switches and oscillators in systems including biochem-

ical networks with the following set of equations:

_xxi~{xizGi ~xx1,~xx2, . . . ,~xxN ,h1,h2, . . . ,hMð Þ ð6Þ

_hhl~vl ~xx1,~xx2, . . . ,~xxNð Þ ð7Þ

zHl ~xx1,~xx2, . . . ,~xxN ,h1,h2, . . . ,hMð Þ:

Here, eq. (6) is analogous to the Glass network in eq. (3) and ~xxi is

defined according to eq. (4).

In this study, we explore a case of the switch-oscillator model in

eqs. (6) and (7) which contains an all-to-all network that couples

the Kuramoto model, eq. (1), and Hopfield network, eqs. (3)–(5), as

follows

_xxi~{xiz
kx,x

N

XN

j=:i

~xxjz
kx,h

M

XM
k~1

~hhk{ti, ð8Þ

_hhl~vlz
kh,h

M

XM
k~1

sin hk{hlð Þ, ð9Þ

_vvl~
kh,x

N

XN

j~1

(~xxjv̂vl{vl), ð10Þ

where kx,h and kh,x are cross-component coupling strengths. In eq.

(10), vl is the time-varying frequency of the l th oscillator resulting

from switch coupling, with initial values vl(t~0)~v̂vl , and

~hhl~
1 if 0ƒhlvp

0 otherwise

�
: ð11Þ

In this system, zero values of the cross-coupling parameters kx,h

and kh,x cause the model to reduce to the standard uncoupled

Kuramoto and Hopfield models. Similar decoupling of the models

occurs if the switch and oscillator systems are at vastly different

timescales, determined by the ti and v̂vl parameters, respectively.

The transformation in eq. (11) facilitates comparable switch-like

dynamics in the oscillators when they interact with switches in eq.

(8). Nonzero switch-oscillator (kx,h) interactions will cause an

oscillator in the ‘‘up’’ part (~hhl~1) of its cycle to feed energy into

the switch in question, nudging it towards the ‘‘on’’ state if off or

delaying its decay if already on. Similarly, an ‘‘on’’ switch with a

nonzero oscillator-switch interaction (kh,x) will feed energy into the

oscillators causing them to cycle at their natural frequency if

coupled to that switch.

Dynamics of Coupled Switches and Oscillators
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By thus incorporating coupling between switches and oscillators

within the framework established by the standard Kuramoto and

Hopfield models, the dynamics of our model in eqs. (8)–(10) can be

analyzed within the framework of these well established models.

Similar to analysis of the Kuramoto model and Glass network, we

summarize the dynamics of our system using order parameters.

For oscillators, we utilize the order parameter defined in eq. (2).

We introduce a new order parameter

rv(t)~
1

M

X
m

vm(t)

v̂vm
ð12Þ

that tracks how closely each individual oscillator’s frequency vm

corresponds to the natural frequency v̂vm. Analogously, we

measure the fraction of switches that are in the ‘‘on’’ position at

a given time using a switch-switch order parameter defined by

rx(t)~
1

N

X
j

~xxj(t): ð13Þ

Both of these functions will have a maximum of 1 when all

switches are on, and minimum 0 if all switches are off.

Simulation results in all-to-all networks
We first explore the qualitative dynamics of the heterogeneous

system through numerical simulations in all-to-all networks. We

limited these simulations to all-to-all networks, because of the

ability of this network topology to describe the qualitative

dynamics from the Kuramoto model. These simulations explore

the majority of parameter space defined by kx,x, kx,h, kh,h, kh,x,

and sv. Specifically, we select kx,x~1vk̂kx,x to ensure that

switches are able to turn off without appropriate stimulation from

the oscillators. We consider the effects of switches on oscillators

for values of kh,h both above and below the Kuramoto threshold

k̂kh,h. Figure 1 plots the time-dependent order parameters

observed in the four qualitative states observed in simulations

of the coupled model eqs. (8)–(10) that are reflective of the

qualitative dynamics observed in simulations with these param-

eter values. Movies S1–S4 further summarize the results of these

simulations. We note that these four states were the only

qualitative states observed for our coupled model in all-to-all

networks simulated according to the description in the Methods

section. Because t, kx,h, and sv all control the relative timing of

switches and oscillators, their values were selected in these

simulations to optimize visualization in the supplemental videos.

When exploring the effect of timing on the system dynamics, we

hold t and kx,h fixed while varying sv. Figure 2 shows the

probability of observing the states in Figures 1(a)–1(c) in 100

simulations of all-to-all systems containing 100 switches and

oscillators as a function of kh,x and sv. Because of their common

control of system timing, we would obtain comparable distribu-

tions when varying either t or kx,h instead of sv.

Figure 1. Summary of the qualitative dynamics of the heterogeneous network model of eqs. (8)–(10). In all figures, top-panel shows
temporal evolution of the mean field statistics (rh black, solid; rx green, dashed; and rv blue, dash-dotted) and the bottom-panel shows the evolution
of the mean phase y (red, solid). (a) Oscillators synchronize and switches stay ‘‘on’’ (kx,x~11, kx,h~1:5, kh,x~1, kh,h~40, and sv~10), (b) oscillators
freeze (as evidenced by unchanging y) and switches stay ‘‘off’’ (kx,x~1, kx,h~1:5, kh,x~1, kh,h~40, and sv~10), (c) oscillators synchronize and
switches oscillate (kx,x~1, kx,h~160, kh,x~0:2, kh,h~42, and sv~3), and (d) transitory oscillations in oscillators and switches (kx,x~0:1, kx,h~1:4,
kh,x~2, kh,h~1:8, and sv~10).
doi:10.1371/journal.pone.0029497.g001

Dynamics of Coupled Switches and Oscillators
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The coupled system preserves synchronization in both
oscillators and switches

Figure 1(a) shows a state of the model in which the switches are

all in the ‘‘on’’ state and oscillators are synchronized (rx near 1, rh

near 1, and y oscillating between ½0,2p) periodically). While such

synchronization is observed in the uncoupled Hopfield and

Kuramoto models, the oscillator-switch cross coupling extends

the region of parameter space over which this synchronization

occurs. Specifically, modest values of kx,h can induce sustained

switch activity for parameter values of kx,x in which switches

would decay in the uncoupled system. Furthermore, this switch

synchronization will occur for all values of kx,x in which

synchronization occurs in the uncoupled Hopfield model (i.e., all

kx,x larger than a threshold value k̂kx,x) because the oscillators only

contribute positively to the derivative in eq. (8) in our model. On

the other hand, no value of kh,x will cause oscillator phases to

synchronize if kh,h is below the critical coupling parameter for the

pure Kuramoto model (k̂kh,h). However, there are parameter

regimes in which this synchronization occurs stochastically,

depending on the initial values selected for xi, hj , and v̂vj

(Figure 2(a)). In these cases, the average decrease in oscillator

natural frequencies caused by decreasing kh,x or sv will increase

the effective period of oscillators, thereby increasing the probabil-

ity of switches being locked in the ‘‘on’’ state and oscillator

synchronization in the heterogeneous system.

Coupling switches to unsynchronized oscillators can
freeze network-wide dynamics

Figure 1(b) depicts a model state in which switches are all ‘‘off’’

(rx near zero) and oscillators ‘‘freeze’’: each hj tð Þ~y tð Þ~Y for

some constant values Y for all t beyond the preliminary freezing

time tf . While the decaying switches are observed in an uncoupled

Hopfield model, the freezing oscillators cannot be simulated in the

uncoupled Kuramoto model. Such oscillator freezing will occur

whenever the oscillators decay to the ‘‘off’’ state by virtue of the

coupling of the oscillators to switches through the vj in eq. (10).

Specifically, this frozen state can occur whenever kx,xvk̂kx,x

depending on the values of ~xxi, hj , and v̂vj . However, the

probability of selecting these initial states is decreased when the

heterogeneity of the oscillators increases through incomplete

synchronization (rh(t)v1) or increased sv (Figure 2(b)). In these

cases, a single oscillator in the ‘‘up’’ phase (~hh~1) can contribute

positively to the switch states, forcing the system out of this frozen

state. The probability of obtaining this frozen model state further

depends on the relative timing of switch decay and oscillator

freezing. Specifically, the probability of obtaining the frozen state

decreases with the average oscillator frequency, determined

predominantly by the parameter kh,x (Figure 2(b)).

Coupling switches to synchronized oscillators can induce
synchronized oscillations in switches

An additional consequence of coupling switches and oscillators

in a state in which switches vacillate between all ‘‘on’’ and all ‘‘off’’

along with the synchronized oscillator frequency (Figure 1(c)). This

oscillatory synchronization occurs when the pure Hopfield model

would turn switches ‘‘off’’ (kx,xvk̂kx,x), the pure Kuramoto model

would induce oscillator synchronization (kh,hwk̂kh,h), and the

timing between the oscillators and switches are balanced such

that the average period of the coupled oscillators is slightly less

than the average decay time of the system of switches. Figure 2(c)

shows that this balance in switch-oscillator timescales increases

with decreasing kh,x and depends non-monotonically on sv. As we

see in the plot of rv tð Þ in Figure 1(c), the average oscillator natural

frequencies will decrease towards the end of the ‘‘down’’ phase in

response to switches turning off, and then increase to their full

natural values in the ‘‘up’’ phase as switches turn back ‘‘on’’.

Therefore, if synchronized oscillator period is too slow (i.e., sv is

too large), the system will tend to be locked in the ‘‘on’’ state

(Figure 2(a)); if too fast (i.e., sv too small) the system will tend to be

locked in the ‘‘off’’ state (Figure 2(b)).

Synchronization of network-wide oscillations may be
transitory

Oscillatory behavior in the switches is also observed for

unsynchronized oscillators (kh,hvk̂kh,h) as depicted in Figure 1(d).

In this case, the value of kh,x must be large enough to enable

switches to freeze the oscillators’ phases. However, because the

oscillators are uncoupled, a small subset of oscillators in the ‘‘up’’

phase can drive the switches to turn on for large-enough values of

kx,h. These switch oscillations are transitory, ending when at last

the switch coupling dominates the system and induces all of the

oscillators to freeze. For unsynchronized oscillators in the

parameter range of Figure 1(d), the transitional oscillations in

the switch state occurs regularly in 21 of 100 simulations. In 8 of

these 21 simulations, the switch state turns ‘‘on’’ after decaying at

least twice. More rarely, transitory changes in switch state may be

Figure 2. Percentage of simulations in which the qualitative dynamics in Figure 1 occur. In (a) oscillators synchronize and switches are
‘‘on’’, in (b) oscillators freeze and switches are ‘‘off’’, and in (c) switches vary with oscillators vs sv for kh,x~0:01 (solid), kh,x~0:1 (dotted) and kh,x~1
(dashed). kx,x~1vk̂kx,x, kx,h~1:5, and kh,h~40wk̂kh,h .
doi:10.1371/journal.pone.0029497.g002

Dynamics of Coupled Switches and Oscillators
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induced by a similar mechanism in simulations for which

kh,hwk̂kh,h and switches ultimately settle on the all ‘‘on’’ or all

‘‘off’’ states.

System size affects the distribution of qualitative
dynamics

We also explored the dynamics of the coupled system for

networks of sizes ranging from N~M~10 to N~M~500
nodes, described in the methods. For networks of all sizes, we

observe that the dynamics of the system was limited to the four

qualitative behaviors observed for networks of size N~M~100
depicted in Figure 1. However, the system size does have a notable

effect on the frequency with which each of these behaviors occurs.

The figures in Figures S1, S2, and S3 plot the observed frequencies

for each of the network sizes as a function of the kh,x and sv values

considered in Figure 2.

When kh,x~0:01, the observed frequencies of the system states

depend most strongly on network size in simulations using the

smallest value of sv~1 is also small (Figure S1). In this case, the

probability of observing the system with synchronized oscillatory

dynamics in both switches and oscillators decays as the network

grows. Both the state in which the switches are on and oscillators

are synchronized and the state in which the switches are off and

oscillators are frozen have with compensatory increases in

probability (Figure 3). The relative probability of obtaining the

frozen state increases, with notable decay in the probability of

obtaining the state in which switches are ‘‘on’’ and oscillators are

synchronized in large networks.

On the other hand, when kh,x~1, the system size has the

greatest influence on the resulting dynamics for large values of sv

(Figure S3). In this case, the system changes from containing

mostly switches in the on state and synchronized oscillators to

switches that are entirely in the ‘‘frozen’’ state for large network

sizes (Figure 4). We hypothesize that the system is forced into the

frozen state in larger networks because of increased oscillator

synchronization in large networks. Therefore, small networks

would have a higher probability of having few oscillators that are

unsynchronized and in the ‘‘up’’ phase (~hh~1), causing the switches

to turn ‘‘on’’ (~xx~1) due to the structure of eq. (8) as was discussed

previously. Furthermore, the rare oscillations observed in both

switches and oscillators when kh,x~1 occur only when the

network is small. Intermediate values of kh,x~0:1 show similar

changes to those described for kh,x~0:01 when sv~1 and to

those described for kh,x~1 when sv~10 (Figure S2).

The heterogeneous network models qualitative
dynamics of the yeast cell cycle derived from network
motifs

Previous work by [47] make the cell cycle processes controlling

mitotic division of fission yeast Schizosaccharomyces pombe cells

provides an optimal system in which to apply our model. The

biochemical reactions responsible for driving the cell cycle are well

understood and the resulting dynamics in each of the stages of the

cell cycle have been characterized extensively in [40,44,47]. The

cell cycle machinery in mitosis is divided into four, sequential

stages: phase 1 is a gap or rest phase (G1); phase 2 is a DNA

synthesis stage (S); phase 3 is an additional gap stage (G2); and

phase 4 is the mitotic division stage (M). Previously, [47] observed

that the dynamics of the yeast cell cycle can be divided into three

sequentially interacting modules, triggered by a signal based upon

cell size: (1) G1/S transitions with a toggle-switch, (2) S/G2

transitions with a toggle-switch, and (3) G2/M transitions with an

oscillator. Although the specific timing differs from [47], we

observe similar qualitative dynamics to that observed in [47] when

applying our heterogeneous model to evolve the state of these cell

cycle stages (Figure 5) as described in the Methods section. We

note that the response in this system is consistent with the

transitory oscillations observed in Figure 1(d) in the case of all-to-

all coupling. We also modeled this cell-cycle system in a rewired-

network, in which the G2/M transitions feedback into G1/S

(Figure 6). In this case, we observe sustained reactivation of the cell

cycle regardless of the external signal. These dynamics are

analogous to the synchronized dynamics in Figure 1(c) and

consistent with cell growth arising from re-wiring biochemical

reactions in cancer cells [48].

Discussion

Our model of coupled switches and oscillators in all-to-all

networks demonstrates that networks with components having

heterogeneous dynamics can exhibit synchronization similar to

that observed in homogeneous systems. As is the case in

Figure 3. Dependence on network size for qualitative states for
kh,x~0:01 and sv~1. Percentage of simulations in which the
qualitative dynamics have switches off and oscillators frozen (blue,
solid), switches on and oscillators synchronized (green, dashed), and
oscillatory switches and synchronized oscillators (red, dotted).
doi:10.1371/journal.pone.0029497.g003

Figure 4. Dependence on network size for qualitative states for
kh,x~1 and sv~10. Percentage of simulations with qualitative
dynamics plotted as described in Figure 3.
doi:10.1371/journal.pone.0029497.g004

Dynamics of Coupled Switches and Oscillators
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homogeneous models (e.g., [49–52]), we expect analogous

synchronization to hold in small-world, biochemical network

topologies (e.g., [53]). However, these alternative topologies would

likely change the probability of observing each of the qualitative

model behaviors similar to the observed dependence of probabil-

ities in network size. In this alternative network topologies, the

qualitative states of the network model may have greater

variability in small network sizes in accordance with the findings

of [54]. Finally, in these topologies the heterogeneous model could

yield additional, complex qualitative dynamic states, resulting

from the complex dynamics that they cause in models of coupled

switches alone [46].

While uncoupled network motifs may adopt switch-like or

oscillatory dynamics, coupling between these components can

induce switch-like behavior in oscillators and oscillatory behavior

in switches. These qualitative changes in component dynamics

occur stochastically, depending on the distribution of frequencies

and switch states. They are more likely to occur in simulations with

an imbalance in relative timescales, in which the dynamics of the

faster network motif will dominate the system. Similarly, when kh,x

and sv are both small, the coordinated oscillations in the switches

and oscillators that occur in frequently small networks are largely

eliminated in larger networks. We hypothesize that this larger

network effectively increases the range of natural frequencies and

phases, making the simulation less likely to have the constrained

distribution required to obtain such synchronized oscillations. We

can expect that biological systems have evolved components

according to these distributions to ensure the robustness of the

dynamics in the system. For example, multiple proteins can often

serve similar functions in cell signaling pathways, which would

increase the system size and decrease the probability of transient

behaviors in our model. This robustness will be further ensured

through the sheer size of most biochemical systems. For example,

in humans yeast two-hybrid maps and metabolic network maps

both contain on the order of thousands of interactions between

thousands of species [53].

Furthermore, we have also observed that the heterogeneous

network model will freeze the oscillator dynamics in the presence

of inactive switches and then subsequently activate in synchrony in

the presence of active switches. As a result, our model provides a

natural mechanism for the coordination of complex machinery

such as the initiation of cell-cycle dynamics. For example, when we

apply our model to the yeast cell cycle motifs in [47], we

recapitulate the qualitative dynamics of delayed initiation of stages

of the cell cycle observed in simulations with differential equations

of the regulatory dynamics in [47]. Additional tuning of the model

parameters or incorporation of additional cell cycle checkpoints

would facilitate a precise match of the timing of [47]. Because

parameters are defined for modules and their interaction, our

model requires far fewer rate parameters than any differential

equation model of sets of biochemical reactions of the yeast cell

cycle. Generally, the oscillator in the final G2/M step of the cell

cycle is active only when the series of switches in the previous steps

of the cell cycle are activated, consistent with the transient

dynamics observed in our network model. However, rewiring the

network to introduce feedback from the G2/M stage to the G1/S

stage of the cell cycle will cause the modeled cell cycle machinery

to engage continually without regard to the external growth

signals, consistent with the malignant rewring in cancer cells [48].

Similar to the oscillatory behavior induced in switches in

simulations in all-to-all networks, this small modification to the

topology of cell cycle interactions altered the resulting dynamics of

the network motifs for the G1/S and S/G2 motifs. We, therefore,

hypothesize that motif dynamics predicted by the structure of

subgraphs may not accurately describe their in vivo dynamics if

considered in isolation, consistent with the hypothesis in [55] and

findings of [42].

We observed that the switches in the cell cycle block activation

of the yeast cell cycle when no external signal is present. Similarly,

when part of the larger but sparse networks that compose

biochemical systems [53], inactive switches would effectively

destroy links between nodes on the network. As a result, the

proposed heterogeneous model provides a potential mechanism

for Kuramoto-based models with evolving network topologies such

as [15,23–28]. Similarly, we observed that the intermediate

switches delay the oscillations in the final G2/M motif in the

simulated yeast cell cycle. As a result, we hypothesize that coupling

switches to oscillators through their frequencies in this model also

provides a natural mechanism for extensions of the Kuramoto

model with dynamic frequencies [15,29,30] or phase delays

[16,31–33].

Figure 6. Simulated dynamics of an aberrant cell cycle
network. As for Figure 5 with a network topology linking the G2/M
module to the G1/S module.
doi:10.1371/journal.pone.0029497.g006

Figure 5. Simulated dynamics of the yeast cell cycle. Evolution of
the states of the cell cycle modules (G1/S top, green dashed; S/G2 top,
red dotted; G2/M bottom, black) in response to an external stimulus to
initiate the cell cycle (top, blue solid).
doi:10.1371/journal.pone.0029497.g005
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The heterogeneous network model described in this paper

facilitates characterization of the dynamics of complex, biochem-

ical systems by abstracting the dynamics of their composite motifs

such as the yeast cell cycle based upon [47]. We note that the

proposed heterogeneous network model is deterministic once the

initial values of all the switches and oscillator frequencies have

been specified. However, many intracellular reactions (e.g., [56])

and neuronal systems (reviewed in [57,58]) evolve stochastically.

In these cases, the Hopfield networks used to model the switches

could be replaced with probabilistic Boolean networks [3] and the

oscillators evolved with stochastic solvers such as the stochastic

simulation algorithm (reviewed in [59]), integrated with the

methodology developed in [60]. Similar modifications could also

extend the heterogeneous model to incorporate coupling with

components of additional dynamics pertinent to biochemical

systems, such as those of the network motifs enumerated in

[34,35,44]. These studies would also ideally consider the dynamics

of the heterogeneous network model in additional small-world and

random network topologies, as well as the topologies defined by

neuronal systems and gene regulatory networks.

Materials and Methods

Numerical simulations in the all-to-all network
In this study, we analyze the range of possible dynamics of the

coupled, heterogeneous networks by applying this model to all-to-

all networks. Analyses were performed for networks with equal

number of switches and oscillators (N~M ) of sizes 10, 50, 100,

200, and 500. All simulations are run one hundred times from

random initial conditions for the state of switches (xi,i~1, . . . ,N)

and oscillators (hj ,j~1, . . . ,M ), drawn from a Gaussian distribu-

tion and a uniform distribution on ½0,2p), respectively. Similarly,

oscillator natural frequencies are drawn randomly from a

Gaussian distribution of mean zero and standard deviation

parameter sv. Simulations of 100 seconds (in the arbitrary units

of the model), with a time step of 0.01 seconds were found

sufficient to reflect the range of possible model behaviors and

verify consistency across initial conditions. The behavior of each

simulation is summarized based on the time-dependent order

parameters rh tð Þ and y tð Þ, rv tð Þ, and rx tð Þ.

Numerical simulations of the yeast cell cycle
Based upon [47], we model the yeast cell cycle as an initiating

external signal (namely the cell size), coupled to a toggle switch

representing the transition between G1/S, a toggle switch

representing the transition between S/G2, and an oscillator

representing the transition from G2/M. While the external signal

is incorporated into the model with coupling to the other switches

in eq. (6), its state is not updated by the model. The duration of this

external signal is set at 10 simulated minutes, based upon [47].

Similarly, the initial values of the hidden variable x for the

switches in the G1/S and S/G2 modules are set at 20.5, t to 1,

and kx,x to 2 to reproduce the approximate 10 minute duration of

these switches in [47]. The natural frequency is for the G2/M

module set to
2p

60
min{1 to likewise reflect the timescale reported

in [47], while the remainder of the coupling parameters are left

untuned, set to kh,x~kx,h~kh,h~2 because we sought only to

reproduce the qualitative dynamics of the [47] model. The

rewiring in the system with enduring cell cycle activation is

achieved by adding an edge from the module for G2/M to the

switch in the G1/S module.

Supporting Information

Movie S1 Movie of the dynamics in Figure 1(a). Left panel

displays the evolution of the total number of switches (out of 100)

in the on state (left) and off state (right). Right panel displays the

evolution of the phase of each of the one hundred oscillators.

(AVI)

Movie S2 Movie of the dynamics in Figure 1(b). As for

Movie S1.

(AVI)

Movie S3 Movie of the dynamics in Figure 1(c). As for

Movie S1.

(AVI)

Movie S4 Movie of the dynamics in Figure 1(d). As for

Movie S1.

(AVI)

Figure S1 Dependence of dynamics on network size for
kh,x~0:01. Number of simulations (of 100) for which the switches

are off and oscillators are frozen (left panel), the switches are on

and the oscillators are synchronized (center panel), and both the

oscillators and switches have synchronized oscillations (right).

(PDF)

Figure S2 Dependence of dynamics on network size for
kh,x~0:1. As for Figure S1.

(PDF)

Figure S3 Dependence of dynamics on network size for
kh,x~1. As for Figure S1.

(PDF)
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