Skip to main content

On Extremal Graph Theory, Explicit Algebraic Constructions of Extremal Graphs and Corresponding Turing Encryption Machines

  • Chapter
Artificial Intelligence, Evolutionary Computing and Metaheuristics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 427))

Abstract

We observe recent results on the applications of extremal graph theory to cryptography. Classical Extremal Graph Theory contains Erdős Even Circuite Theorem and other remarkable results on the maximal size of graphs without certain cycles. Finite automaton is roughly a directed graph with labels on directed arrows. The most important advantage of Turing machine in comparison with finite automaton is existence of “potentially infinite memory”. In terms of Finite Automata Theory Turing machine is an infinite sequence of directed graphs with colours on arrows. This is a motivation of studies of infinite families of extremal directed graphs without certain commutative diagrams. The explicite constructions of simple and directed graphs of large girth (or large cycle indicator) corresponds to efficient encryption of Turing machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benson, C.T.: Minimal regular graphs of girth eight and twelve. Canadien Journal of Mathematics (18), 1091–1094 (1966)

    Google Scholar 

  2. Bien, F.: Constructions of telephone networks by group representations. Notices Amer. Mah. Soc. 36, 5–22 (1989)

    MathSciNet  MATH  Google Scholar 

  3. Biggs, N.: Algebraic Graph Theory, 2nd edn. University Press, Cambridge (1993)

    Google Scholar 

  4. Biggs, N.L.: Graphs with large girth. Ars Combinatoria 25C, 73–80 (1988)

    MathSciNet  MATH  Google Scholar 

  5. Biggs, N.L., Boshier, A.G.: Note on the Girth of Ramanujan Graphs. Journal of Combinatorial Theory, Series B 49, 190–194 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bollobás, B.: Extremal Graph Theory. Academic Press, London (1978)

    MATH  Google Scholar 

  7. Bondy, J.A., Simonovits, M.: Cycles of even length in graphs. J. Combin. Theory, Ser. B 16, 87–105 (1974)

    Article  MathSciNet  Google Scholar 

  8. Boudeliouua, I., AlRaissi, M., Touzene, A., Ustimenko, V.: Performance of Algebraic Graphs Based Stream-Ciphers Using Large Finite Fields. Annalles UMCS Informatica AI X1 2, 81–93 (2011)

    Google Scholar 

  9. Brower, A., Cohen, A., Nuemaier, A.: Distance regular graphs. Springer, Berlin (1989)

    Book  Google Scholar 

  10. Brown, W.G.: On graphs that do not contain Thomsen graph. Canad. Math. Bull. 9(3), 281–285 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  11. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. on Info. Theory IT-22(6), 644–654 (1976)

    Article  MathSciNet  Google Scholar 

  12. Erdős, P., R’enyi, A., S’oc, V.T.: On a problem of graph theory. Studia. Sci. Math. Hungar. 1, 215–235 (1966)

    MathSciNet  Google Scholar 

  13. Erdős, P., Simonovits, M.: Compactness results in extremal graph theory. Combinatorica 2(3), 275–288 (1982)

    Article  MathSciNet  Google Scholar 

  14. Faudree, W., Simonovits, M.: On a class of degenerate extremal graph problems. Combinatorica 3(1), 83–93 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hoory, S., Linial, M., Wigderson, A.: Expander graphs and their applications. Bulletin (New Series) of AMS 43(4), 439–461

    Google Scholar 

  16. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press (2003)

    Google Scholar 

  17. Guinand, P., Lodge, J.: Tanner Type Codes Arising from Large Girth Graphs. In: Proceedings of the 1997 Canadian Workshop on Information Theory (CWIT 1997), Toronto, Ontario, Canada, June 3-6, pp. 5–7 (1997)

    Google Scholar 

  18. Guinand, P., Lodge, J.: Graph Theoretic Construction of Generalized Product Codes. In: Proceedings of the 1997 IEEE International Symposium on Information Theory (ISIT 1997), Ulm, Germany, June 29-July 4, p. 111 (1997)

    Google Scholar 

  19. Kim, J.-L., Peled, U.N., Perepelitsa, I., Pless, V., Friedland, S.: Explicit construction of families of LDPC codes with no 4-cycles. IEEE Transactions on Information Theory 50(10), 2378–2388 (2004)

    Article  MathSciNet  Google Scholar 

  20. Klisowski, M., Romańczuk, U., Ustimenko, V.: On the implementation of cubic public keys based on new family of algebraic graphs. Annales UMCS Informatica AI XI 2, 127–141 (2011)

    Article  Google Scholar 

  21. Klisowski, M., Ustimenko, V.: On the implementation of cubic public keys based on algebraic graphs over the finite commutative ring and their symmetries. In: MACIS 2011: Fourth International Conference on Mathematical Aspects of Computer and Information Sciences, p. 13. Beijing (2011)

    Google Scholar 

  22. Klisowski, M., Ustimenko, V.: On the comparison of implementations of multivariate cryptosystems based on different families of graphs with large cycle matroid (to appear)

    Google Scholar 

  23. Koblitz, N.: Algebraic aspects of cryptography, Algorithms and Computation in Mathematics, vol. 3. Springer (1998)

    Google Scholar 

  24. Kotorowicz, S., Ustimenko, V.: On the implementation of cryptoalgorithms based on algebraic graphs over some commutative rings. Condens. Matter Phys. 11(2(54)), 347–360 (2008)

    Google Scholar 

  25. Klisowski, M., Ustimenko, V.: On the public keys based on the extremal graphs and digraphs. In: International Multiconference on Computer Science and Informational Technology, CANA Proceedings, Wisla, Poland (October 2010)

    Google Scholar 

  26. Kotorowicz, J.S., Ustimenko, V., Romańczuk, U.: On the implementation of stream ciphers based on a new family of algebraic graphs. In: Proceedings of the Conference CANA, FedSCIS, pp. 485–490. IEEE Computer Society Press

    Google Scholar 

  27. Kotorowicz S., Ustimenko, V.: On the comparison of mixing properties of stream ciphers based on graphs D(n, q) and A(n, q) (to appear)

    Google Scholar 

  28. Lazebnik, F., Ustimenko, V.A.: New Examples of graphs without small cycles and of large size. Europ. J. of Combinatorics 14, 445–460 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lazebnik, F., Ustimenko, V.: Explicit construction of graphs with an arbitrary large girth and of large size. Discrete Appl. Math. 60, 275–284 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lazebnik, F., Ustimenko, V.A., Woldar, A.J.: New Series of Dense Graphs of High Girth. Bull (New Series) of AMS 32(1), 73–79 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lazebnik, F., Ustimenko, V.A., Woldar, A.J.: Polarities and 2k-cycle-free graphs. Discrete Mathematics 197/198, 503–513 (1999)

    MathSciNet  Google Scholar 

  32. Lazebnik, F., Ustimenko, V.A., Woldar, A.J.: Properties of certain families of 2k-cycle free graphs. J. Combin. Theory, Ser. B 60(2), 293–298 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lubotsky, A., Philips, R., Sarnak, P.: Ramanujan graphs. J. Comb. Theory. 115(2), 62–89 (1989)

    Google Scholar 

  34. Margulis G.: Explicit group-theoretical constructions of combinatorial schemes and their application to desighn of expanders and concentrators. Probl. Peredachi Informatsii. 24(1), 51–60; English translation publ. Journal of Problems of Information Transmission, 39–46 (1988)

    Google Scholar 

  35. Margulis, G.A.: Explicit construction of graphs without short cycles and low density codes. Combinatorica 2, 71–78 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  36. Moore, E.H.: Tactical Memoranda. Amer. J. Math. 18, 264–303 (1886)

    Article  Google Scholar 

  37. Ore, R.: Graph theory. Wiley, London (1971)

    Google Scholar 

  38. Polak, M., Ustimenko, V.: On LDPC Codes corresponding to affine parts of generalized polygons. Annalles UMCS Informatica AI X1 2, 143–150 (2011)

    Article  Google Scholar 

  39. Romańuczk, U., Ustimenko, V.: On the key exchange with new cubical maps based on graphs. Annales UMCS Informatica AI XI 4, 11–19 (2011)

    Article  Google Scholar 

  40. Romańuczk, U., Ustimenko, V.: On the key exchange with matrices of large order and graph based nonlinear maps. Albanian Journal of Mathematics, Special Issue, Application of Computer Algebra 4(4), 203–211 (2010)

    Google Scholar 

  41. Romańuczk U., Ustimenko V.: On families of large cycle matroids, matrices of large order and key exchange protocols with nonlinear polynomial maps of small degree (to appear)

    Google Scholar 

  42. Shaska, T., Huffman, W.C., Joener, D., Ustimenko, V. (eds.): Advances in Coding Theory and Crytography (Series on Coding Theory and Cryptology). World Scientific Publishing Company (2007)

    Google Scholar 

  43. Shaska T., Ustimenko V.: On some applications of graph theory to cryptography and turbocoding. Albanian J. Math. 2(3), 249–255 (2008); Proceedings of the NATO Advanced Studies Institute: ”New challenges in digital communications”

    Google Scholar 

  44. Shaska, T., Ustimenko, V.: On the homogeneous algebraic graphs of large girth and their applications. Linear Algebra Appl. 430(7), 1826–1837 (2009); Special Issue in Honor of Thomas J. Laffey

    Google Scholar 

  45. Simonovits, M.: Extremal graph theory. In: Beineke, L.W., Wilson, R.J. (eds.) Selected Topics in Graph Theory 2, vol. (2), pp. 161–200. Academic Press, London (1983)

    Google Scholar 

  46. Ustimenko, V.: Random walks on graphs and Cryptography, Extended Abstracts, AMS Meeting, Loisville (March 1998)

    Google Scholar 

  47. Ustimenko, V.: Coordinatisation of Trees and their Quotients. The ”Voronoj’s Impact on Modern Science”, Kiev, Institute of Mathematics, vol. 2, pp. 125–152 (1998)

    Google Scholar 

  48. Ustimenko, V.: CRYPTIM: Graphs as Tools for Symmetric Encryption. In: Bozta, S., Sphparlinski, I. (eds.) AAECC 2001. LNCS, vol. 2227, pp. 278–287. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  49. Ustimenko, V.: Graphs with Special Arcs and Cryptography. Acta Applicandae Mathematicae 74(2), 117–153 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ustimenko, V.: Linguistic Dynamical Systems, Graphs of Large Girth and Cryptography. Journal of Mathematical Sciences 140(3), 412–434 (2007)

    Article  MathSciNet  Google Scholar 

  51. Ustimenko, V.: Maximality of affine group and hidden graph cryptosystems. J. Algebra Discrete Math. 10, 51–65 (2004)

    Google Scholar 

  52. Ustimenko, V.: On the extremal graph theory for directed graphs and its cryptographical applications. In: Shaska, T., Huffman, W.C., Joener, D., Ustimenko, V. (eds.) Advances in Coding Theory and Cryptography. Series on Coding and Cryptology, vol. 3, pp. 181–200 (2007)

    Google Scholar 

  53. Ustimenko, V.: On the extremal regular directed graphs without commutative diagrams and their applications in coding theory and cryptography. Albanian J. Math. 1(4) (2007); Special issue on algebra and computational algebraic geometry

    Google Scholar 

  54. Ustimenko, V.: On the graph based cryptography and symbolic computations. Serdica Journal of Computing (2007); Proceedings of International Conference on Application of Computer Algebra, ACA 2006, Varna, vol. (1) (2006)

    Google Scholar 

  55. Ustimenko, V.: Algebraic groups and small world graphs of high girth. Albanian J. Math. 3(1), 25–33 (2009)

    MathSciNet  MATH  Google Scholar 

  56. Ustimenko, V.: On the cryptographical properties of extremal algebraic graphs, Algebraic Aspects of Digital Communications. In: Shaska, T., Hasimaj, E. (eds.) NATO Science for Peace and Security Series - D: Information and Communication Security, vol. 24, pp. 256–281. IOS Press (July 2009)

    Google Scholar 

  57. Ustimenko, V.: On the K-theory of graph based dynamical systems and its applications. Dopovidi of the National Ukrainian Academy of Sci. (to appear)

    Google Scholar 

  58. Ustimenko, V.: On Extremal Graph Theory and Symbolic Computations. Dopovidi of the National Ukrainian Acad. Sci. (to appear)

    Google Scholar 

  59. Ustimenko, V.: On optimization problems for graphs and security of digital communications. In: International Conference on Discrete Mathematics, Algebra and their Applications, October 19-22 (2009); Proceedings of the Institute of Mathematics, Belarussian Acad. Sci. (3), 12 (2010)

    Google Scholar 

  60. Ustimenko, V.: Algebraic graphs and security of digital communications, 151 p. Institute of Computer Science, University of Maria Curie Sklodowska, Lublin (2011); Supported by European Social Foundation, available at the UMCS web

    Google Scholar 

  61. Ustimenko, V., Wróblewska, A.: On the key exchange with nonlinear polynomial maps of degree 4. Albanian Journal of Mathematics, Special Issue, Applications of Computer Algebra 4(4) (December 2010)

    Google Scholar 

  62. Ustimenko, V., Wróblewska, A.: On the key expansion of D(n;K)-based cryptographical algorithm. Annales UMCS Informatica AI XI 2, 95–111 (2011)

    Article  Google Scholar 

  63. Ustimenko V., Wróblewska A.: On the key exchange with nonlinear polynomial maps of stable degree (to appear)

    Google Scholar 

  64. Wróblewska, A.: On some applications of graph based public key. Albanian J. Math. 2(3), 229–234 (2008); Proceedings of the NATO Advanced Studies Institute: ”New challenges in digital communications”

    Google Scholar 

  65. Futorny, V., Ustimenko, V.: On Small World Semiplanes with Generalised Schubert Cells. Acta Applicandae Mathematicae (4) (2007)

    Google Scholar 

  66. Ustimenko, V., Kotorowicz, J.: On the properties of Stream Ciphers Based on Extremal Directed graphs. In: Chen, R.E. (ed.) Cryptography Research Perspectives. Nova Publishers (2008)

    Google Scholar 

  67. Ustimenko, V.: Small Schubert cells as subsets in Lie algebras. Functional Analysis and Applications 25(4), 81–83 (1991)

    MathSciNet  Google Scholar 

  68. Ustimenko, V.: On the Varieties of Parabolic Subgroups, their Generalizations and Combinatorial Applications. Acta Applicandae Mathematicae 52, 223–238 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  69. Ustimenko, V.: Linear interpretations for flag geometries of Chevalley groups. Ukr. Math. J. 42(3), 383–387 (1990)

    Article  MathSciNet  Google Scholar 

  70. Ustimenko, V., Romańczuk, U.: On dynamical systems of large girth or cycle indicator and their applications to multivariate cryptography

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Ustimenko, V., Romańczuk, U. (2013). On Extremal Graph Theory, Explicit Algebraic Constructions of Extremal Graphs and Corresponding Turing Encryption Machines. In: Yang, XS. (eds) Artificial Intelligence, Evolutionary Computing and Metaheuristics. Studies in Computational Intelligence, vol 427. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29694-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29694-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29693-2

  • Online ISBN: 978-3-642-29694-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics