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Abstract

The bin packing problem is to find the minimum number of bins of size one to pack a list of
items with sizes a1, . . . , an in (0, 1]. Using uniform sampling, which selects a random element

from the input list each time, we develop a randomized O(n(log n)(log log n)
∑

n

i=1
ai

+( 1
ǫ
)O( 1

ǫ
)) time (1+ǫ)-

approximation scheme for the bin packing problem. We show that every randomized algorithm
with uniform random sampling needs Ω( n

∑

n

i=1
ai

) time to give an (1 + ǫ)-approximation. For

each function s(n) : N → N , define
∑

(s(n)) to be the set of all bin packing problems with
the sum of item sizes equal to s(n). For a constant b ∈ (0, 1), every problem in

∑

(nb) has

an O(n1−b(log n)(log log n) + ( 1
ǫ
)O( 1

ǫ
)) time (1 + ǫ)-approximation for an arbitrary constant ǫ.

On the other hand, there is no o(n1−b) time (1 + ǫ)-approximation scheme for the bin packing
problems in

∑

(nb) for some constant ǫ > 0. We show that
∑

(nb) is NP-hard for every
b ∈ (0, 1]. This implies a dense sublinear time hierarchy of approximation schemes for a class of
NP-hard problems, which are derived from the bin packing problem. We also show a randomized
streaming approximation scheme for the bin packing problem such that it needs only constant

updating time and constant space, and outputs an (1 + ǫ)-approximation in ( 1
ǫ
)O(1

ǫ
) time. Let

S(δ)-bin packing be the class of bin packing problems with each input item of size at least δ.
This research also gives a natural example of NP-hard problem (S(δ)-bin packing) that has a
constant time approximation scheme, and a constant time and space sliding window streaming
approximation scheme, where δ is a positive constant.
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1. Introduction

The bin packing problem is to find the minimum number of bins of size one to pack a list of items
with sizes a1, . . . , an in (0, 1]. It is a classical NP-hard problem and has been widely studied. The
bin packing problem has many applications in the engineering and information sciences. Some
approximation algorithm has been developed for bin packing problem: for examples, the first fit,
best fit, sum-of-squares, or Gilmore-Gomory cuts [2, 8, 7, 16, 15]. The first linear time approximation
scheme is shown in [11]. Recently, a sublinear time O(

√
n) with weighted sampling and a sublinear

time O(n1/3) with a combination of weighted and uniform samplings were shown for bin packing
problem [3].

We study the bin packing problem in randomized offline sublinear time model, randomized
streaming model, and randomized sliding window streaming model. We also study the bin packing
problem that has input item sizes to be random numbers in [0, 1]. Sublinear time algorithms have
been found for many computational problems, such as checking polygon intersections [5], estimating
the cost of a minimum spanning tree [6, 9, 10], finding geometric separators [13], and property
testing [22, 17], etc. Early research on streaming algorithms dealt with simple statistics of the
input data streams, such as the median [21], the number of distinct elements [12], or frequency
moments [1]. Streaming algorithm is becoming more and more important due to the development
of internet, which brings a lot of applications. There are many streaming algorithms that have been
proposed from the areas of computational theory, database, and networking, etc.

Due to the important role of bin packing problem in the development of algorithm design and
its application in many other fields, it is essential to study the bin packing problem in these natural
models. Our offline approximation scheme is based on the uniform sampling, which selects a ran-
dom element from the input list each time. Our first approach is to approximate the bin packing
problem with a small number of samples under uniform sampling. We identify that the complexity
of approximation for the bin packing problem inversely depends on the sum of the sizes of input
items.

Using uniform sampling, we develop a randomized O(n(log n)(log logn)
∑

n

i=1
ai

+ (1ǫ )
O( 1

ǫ
)) time (1 + ǫ)-

approximation scheme for the bin packing problem. We show that every randomized algorithm with
uniform random sampling needs Ω( n

∑

n

i=1
ai
) time to give an (1 + ǫ)-approximation. Based on an

adaptive random sampling method developed in this paper, our algorithm automatically detects an

approximation to the weights of summation of the input items in time O(n(log n)(log log n)
∑

n

i=1
ai

) time, and

then yields an (1 + ǫ)-approximation.
For each function s(n) : N → N , define

∑

(s(n)) to be the set of all bin packing problems with
the sum of item sizes equal to s(n). For a constant b ∈ (0, 1), every problem in

∑

(nb) has an

O(n1−b(logn)(log logn) + (1ǫ )
O( 1

ǫ
)) time (1 + ǫ)-approximation for an arbitrary constant ǫ. On the

other hand, there is no o(n1−b) time (1 + ǫ)-approximation scheme for the bin packing problems in
∑

(nb) for some constant ǫ > 0. We show that
∑

(nb) is NP-hard for every b ∈ (0, 1]. This implies a
dense sublinear time hierarchy of approximation schemes for a class of NP-hard problems that are
derived from bin packing problem. We also show a randomized single pass streaming approximation
scheme for the bin packing problem such that it needs only constant updating time and constant
space, and outputs an (1 + ǫ)-approximation in (1ǫ )

O( 1
ǫ
) time. This research also gives an natural

example of NP-hard problem that has a constant time approximation scheme, and a constant time
and space sliding window single pass streaming approximation scheme.

The streaming algorithms in this paper for bin packing problem only approximate the minimum
number of bins to pack those input items. It also gives a packing plan that allows an item position to
be changed at different moment. This has no contradiction with the existing lower bound [4, 19] that
no approximation scheme exists for online algorithm that does not change bins of already packed
items.

A more general model of bin packing is studied in this paper. Given a list of items in (0, 1],
allocate them to several kinds of bins with variant sizes and weights. We want to minimize the total
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costs
∑k

i=1 uiwi, where ui is the number of bins of size si and cost wi.
In section 2, we give a description of computational models used in this paper. A brief description

of our methods are also presented. In section 3, we show an adaptive random sampling method for
the bin packing problem. In section 6, we present randomized algorithms and their lower bound
for offline bin packing problem. In section 8, we show a streaming approximation scheme for bin
packing problem. In section 9, we show a sliding window streaming approximation scheme for bin
packing problem with each input item of size at least a positive constant δ. The main result of this
paper is stated in Theorem 10.

2. Models of Computation and Overview of Methods

Algorithms for bin packing problem in this paper are under four models, which are deterministic,
randomized, streaming, and sliding windows streaming models.

Definition 1.

• A bin packing is an allocation of the input items of sizes a1, . . . , an in (0, 1] to bins of size
1. We want to minimize the total number of bins. We often use Opt(L) to denote the least
number bins for packing items in L.

• Assume that c and η are constants in (0, 1), and k is a constant integer. There are k kinds of
bins of different sizes. If c ≤ si ≤ 1, and η ≤ wi ≤ 1 for all i = 1, 2, . . . , k, then we call the k
kinds of bins to be (c, η, k)-related, where wi and si are the cost and size of the i-th kind of
bin, respectively.

• A bin packing with (c, η, k)-related bins is to allocate the input items a1, . . . , an in (0, 1] to

(c, η, k)-related bins. We want to minimize the total costs
∑k

i=1 uiwi, where ui is the number
of bins of cost wi. We often use Optc,η,k(L) to denote the least cost for packing items in L
with (c, η, k)-related bins. It is easy to see Opt(L) = Opt1,1,1(L).

• For a positive constant δ, a S(δ)-bin packing problem is the bin packing problem with all input
items at least δ.

• For a nondecreasing function f(n) : N → N , a
∑

(f(n))-bin packing problem is the bin packing
problem with all input items a1, . . . , an satisfying

∑n
i=1 ai = f(n).

Deterministic Model: The bin packing problem under the deterministic model has been well
studied. We give a generalized version of bin packing problem that allows multiple sizes of bins to
pack them. It is called as bin packing with (c, η, k) related bins in Definition 1. It is presented in
Section 5.

Randomized Models: Our main model of computation is based on the uniform random sam-
pling. We give the definitions for both uniform and weighted random samplings below.

Definition 2. Assume that a1, . . . , an is an input list of items in (0, 1] for a bin packing problem.

• A uniform sampling selects an element a from the input list with Pr[a = ai] =
1
n for i = 1, . . . , n.

• A weighted sampling selects an element a from the input list with Pr[a = ai] =
ai

∑

n

i=1
ai

for

i = 1, . . . , n.

We feel that the uniform sampling is more practical to implement than weighted sampling. In
this paper, our offline randomized algorithms are based on uniform sampling. The weighted sampling
was used in [3]. The description of our offline algorithm with uniform random sampling is given in
Section 6.

Streaming Computation: A data stream is an ordered sequence of data items p1, p2, . . . , pn.
Here, n denotes the number of data points in the stream. A streaming algorithm is an algorithm
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that computes some function over a data stream and has the following properties: 1. The input
data are accessed in the sequential order of the data stream. 2. The order of the data items in the
stream is not controlled by the algorithm. Our algorithm for this model is presented in Section 8.

Sliding Window Model: In the sliding window streaming model, there is a window size n for
the most recent n items. The bin packing problem for the sliding window streaming algorithm is to
pack the most recent n items. Our algorithm for this model is presented in Section 9.

Bin Packing with Random Inputs: We study the bin packing problem such that the input
is a series of sizes that are random numbers in [0, 1]. It has a constant time approximation scheme
and will be presented in Section 9.1.

2.1. Overview of Our Method

We develop algorithms for the bin packing problem under offline uniform random sampling model,
the streaming computation model, and sliding window streaming model (only for S(δ)-bin packing
with a positive constant δ). The brief ideas are given below.

2.1.1. Sublinear Time Algorithm for Offline Bin Packing

Since the sum of input item sizes is not a part of input, it needs O(n) time to compute its exact
value, and it’s unlikely to be approximated via one round random sampling in a sublinear time.
We first approximate the sum of sizes of items through a multi-phase adaptive random sampling.
Select a constant ϕ to be the threshold for large items. Select a small constant γ = O(ǫ). All
the items from the input are partitioned into intervals [π1, π0], (π2, π1] . . . , (πi+1, πi], . . . such that
π0 = 1, π1 = ϕ, and πi+1 = πi/(1 + γ) for i = 2, . . .. We approximate the number of items in each
interval (πi+1, πi] via uniform random sampling. Those intervals with very a small number of items
will be dropped. This does not affect much of the ratio of approximation. One of worst cases is
that all small items are of size 1

n2 and all large size items are of size 1. In this case, we need to
sample Ω( n

∑

ai=1
1
) number of items to approximate the number of 1s. This makes the total time

to be Ω( n
∑

n

i=1
ai
). Packing the items of large size is adapted the method in [11], which uses a linear

programming method to pack the set of all large items, and fills small items into those bins with
large items to waste only a small piece of space for each bin. Then the small items are put into bins
that still have space left after packing large items. When the sum of all item sizes is O(1), we need
O(n) time. Thus, the O(n) time algorithm is a part of our algorithm for the case

∑n
i=1 ai = O(1).

2.1.2. Streaming Algorithm for Bin Packing

We apply the above approximation scheme to construct a single pass streaming algorithm for bin
packing problem. A crucial step is to sample some random elements among those input items of size
at least δ, which is set according to ǫ. The weights of small items are added to a variable s1. After
packing large items of size at least δ, we pack small items into those bins so that each bin does not
waste more than δ space while there is small items unpacked.

2.1.3. Sliding Window Streaming Algorithm for S(δ)-Bin Packing

Our sliding window single pass streaming algorithm deals with the bin packing problem that all
input items are of size at least a constant δ. Let n be the size of sliding window instead of the total
number of input items. Select a sufficiently large constant k. There are k sessions to approximate
the bin packing. After receiving every n

k items, a new session is started to approximate the bin
packing. The approximation ratio is guaranteed via ignoring at most n

k items. As each item is of
large size at least δ, ignoring n

k items only affect a small ratio of approximation.
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2.1.4. Chernoff Bounds

The analysis of our randomized algorithm often use the well known Chernoff bounds, which are
described below. All proofs of this paper are self-contained except the following famous theorems in
probability theory and the existence of a polynomial time algorithm for linear programming.

Theorem 3 ([20]). Let X1, . . . , Xn be n independent random 0-1 variables, where Xi takes 1 with
probability pi. Let X =

∑n
i=1 Xi, and µ = E[X ]. Then for any δ > 0,

i. Pr(X < (1− δ)µ) < e−
1
2µδ

2

, and

ii. Pr(X > (1 + δ)µ) <
[

eδ

(1+δ)(1+δ)

]µ

.

We follow the proof of Theorem 3 to make the following versions (Theorem 5, Theorem 4, and
Corollary 6) of Chernoff bound for our algorithm analysis.

Theorem 4. Let X1, . . . , Xn be n independent random 0-1 variables, where Xi takes 1 with prob-
ability at least p for i = 1, . . . , n. Let X =

∑n
i=1 Xi, and µ = E[X ]. Then for any δ > 0,

Pr(X < (1 − δ)pn) < e−
1
2 δ

2pn.

Theorem 5. Let X1, . . . , Xn be n independent random 0-1 variables, where Xi takes 1 with prob-
ability at most p for i = 1, . . . , n. Let X =

∑n
i=1 Xi. Then for any δ > 0, Pr(X > (1 + δ)pn) <

[

eδ

(1+δ)(1+δ)

]pn

.

Define g1(δ) = e−
1
2 δ

2

and g2(δ) = eδ

(1+δ)(1+δ) . Define g(δ) = max(g1(δ), g2(δ)). We note that

g1(δ) and g2(δ) are always strictly less than 1 for all δ > 0. It is trivial for g1(δ). For g2(δ), this can
be verified by checking that the function f(x) = (1 + x) ln(1 + x) − x is increasing and f(0) = 0.
This is because f ′(x) = ln(1 + x) which is strictly greater than 0 for all x > 0.

Corollary 6 ([18]). Let X1, . . . , Xn be n independent random 0-1 variables and X =
∑n

i=1 Xi.
i. If Xi takes 1 with probability at most p for i = 1, . . . , n, then for any 1

3 > ǫ > 0, Pr(X >

pn+ ǫn) < e−
1
3nǫ

2

.
ii. If Xi takes 1 with probability at least p for i = 1, . . . , n, then for any ǫ > 0, Pr(X < pn−ǫn) <

e−
1
2nǫ

2

.

A well known fact in probability theory is the inequality

Pr(E1 ∪E2 . . . ∪ Em) ≤ Pr(E1) + Pr(E2) + . . .+ Pr(Em),

where E1, E2, . . . , Em are m events that may not be independent. In the analysis of our randomized
algorithm, there are multiple events such that the failure from any of them may fail the entire
algorithm. We often characterize the failure probability of each of those events, and use the above
inequality to show that the whole algorithm has a small chance to fail after showing that each of
them has a small chance to fail.

3. Adaptive Random Sampling for Bin Packing

In this section, we develop an adaptive random sampling method to get the rough information for
a list of items for the bin packing problem. We show a randomized algorithm to approximate the
sum of the sizes of input items in O(( n

∑

n

i=1
ai

)(log n) log logn)) time. This is the core step of our

randomized algorithm, and is also or main technical contribution.

Definition 7.
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• For each interval I and a list of items S, define C(I, S) to be the number of items of S in I.

• For ϕ, δ, and γ in (0, 1), a (ϕ, δ, γ)-partition for (0, 1] divides the interval (0, 1] into intervals
I1 = [π1, π0], I2 = (π2, π1], I3 = (π3, π2], . . . , Ik = (0, πk−1] such that π0 = 1, π1 = ϕ, πi =
πi−1(1− δ) for i = 2, . . . , k − 1, and πk−1 is the first element πk−1 ≤ γ

n2 .

• For a set A, |A| is the number of elements in A. For a list S of items, |S| is the number of
items in S.

Lemma 8. For parameters ϕ, δ, and γ in (0, 1), a (ϕ, δ, γ)-partition for (0, 1] has the number of
intervals k ≤ 2 log n

γθ .

Proof: The number of intervals k is the least integer with δ(1 − δ)k ≤ (1 − δ)k ≤ γ
n2 . We have

k ≤ log n2

γ

log(1−δ) ≤ 2 logn
γδ .

We need to approximate the number of large items, the total sum of the sizes of items, and the
total sum of the sizes of small items. For a (ϕ, δ, γ)-partition I1 ∪ I2 . . . ∪ Ik for (0, 1], Algorithm
Approximate-Intervals(.) below gives the estimation for the number of items in each Ij if interval
Ij has a number items to be large enough. Otherwise, those items in Ij can be ignored without
affecting much of the approximation ratio. We have an adaptive way to do random samplings in a
series of phases. Phase t+ 1 doubles the number of random samples of phase t (mt+1 = 2mt). For
each phase, if an interval Ij shows sufficient number of items from the random samples, the number

of items C(Ij , S) in Ij can be sufficiently approximated by Ĉ(Ij , S). Thus, Ĉ(Ij , S)πj also gives an

approximation for the sum of the sizes of items in Ij . The sum appw =
∑

Ij
Ĉ(Ij , S)πj for those

intervals Ij with large number of samples gives an approximation for the total sum
∑n

i=1 ai of items
in the input list. Let mt denote the number of random samples in phase t. In the early stages,
appw is much smaller than n

mt
. Eventually, appw will surpass n

mt
. This happens when mt is more

than n
∑

n

i=1
ai

and appw is close to the sum
∑n

i=1 ai of all items from the input list. This indicates

that the number of random samples is sufficient for approximation algorithm. For those intervals
with small number of samples, their items only need small fraction of bins to be packed. This
process is terminated when ignoring all those intervals with none or small number of samples does
not affect much of the accuracy of approximation. The algorithm gives up the process of random
sampling when mt surpasses n, and switches to use a deterministic way to access the input list,
which happens when the total sum of the sizes of input items is O(1). The lengthy analysis is caused
by the multi-phases adaptive random samplings. We show two examples below.

Example 1: The input is a list of items such that there are three items of size 1, and the rest
n− 3 items are of size 0.1 for a large integer n. Assume that ǫ is a positive constant to control the
accuracy of approximation. After sampling a constant 100

ǫ number of items, we observe all samples
equal to 0.1 (with high probability). Thus, there are less than ǫn

20 items of size other than 0.1 with
high probability by Chernoff bounds. We derive the approximate sum of total item sizes is 0.1n,

and output 0.1(1+ǫ)n
0.9 for the number bins for packing the input items, where the denominator 0.9 is

based on the consideration that some bins for packing items of size 0.1 may waste up to 0.1 space.
Although, there are small number of items of size 1, just ignoring those items of size 1 loses only a
small accuracy of approximation. Therefore, the random sampling stops after sampling only O(1ǫ )
items. We output an (1 + ǫ)-approximation for the bin packing problem.

Example 2: The input is a list of items such that there are three items are of size 1, and the
rest n− 3 items are of size 1

n2 for a large integer n. The number of random samples is doubled from
one phase to next phase. After sampling n0.9 items, in which there is no large items of size 1 with
high probability, we still feel that those items of large size will greatly affect the total number bins.
We have to continue use more random samples. Eventually, the number of random samples mt is
more than n. Thus, we switch to use a deterministic O(n) time algorithm to compute the number
of large items, the total sum of the sizes of items, and the total sum of the sizes of small items.
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Algorithm Approximate-Intervals(ϕ, δ, γ, θ, α, P, n, S)
Input: a parameter ϕ ∈ (0, 1), a small parameter θ ∈ (0, 1), a failure probability upper bound

α, a (ϕ, δ, γ) partition P = I1 ∪ . . . ∪ Ik for (0, 1] with δ, γ ∈ (0, 1), an integer n, a list S of n items
a1, . . . , an in (0, 1]. Parameters ϕ, δ, γ, θ, and α do not depend on the number of items n.

Steps:

1. Phase 0:

2. Let z := ξ0 log logn, where ξ0 is a parameter such that 8(k + 1)(logn)g(θ)z/2 < α for all
large n.

3. Let parameters c0 := 1
100 , c2 := 1

3(1+δ)c0
, c3 := δ4

2(1+δ) , c4 := 8
(1−θ)(1−δ)ϕc0

, and c5 := 12ξ0
(1−θ)c2c3

.

4. Let m0 := z.

5. End of Phase 0.

6. Phase t:

7. Let mt := 2mt−1.

8. Sample mt random items ai1 , . . . , aimt
from the input list S.

9. Let dj := |{j : aij ∈ Ij and 1 ≤ j ≤ mt}| for j = 1, 2, . . . , k.

10. For each Ij ,

11. if dj ≥ z,

12. then let Ĉ(Ij , S) :=
n
mt

dj to approximate C(Ij , S).

13. else let Ĉ(Ij , S) := 0.

14. Let appw :=
∑

dj≥z Ĉ(Ij , S)πj to approximate
∑n

i=1 an.

15. If appw ≤ c5n log logn
c0mt

and mt < n then enter Phase t+ 1.

16. else

17. If mt < n

18. then let app′w :=
∑

dj≥z and j>1 Ĉ(Ij , S)πj to approximate
∑

ai<δ,1≤i≤n ai.

19. else let appw :=
∑n

i=1 ai and app′w :=
∑

ai<ϕ ai.

20. Output appw, app
′
w and Ĉ(I1, S) (the approximate number of items of size at least ϕ).

21. End of Phase t.

End of Algorithm

Lemma 9 uses several parameters ϕ, δ, γ, α and θ that will be determined by the approximation
ratio for the the bin packing problem. If the approximation ratio is fixed, they all become constants.

Lemma 9. Assume that ϕ, δ, γ, α and θ are parameters in (0, 1), and those parameters do not depend
on the number of items n.. Then there exists a randomized algorithm described in Approximate-
Intervals(.) such that given a list S of items of size a1, . . . , an in the range (0, 1] and a (ϕ, δ, γ)-
partition for (0, 1], with probability at most α, at least one of the following statements is false after
executing the algorithm:
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1. For each Ij with Ĉ(Ij , S) > 0, C(Ij , S)(1− θ) ≤ Ĉ(Ij , S) ≤ C(Ij , S)(1 + θ);

2.
∑

ai∈Ij and Ĉ(Ij ,S)=0 ai ≤ δ3

2 (
∑n

i=1 ai) +
γ
n ;

3. (1 − θ)(1− δ)ϕ(

∑

n

i=1
ai

2 − 2γ
n ) ≤ appw ≤ (1 + θ)(

∑n
i=1 ai);

4. If
∑n

i=1 ai ≥ 4, then 1
4 (1− θ)(1− δ)ϕ(

∑n
i=1 ai) ≤ appw ≤ (1 + θ)(

∑n
i=1 ai); and

5. It runs in O( 1
(1−θ)δ4 log g(θ) min( n

∑

n

i=1
ai
, n)(logn) log log n) time. In particular, the complexity of

the algorithm is O(min( n
∑

n

i=1
ai
, n)(logn) log logn) if ϕ, δ, γ, α and θ are constants in (0, 1).

Lemma 9 implies that with probability at least 1− α, all statements 1 to 5 are true. Due to the
technical reason described at the end of section 2.1.2, we estimate the failure probability instead of
the success probability.
Proof: Let ξ0, c0, c2, c3, c4, and c5 be parameters defined as those in the algorithm Approximate-
Intervals(.). We use the uniform random sampling to approximate the number of items in each
interval Ij in the (ϕ, δ, γ)-partition.

Claim 9.1. Let Q1 be the probability that the following statement is false:
(i) For each interval Ij with dj ≥ z, (1− θ)C(Ij , S) ≤ Ĉ(Ij , S) ≤ (1 + θ)C(Ij , S).
Then for each phase in the algorithm, Q1 ≤ (k + 1) · g(θ) z

2 .

Proof: Let pj =
C(Ij ,S)

n . An element of S in Ij is sampled (by an uniform sampling) with
probability pj. Let p

′ = z
2mt

. For each interval Ij with dj ≥ z, we discuss two cases.

• Case 1. p′ ≥ pj.

In this case, dj ≥ z ≥ 2p′mt ≥ 2pjmt. Note that dj is the number of elements in interval Ij
among mt random samples ai1 , . . . , aimt

from S. By Theorem 5 (with θ = 1), with probability

at most P1 = g2(1)
p′mt ≤ g2(1)

z/2 ≤ g(1)z/2, there are at least 2pjmt samples are in from
interval Ij .

• Case 2. p′ < pj.

By Theorem 5, we have Pr[dj > (1 + θ)pjmt] ≤ g2(θ)
pjmt ≤ g2(θ)

p′mt ≤ g2(θ)
z
2 ≤ g(θ)

z
2 .

By Theorem 4, we have Pr[dj ≤ (1 − θ)pjmt] ≤ g1(θ)
pjmt ≤ g1(θ)

p′mt = g1(θ)
z
2 ≤ g(θ)

z
2 .

For each interval Ij with dj ≥ z and (1−θ)pjmt ≤ dj ≤ (1+θ)pjmt, we have (1−θ)C(Ij , S) ≤
Ĉ(Ij , S) ≤ (1 + θ)C(Ij , S) by line 12 in Approximate-Intervals(.).

There are k = (log n) intervals I1, . . . , Ik. Therefore, with probability at most P2 = k·g(θ) z
2 , the

following is false: For each interval Ij with dj ≥ z, (1−θ)C(Ij , S) ≤ Ĉ(Ij , S) ≤ (1+θ)C(Ij , S).

By the analysis of Case 1 and Case 2, we have Q1 ≤ P1 + P2 ≤ (k + 1) · g(θ) z
2 . Thus, the claim

has been proven.

Claim 9.2. Assume that mt ≥ c2c5n log logn
∑

n

i=1
ai

. Then right after executing Phase t in Approximate-

Intervals(.), with probability at most Q2 = 2kg(θ)ξ0 log log n, the following statement is false:
(ii) For each interval Ij with C(Ij , S) ≥ c3

∑n
i=1 ai, A). (1 − θ)C(Ij , S) ≤ Ĉ(Ij , S) ≤ (1 +

θ)C(Ij , S); and B). dj ≥ z.

Proof: Assume that mt ≥ c2c5n log logn
∑

n

i=1
ai

. Consider each interval Ij with C(Ij , S) ≥ c3
∑n

i=1 ai.

We have that pj =
C(Ij ,S)

n ≥ c3
∑

n

i=1
ai

n . An element of S in Ij is sampled with probability pj. By
Theorem 5 and Theorem 4, we have

Pr[dj < (1 − θ)pjmt] ≤ g1(θ)
pjmt ≤ g1(θ)

c2c3c5 log log n ≤ g(θ)ξ0 log logn. (1)

Pr[dj > (1 + θ)pjmt] ≤ g2(θ)
pjmt ≤ g2(θ)

c2c3c5 log log n ≤ g(θ)ξ0 log logn. (2)
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Therefore, with probability at most 2kg(θ)ξ0 log log n, the following statement is false:
For each interval Ij with C(Ij , S) ≥ c3

∑n
i=1 ai, (1− θ)C(Ij , S) ≤ Ĉ(Ij , S) ≤ (1 + θ)C(Ij , S).

If dj ≥ (1 − θ)pjmt, then we have

dj ≥ (1− θ)
C(Ij , S)

n
mt

≥ (1− θ)
(c3

∑n
i=1 ai)

n
· c2c5n log logn

∑n
i=1 ai

= (1− θ)c2c3c5 log logn

≥ ξ0 log logn = z.

Claim 9.3. The total sum of the sizes of items in those Ijs with C(Ij , S) < c3
∑n

i=1 ai is at

most δ3

2 (
∑n

i=1 ai) +
γ
n .

Proof: By definition 7, we have aj = ϕ(1− δ)j−1 for j = 1, . . . , k − 1. We have that

• the sum of sizes of items in Ik is at most n γ
n2 = γ

n ,

• for each interval Ij with C(Ij , S) < c3
∑n

i=1 ai, the sum of sizes of items in Ij is at most
(c3

∑n
i=1 ai)aj−1 ≤ (c3

∑n
i=1 ai)ϕ(1 − δ)j−2 for j ∈ (1, k), and

• the sum of sizes in I1 is at most c3
∑n

i=1 ai.

The total sum of the sizes of items in those Ijs with C(Ij , S) < c3
∑n

i=1 ai is at most (c3
∑n

i=1 ai)+
∑k

j=2(c3
∑n

i=1 ai)ϕ(1− δ)j−2) + n · r
n2 ≤ (c3

∑n
i=1 ai) +

c3ϕ
δ (

∑n
i=1 ai) +

γ
n ≤ δ3

2 (
∑n

i=1 ai) +
γ
n .

Claim 9.4. Assume that at the end of phase t, for each Ij with Ĉ(Ij , S) > 0, C(Ij , S)(1− θ) ≤
Ĉ(Ij , S) ≤ C(Ij , S)(1 + θ); and dj ≥ z if C(Ij , S) ≥ c3

∑n
i=1 ai. Then (1−θ)(1−δ)ϕ(

∑

n

i=1
ai

2 − 2γ
n ) ≤

appw ≤ (1 + θ)(
∑n

i=1 ai) at the end of phase t.

Proof: By the assumption of the claim, we have appw =
∑

dj≥z Ĉ(Ij , S)πj ≤ (1 + θ)
∑n

i=1 ai.

For each interval Ij with j 6= k and j > 1, we have C(Ij , S)πj ≥ (1 − δ)
∑

ai∈Ij
ai by the definition

of (ϕ, δ, γ)-partition. It is easy to see that C(I1, S)π1 ≥ ϕ
∑

ai∈I1
ai by the definition of (ϕ, δ, γ)-

partition. Thus,

C(Ij , S)πj ≥ (1− δ)ϕ
∑

ai∈Ij

ai for j 6= k. (3)

We have the following inequalities:

appw =
∑

dj≥z

Ĉ(Ij , S)πj (by line 15 in Approximate-Intervals(.))

≥ (1− θ)
∑

dj≥z

C(Ij , S)πj

≥ (1− θ)
∑

dj≥z,j 6=k

C(Ij , S)πj

≥ (1− θ)(1 − δ)ϕ
∑

dj≥z,j 6=k





∑

ai∈Ij

ai



 (by inequality (3))

≥ (1− θ)(1 − δ)ϕ(
n
∑

i=1

ai −
∑

dj<z

∑

ai∈Ij

ai −
∑

ai∈Ik

ai)
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≥ (1− θ)(1 − δ)ϕ(
n
∑

i=1

ai − (
δ3

2
(

n
∑

i=1

ai) +
γ

n
)− n · γ

n2
) (by Claim 9.3)

≥ (1− θ)(1 − δ)ϕ(

∑n
i=1 ai
2

− 2γ

n
).

Claim 9.5. With probability at most Q5 = (k + 1) · (log n)g(θ) z
2 , the following facts are not all

true:

A. For each phase t with mt < 2c2c5n log logn
∑

n

i=1
ai

, the condition appw ≤ c5n log log n
c0mt

in line 15 of the

algorithm is true.

B. If
∑n

i=1 ai ≥ 4, then the algorithm stops before mt >
2c4c5n log logn

∑

n

i=1
ai

.

C. If
∑n

i=1 ai ≤ 4, then it stops before or at phase t in which the condition mt ≥ n first becomes
true.

Proof: By Claim 9.1, with probability at most (k + 1) · g(θ) z
2 , the statement i of Claim 9.1 is

false for a fixed m. The number of phases is at most logn since mt is double at each phase. With
probability (k+1) · (logn) · g(θ) z

2 , the statement i of Claim 9.1 is false for each phase t with mt ≤ n.
Assume that statement i of Claim 9.1 is true for all phases t with mt ≤ n.

Statement A. Assume that mt < 2c2c5n log log n
∑

n

i=1
ai

. We have n
mt

> n
2c2c5n log log n
∑

n

i=1
ai

=

∑

n

i=1
ai

2c2c5 log logn .

Therefore,
∑n

i=1 ai < ( n
mt

)2c2c5 log logn = 2c2c5n log logn
mt

. By Claim 9.4, appw ≤ (1 + θ)
∑n

i=1 ai.

Since (1 + θ) < 1
2c2c0

(by line 3 in Approximate-Intervals(.)), we have

appw ≤ (1 + θ)

n
∑

i=1

ai ≤
1

2c2c0

n
∑

i=1

ai <
1

2c2c0
· 2c2c5n log log n

mt
=

c5n log logn

c0mt
.

Statement B. The variable mt is doubled in each new phase. Assume that the algorithm enters

phase t with c4c5n log logn
∑

n

i=1
ai

≤ mt ≤ 2c4c5n log logn
∑

n

i=1
ai

. We have n
mt

≤ n
c4c5n log log n
∑

n

i=1
ai

=

∑

n

i=1
ai

c4c5 log logn . Since

∑n
i=1 ai ≥ 4, (

∑

n

i=1
ai

2 − γ
n ) ≥

∑

n

i=1
ai

4 . By Claim 9.4, appw is at least (1−θ)(1−δ)ϕ
4

∑n
i=1 ai. Since

(1−θ)(1−δ)ϕ
4 > 1

c0c4
, we have appw > c5n log logn

c0m
, which makes the condition at line 15 in Approximate-

Intervals(.) be false. Thus, the algorithm stops at some stage t withmt ≤ 2c4c5n log log n
∑

n

i=1
ai

by the setting

at line 15 in Approximate-Intervals(.).
Statement C. It follows from statement A and the setting in line 15 of the algorithm.

Claim 9.6. The complexity of the algorithm is O( 1
(1−θ)δ4 log g(θ) min( n

∑

n

i=1
ai
, n)(log n) log logn).

In particular, the complexity is O(min( n
∑

n

i=1
ai
, n)(logn) log logn) if ϕ, δ, γ, α and θ are constants in

(0, 1).
Proof: By the setting in line 3 in Approximate-Intervals(.), we have

c2c5 =
1

3(1 + δ)c0
· 12ξ0
(1− θ)c2c3

=
4ξ0

(1 + δ) · c0 · (1− θ) · 1
3(1+δ)c0

· δ4

2(1+δ)

=
24ξ0(1 + δ)

(1− θ)δ4
.
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In order to satisfy the condition 8(k+1)(logn)g(θ)z/2 < α for all large n at line 2 in Approximate-
Intervals(.), we can let ξ0 = 8

log g(θ) .

Since mt is doubled every phase, the total number of phases is at most logn. The computational
time complexity in statement 5 of the algorithm follows from Claim 9.5.

As mt is doubled each new phase in Approximate-Intervals(.), the number of phases is at most
logn. With probability at most (logn)(Q1 +Q2) +Q5 ≤ α (by line 2 in Approximate-Intervals(.)),
at least one of the statements (i) in Claim 9.1, (ii) in Claim 9.2, A, B, C in Claim 9.5 is false.

Assume that the statements (i) in Claim 9.1, (ii) in Claim 9.2, A, B, and C in Claim 9.5 are all
true.

For an interval Ij , Ĉ(Ij , S) > 0 if and only if dj ≥ z by lines 10 to 13 in Approximate-Intervals(.).
Therefore, statement 1 of the lemma follows from Claim 9.1.

If Approximate-Intervals(.) stops at mt < n, then mt ≥ 2c2c5n log logn
∑

n

i=1
ai

by statement A in Claim

9.5. For each interval Ij with C(Ij , S) ≥ c3
∑n

i=1 ai, we have dj ≥ z, which implies Ĉ(Ij , S) > 0.
Statement 2 of Lemma 9 follows from Claim 9.3 and statement (ii) of Claim 9.2.

Statement 3 follows from Claim 9.4. The condition of Statement 4 implies n ≥ 4. Statement 4
follows from Statement 3. Statement 5 for the running time follows from Claim 9.6.

Thus, with probability at most α, at least one of the statements 1 to 5 is false.

4. Main Results

We list the main results that we achieve in this paper. The proof of Theorem 10 is shown in
Section 6.3.

Theorem 10 (Main). Approximate-Bin-Packing(.) is a randomized approximation scheme for the
bin packing problem such that given an arbitrary τ ∈ (0, 1) and a list of items S = a1, . . . , an in (0, 1]
for the bin packing problem, it gives an approximation app with Opt(S) ≤ app ≤ (1 + τ)Opt(S) + 1

in O(n(log n)(log logn)
∑

i=1
ai

+ ( 1τ )
O( 1

τ
)) time with probability at least 3

4 .

We show a lower bound for those bin packing problems with bounded sum of sizes
∑n

i=1 ai. The
lower bound always matches the upper bound.

Theorem 11. Assume f(n) is a nondecreasing unbounded function from N to N with f(n) = o(n).
Every randomized (2−ǫ) approximation algorithm for bin packing problems in

∑

(f(n)) needs Ω( n
f(n) )

time, where ǫ is an arbitrary small constant in (0, 1).

Proof: Since f(n) is unbounded, assume n is large enough such that

(f(n) + 2)(2− ǫ) < 2(f(n)− 2). (4)

We design two input list of items.
The first list contains m = 2(f(n) − 2)) elements of size 1

2 + δ, where δ = 1
2(f(n)−2) . The rest

n−m items are of the same size γ = 1
n−m = o(1). We have m(12 + δ) + (n−m)γ = 2(f(n)− 2)(12 +

1
2(f(n)−2) ) + 1 = f(n). Therefore, the first list is a bin packing problem is in

∑

(f(n)).

The second list contains n− f(n) elements of size γ and the rest f(n) items are of size equal to

1 − τ , where τ = (n−f(n))γ
f(n) = o(1). We have f(n)(1 − τ) + (n − f(n))γ = f(n). The second list is

also a bin packing problem is in
∑

(f(n)).
Both γ and τ are small. Packing the first list needs at least 2(f(n)− 2) bins. Packing the second

list only needs at most f(n) + 2 bins since two bins of size one is enough to pack those items of size
τ .

Assume that an algorithm only has computational time o( n
f(n) ) for computing (2 − ǫ)-

approximation for bin packing problems in
∑

(f(n)). The algorithm has an o(1) probability to
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access at least one item of size at least 1
2 in both lists. Therefore, the two lists have the same output

for approximation by the same randomized algorithm. For the second list, the output for the number
of bins should be at most (f(n) + 2)(2 − ǫ). By inequality (4), it is impossible to pack the first list
items. This brings a contradiction.

Corollary 12. There is no o( n
∑

n

i=1
ai
) time randomized approximation scheme algorithm for the

bin packing problem.

Proof: It follows from Theorem 11.

5. Generalization of the Deterministic Algorithm

In this section, we generalize the existing deterministic algorithm [11] to handle the bin packing
problem with multiple sizes of bins. The bin packing problem is under a more general version that
allows different size of bins with different weights (costs). The results of this section are used as
submodules in both sublinear time algorithms and streaming algorithms.

Definition 13.

• For an item y and an integer h, define yh to be h copies of item y.

• A type Ti of a bin of size s is represented by (a
b1,i
1 , . . . , a

bt,i
t ), which satisfies

∑t
j=1 bj,iai ≤ s.

A bin of type Ti can pack b1,i items of size a1, . . . ,, and bt,i items of size at. We use wTi
to

represent the weight of a bin of type Ti.

It is easy to see that an optimal bin packing with (c, η, k)-related bins only uses bins with
si1 < si2 < . . . < sik with wi1 < wi2 < . . . < wik . The classical bin packing problem only has one
kind of bins of size 1. It is the bin packing problem with the (1, 1, 1)-related bins. In the rest of
this paper, a bin packing problem without indicating (c, η, k)-related bins means the classical bin
packing problem.

Lemma 14. Assume that c, η, and k are constants. Assume that δ is a constant. Given a bin
packing problem with (c, η, k)-related bins for B = {an1

1 , . . . , anm
m } with each ai ≥ δ, there is a mO( 1

δ
)

time algorithm to give a solution (x1, . . . , xq) with at most Optc,η,k(B) +
∑q

i=1 wTi
, where xi is the

number of bins of type Ti, and q is the number of types to pack items of sizes in {a1, . . . , am} with

q ≤ km
1
δ .

Proof: Since ai is at least δ, the number of items in each bin is at most 1
δ . Therefore, the number

of types of bins is at most km
1
δ . Let T1, . . . , Tq be the all of the possible types of bins to pack the

items of size a1, . . . , am.
Let xi be the number of bins with type Ti. We define the linear programming conditions:

min

q
∑

i=1

wTi
xi subject to (5)

q
∑

i=1

bj,ixi ≥ nj for j = 1, 2, . . . ,m (6)

xi ≥ 0. (7)

After obtaining the optimal solution (x∗
1, . . . , x

∗
q) of the linear programming, the algorithm out-

puts (x1, . . . , xq) = (⌈x∗
1⌉ , . . . ,

⌈

x∗
q

⌉

). Since ⌈x∗
i ⌉ ≤ x∗

i + 1, the cost for (x1, . . . , xq) is at most
Optc,η,k(B) +

∑q
i=1 wTi

.
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Algorithm Pack-Large-Items(c, η, k, B)
Input: parameters c, η, k and a list B = {an1

1 . . . , anm
m } to be packed in (c, η, k) related bins.

Output: an approximation for Optc,η,k(B).
Steps:

Solve the linear programming (5)-(7) for x∗
1, . . . , x

∗
q .

Let xi = ⌈x∗
i ⌉ for i = 1, . . . , q.

Output (x1, . . . , xq).
End of Algorithm

With a constant ǫ to control the approximation ratio, we define the following constants for
Lemma 20. We will also define a threshold δ to control the size of large items. Let

µ :=
ǫδη

15
, (8)

ǫ1 :=
ǫ

ǫ+ 2
, and (9)

m :=
18

δη

⌈

ǫ−2
1

⌉

. (10)

Lemma 15. Assume that c, η, and k are positive constants, and ǫ and δ are constants in (0, 1).
Assume that the input list is S for bin packing problem with (c, η, k)-related bins and the size of
each item in S is at least δ. Let ǫ be a constant in (0, 1). The constants δ, µ, ǫ1, and m are given
according to equations (8) to (10). Let h =

⌊

n
m

⌋

. Then there exists an O(n) time algorithm that gives
an approximation app with Optc,η,k(S) ≤ app ≤ (1 + ǫ)Optc,η,k(S) for all large n, where n = |S|.

Proof: Assume that a1 ≤ a2 ≤ . . . ≤ an is the increasing order of all input elements at least
δ with n′ = |S≥δ|. Let L0 = a1 ≤ a2 ≤ . . . ≤ an. We partition a1 ≤ a2 ≤ . . . ≤ an into
A1y1A2y2 . . . AmymR such that each Ai has exactly h− 1 elements and R has less than h elements.

Using algorithm the classical algorithm, we can find the ih-th element yi each in O(n) time.
Consider the bin packing problems: L1 = yh1 y

h
2 . . . yhm. We show that there is a small difference

between the results of two bin packing problems for L0 and L1.
1) Assume that L0 has a bin packing solution. It can be converted into a solution for L1 via an

adaption to that of L0 (see Definition 13) with a small number of additional bins.
Use the lots for the elements between yi and yi+1 in L0 to store the elements of yis, there are at

most 2h yis left. Therefore, we only have at most 2h elements left. The number of bins for packing
those left items is at most 2h, which cost at most 2h since 1 is the maximal cost of one bin.

2) Assume that L1 has a bin packing solution. It can be converted into a solution for L0 with a
small number of additional bins.

We use the lots for yi to store the elements between yi−1 and yi. We have at most 2h elements
left, which cost at most 2h since 1 is the maximal cost of one bin.

The optimal number bins Optc,η,k(L0) for packing L0 is at least mhδ, which have cost at least
mhδη. Therefore, we have

Optc,η,k(L0) ≥ mhδη (11)

Let App(L0) be an approximation for L0 and App(L1) be an approximation for L1. We can obtain
an (1 + ǫ/2)-approximation App(L1) for packing L1 by Lemma 14. We have that

App(L0) = App(L1) + 2h

≤ (1 + ǫ/2)Optc,η,k(L1) + 2h

≤ ((1 + ǫ/2)(Optc,η,k(L0) + 2h) + 2h
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≤ ((1 + ǫ/2)Optc,η,k(L0) + 6h

≤ (1 + ǫ/2)Optc,η,k(L0) +Optc,η,k(L0)(
6h

mhδη
) (by inequality (11))

= (1 + ǫ/2)Optc,η,k(L0) +Optc,η,k(L0)
6

mδη

≤ (1 + ǫ/2)Optc,η,k(L0) +Optc,η,k(L0)(ǫ/2) (by equations (8) to (10).)

≤ (1 + ǫ)Optc,η,k(L0).

By the analysis at case 2), if App(L1) ≥ Optc,η,k(L1), we also have that the cost App(L1) + 2h
is enough to pack all items in L0. Therefore,

App(L0) ≥ Optc,η,k(L0). (12)

For a bin bi, let l(bi) be the sum of sizes of items packed in it.

Algorithm Packing(L0)
Input: a list L0 := {a1 . . . am}
Output: an approximation for Optc,η,k(L0).
Steps:

Find the ih-th element yi in L0 for i = 1, . . . ,m.
Let L1 := yh1 y

h
2 . . . y

h
m.

Let (x1, . . . , xq) :=Pack-Large-Items(1, 1, 1, L1) (see Lemma 14).
Let App(L1) :=

∑q
i=1 wTi

xi.
Convert App(L1) to App(L0) according to equation (12).
Let B = b1, . . . , bu be the list of bins used for packing (each bi has l(bi) available).
Output App(L0), and list B of bins.

End of Algorithm
We note that the list of bins b1, . . . , bu with their used space l(bi) for each bin can be computed

in O(n) time from the conversion based on (x1, . . . , xq) for q types T1, . . . , Tq.

Lemma 16 ([11]). Let β be a constant in (0, 1). Then there exists an O(n) time algorithm that
gives an approximation app for packing S with Opt(S) ≤ app ≤ (1 + β)Opt(S) + 1 for all large n.

Proof: The bin packing problem is the same as the regular bin packing problem that all bins are
of the same size 1. The problem is to minimize the total number bins to pack all items. We consider
the approximation to pack the small items after packing large items.

Assume that the input list is S for bin packing problem. Let S<δ be the items of size less than
δ, and S≥δ be the items of size at least δ. Let δ be a constant with δ ≤ β

4 .

Algorithm Linear-Time-Packing(n, S)
Input: A list of items S = a1 . . . an and its number of items n.
Output: an approximation for Opt(S).
Steps:

1. Let App(S≥δ) and the bin list b1, . . . , bu be the output from calling Packing(S≥δ) (see
Lemma 15).

2. for i = 1 to u

3. If l(bi) ≤ 1− δ

4. Fill items from S<δ into bi until less than δ space left in bi or all items in S<δ are packed.

5. If there are some items of size less than δ left
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6. Then pack them into some bins so that at most one bin having more than δ space used.

7. Output the total number of bins used.

End of Algorithm

Assume that an optimal solution of a bin packing problem has two types of bins. Each of the
first type contains at least one item of size at least δ, and each of the second type only contain
items of size less than δ. Let V1 be the set of first type bins, and V2 be the set of all second type
bins. Let U = App(S≥δ) be an (1 + β)-approximation for packing the first type of items. We have
|U | ≤ (1 + β)|V1|.

Fill all items into those bins in U so that each bin has less than δ left. Put all of the items less
than δ into some extra bins, and at most one of them has more than δ space left.

Case 1. If U can contain all items, we have that |U | ≤ (1 + β)|V1| ≤ (1 + β)|V1 ∪ V2| =
(1 + β)Opt(S).

Case 2. There is a bin beyond those in U is used. Let U ′ be all bins without more than δ space

left. We have that |U ′| ≤ |V1∪V2|
(1−δ) ≤ (1 + β)|V1 ∪ V2| = (1 + β)Opt(S). Therefore, the approximate

solution is at most (1 + β)|V1 ∪ V2|+ 1 = (1 + β)Opt(S) + 1.

6. Randomized Offline Algorithm

In this section, we present sublinear time approximation schemes in the offline model.

6.1. Selecting Items from A List

In this section, we show how a randomized algorithm to select some crucial items from a list. Those
elements are used for converting the packing large items into linear programming as described in
Section 5.

In order to let linear programming have a small number of cases, the ih-th elements are selected
for i = 1, 2, . . . ,m, where the large items are grouped into m groups with h items each. The
approximate ih-th elements (for i = 1, . . . ,m) have similar performance as the exact ih-th elements in
the linear programming method. The approximate ih-th elements (for i = 1, . . . ,m) can be obtained
via sampling small number of items. The ih-th element among the large items is approximated by
the ih-th element among the random samples from large items in the input list. The detail of the
algorithm is given at Select-Crucial-Items(.).

For a finite set A, let |A| be the number of elements in A. For a list L of items a1, . . . , an, let
|L| = n.

Definition 17. Assume that L = a1, . . . , an is the list of real numbers, and x is an integer.

• Define Rank(x, L) in a1, . . . , an to be the interval [a, b] such that |{i : ai < x}| = a − 1 and
|{i : ai ≤ x}| = b. Define minRank(x, L) to be a and maxRank(x, L) to be b.

• Define Rankδ(x, L) in a1, . . . , an to be the interval [a, b] such that |{i : ai < x and ai ≥ δ}| =
a− 1 and |{i : ai ≤ x and ai ≥ δ}| = b. Define minRankδ(x, L) to be a and maxRankδ(x, L)
to be b.

• L[s, t] = as, as+1, . . . , at for 0 < s ≤ t ≤ n.

Definition 18. Assume that S is a list of items for a bin packing problem and δ is a real number.
Define S<δ to be the sublist of the items of size less than δ in S, and S≥δ to be the sublist of the
items of size at least δ in S.
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By the definitions 17 and 18, we have

minRankδ(x, L) = minRank(x, L≥δ), (13)

maxRankδ(x, L) = maxRank(x, L≥δ), and (14)

Rankδ(x, L) = Rank(x, L≥δ). (15)

Let m be a parameter at most n and let

h =
⌊ n

m

⌋

. (16)

Let the sorted input list is partitioned into K1K2 . . .KmR such that |K1| = |K2| = . . . = |Km| =
h, and 0 ≤ |R| < h.

Algorithm Select-Crucial-Items(m,α, µ,X)
Input: two constants α and µ in (0, 1), an integer parameter m at least 2, and a list X =

x1, x2, . . . , is a finite list of random elements in A.
Steps:

1. Select γ = µ
4m .

2. Select constant c0 and u =
⌈

c0 logm
γ2

⌉

such that 2me−
γ2u
3 < α and 3 ≤ γu.

3. If v < u or |X | < u, then output ∅ and stop the algorithm.

4. Let pi :=
i
m for i = 1, . . . ,m.

5. Let yi (i = 1, . . . ,m) be the least element xj such that |{t : xt is in X [1, u] and xt ≤ xj}| ≥
⌈piu⌉.

6. Output (y1, . . . , ym).

End of Algorithm

Lemma 19 shows the performance of the algorithm Algorithm Select-Crucial-Items(.). It is a
step to convert the step for packing large items into a dynamic programming method. When the
input list of items is S, the list A in Lemma 19 is the sublist S≥δ of all items of S with size at least
δ, which will be specified in the full algorithm. The random items X is generated from the subset
of all random items of sizes at least δ in a set of random items in S.

Lemma 19. Let µ and α be positive constants in (0, 1). Assume that A is an input list of n numbers

of size at least δ with n ≥ 3(m+1)2

µ . Then the algorithm Select-Crucial-Items(.) runs in O(m
2(logm)2)

µ2 )

time such that given a list X of at least c1m
2 logm
2 random elements from A, it generates elements

y1 ≤ . . . ≤ ym from the input list such that Pr[Rank(yi, A) ∩ [ih− µh, ih+ µh]] = ∅ for at least one
i ∈ {1, . . . ,m}] ≤ α, where c1 = 16c0, and c0 is the constant defined in Select-Crucial-Items(.), and
m is an integer at most n.

Proof: The algorithm probabilistic performance is analyzed with Chernoff bounds. Note that the
number of items n in A is not an input of this algorithm. We only use it in the analysis, but not in
the algorithm. Without loss of generality, we assume |X | = u, where u is defined in statement 2 in
the Algorithm Select-Crucial-Items(.).

According to the algorithm u =
⌈

c0
γ2 logm

⌉

=
⌈

16c0m
2 logm

µ2

⌉

=
⌈

c1m
2 logm
µ2

⌉

. We assume the

number of random items in X is at least u. By the equation (16) and the fact m ≤ n, we have

h ≤ n

m
≤ h+ 1 ≤ 2h, and (17)

h

n
≤ 1

m
. (18)
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By statement 1 in Select-Crucial-Items(.) and inequality (17), we have n
m ≤ 2h and

2γ ≤ µ

2m
≤ µh

n
. (19)

Assume maxRank(yi, A) < ih− µh. We have that

maxRank(yi, A)

n
<

ih− µh

n
(20)

=
ih

n
− µh

n
(21)

≤ i

m
− µh

n
(by inequality (18)) (22)

≤ pi −
µh

n
. (23)

Let p′i := pi − µh
n > maxRank(yi,A)

n (by inequality (23)). By Corollary 6, with probability at most

e−
γ2u
3 , we have |{j : xj ∈ X [1, u] and xj ≤ yi}| to be at least

(
maxRank(yi, A)

n
+ γ)u < p′iu+ γu

= (pi − (
µh

n
))u + γu

= piu− (
µh

n
− γ)u

≤ piu− γu (by inequality (19))

≤ ⌈piu⌉

Assume minRank(yi, A) > ih+ µh. We have that

minRank(yi, A)

n
>

ih+ µh

n
(24)

=
ih

n
+

µh

n
(25)

≥ i

m
− i

n
+

µh

n
(by equation (16)) (26)

≥ pi −
i

n
+

µh

n
. (27)

Note that the transition from inequality (25) to inequality (26) is due to equation (16)), which
implies h ≥ n

m − 1 and h
n ≥ 1

m − 1
n .

Let p′′i := pi − i
n + µh

n < minRank(yi,A)
n (by inequality (27). Note that pi is defined at line 4 in

Algorithm Select-Crucial-Items(.). By Lemma 6, with probability at most P1,i = e−
γ2u
3 , we have

|{j : xj ∈ X [1, u] and xj ≤ yi}| to be at most

(
maxRank(yi, A)

n
− γ)u ≥ p′′i u− γu (28)

= (pi −
i

n
+

µh

n
)u − γu (29)

≥ piu+ (
µh

n
− i

n
− γ)u (30)

≥ piu+ (
µh

n
− m

n
− γ)u (31)
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≥ piu+ (
µh

3n
− m

n
)u+ (

2µh

3n
− γ)u (32)

≥ piu+ 0 + (
2µh

3n
− γ)u (33)

≥ piu+ (
4γ

3
− γ)u (34)

≥ piu+
γ

3
u (35)

≥ piu+ 1 (36)

> ⌈piu⌉ . (37)

Note that i ≤ m. The transition from inequality (32) to inequality (33) is due to the condition

n ≥ 3(m+1)2

µ , which implies that h ≥ n
m − 1 ≥ 3(m+1)

µ − 1 ≥ 3m
µ + 3

µ − 1 > 3m
µ . The transition from

inequality (33) to inequality (34) is because of inequality (19). The transition from inequality (35)
to inequality (36) is due to the setting in statement 2 in Select-Crucial-Items(.).

Therefore, with probability at most
∑m

i=1(Pi,1 + Pi,2) ≤ 2me−
γ2u
3 < α, Rank(yi, A) ∩ [ih −

µh, ih+ µh] = ∅ for at least one i ∈ {1, . . . ,m}.

6.2. Packing Large Items and Small Items

In this section, we show how to pack large items from sampling items in the input list. Then we
show how to pack small items after packing large items.

Lemma 20. Assume that c, η, and k are positive constants, and ǫ and δ are constants in (0, 1) and
θ is a constant in [0, 1). Assume that the input list is S for a bin packing problem with (c, η, k)-related
bins. The constants δ, µ, ǫ1, and m are given according to equations (8) to (10). Assume that n′

≥δ

is an approximation of |S≥δ| satisfying

(1− θ)|S≥δ| ≤ n′
≥δ ≤ (1 + θ)|S≥δ|, (38)

36θ

δη
≤ ǫ, and (39)

θ

⌊ |S≥δ|
m

⌋

≥ 1 if θ > 0. (40)

Let h =
⌊

|S≥δ|

m

⌋

, h′ =
⌊

n′
≥δ

m

⌋

, and S′ be a list of items of size less than δ. Assume that we have the

following inputs available:

• Let y′1, . . . , y
′
m be a list of items from S≥δ such that Rank(y′i, S≥δ) ∩ [ih− µh, ih+ µh] 6= ∅ for

i = 1, 2, . . . ,m

• An approximate solution for bin packing with items in B = {y′h′

1 , . . . , y′h
′

m } ∪ S′ in (c, η, k)-
related bins with cost at most (1 + ǫ)Optc,η,k(B)

Then there Packing-Conversion(.) is an O(1) time algorithm that gives an approximation app with
Optc,η,k(S≥δ ∪ S′) ≤ app ≤ (1 + 5ǫ)Optc,η,k(S≥δ ∪ S′).

Proof: Assume that a′1 ≤ a′2 ≤ . . . ≤ a′n≥δ
is the increasing order of all input elements of size at

least δ with n≥δ = |S≥δ|. Let

L∗ = a′1 ≤ a′2 ≤ . . . ≤ a′n≥δ
∪ S′. (41)

Let

L0 = a′1 ≤ a′2 ≤ . . . ≤ a′n′
≥δ

∪ S′. (42)
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Note that in the case n′
≥δ > |S≥δ|, we let a′|S≥δ|+1 = . . . = a′n′

≥δ

= 1 in list L0. Partition a′1 ≤ a′2 ≤
. . . ≤ a′n≥δ

into A1y1A2y2 . . . AmymR such that each Ai has exactly h − 1 elements and R has less

than h elements. Partition a′1 ≤ a′2 ≤ . . . ≤ a′n′
≥δ

into A1y1A2y2 . . . Am′ym′R′ such that each Ai has

exactly h− 1 elements and R′ has less than h elements. We have

m′ =

⌊

n′
≥δ

h

⌋

(43)

≥
⌊

(1 − θ)n≥δ

h

⌋

(44)

≥ (1− θ)n≥δ

h
− 1 (45)

≥ (1− θ)
⌊n≥δ

h

⌋

− 1 (46)

≥ (1− 2θ)
⌊n≥δ

h

⌋

(by inequality (40)) (47)

= (1− 2θ)m. (48)

m′ =

⌊

n′
≥δ

h

⌋

(49)

≤
⌊

(1 + θ)n≥δ

h

⌋

(50)

≤ (1 + θ)n≥δ

h
+ 1 (51)

≤ (1 + θ)
⌊n≥δ

h

⌋

+ 1 (52)

≤ (1 + 2θ)
⌊n≥δ

h

⌋

(by inequality (40)) (53)

= (1 + 2θ)m. (54)

We have

h′ =

⌊

n′
≥δ

m

⌋

≤
⌊

(1 + θ)n≥δ

m

⌋

(55)

≤ ⌊(1 + θ)(h + 1)⌋ (56)

≤ ⌊(1 + θ)(h + θh)⌋ (by inequality (40)) (57)

≤
⌊

(1 + θ)2h
⌋

(58)

≤ (1 + θ)2h (59)

≤ (1 + 3θ)h. (60)

We have

h′ ≥
⌊

(1− θ)n≥δ

m

⌋

≥
⌊

(1 − 2θ)n≥δ + θn≥δ

m

⌋

(61)

≥
⌊

(1− 2θ)
n≥δ

m
+

θn≥δ

m

⌋

(62)

≥
⌊

(1− 2θ)
⌊n≥δ

m

⌋

+
θn≥δ

m

⌋

(63)

≥
⌊

(1 − 2θ)
⌊n≥δ

m

⌋

+ 1
⌋

(64)

≥ (1− 2θ)
⌊n≥δ

m

⌋

(65)

≥ (1− 2θ)h. (66)
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The transition from inequality (61) to inequality (66) is due to the fact
θn≥δ

m ≥ 1 by inequali-
ties (38) and (40). By inequalities (61) to (66), we have

(1 + 3θ)h ≥ h′ ≥ (1− 2θ)h. (67)

Inequality (67) also holds if θ = 0.
Consider the bin packing problems: L1 = y′h

′

1 y′h
′

2 . . . y′h
′

m ∪ S′. We show that there is a small
difference between the results of two bin packing problems for L0 and L1.

Claim 20.1. For every solution of cost x with (c, η, k)-related bins for list L0, there is a solution
of cost at most x+ (10θ + 4µ)mh+ 4h for list L1.
Proof: Assume that L0 has a bin packing solution. It can be converted into a solution for L1 via
an adaption to that of L0 with a small number of additional bins.

We use the lots for the elements in Ai+1yi+1 in L0 to store the elements of y′is. By inequality (67)
and the assumption Rankδ(y

′
i, S≥δ) ∩ [ih − µh, ih + µh] 6= ∅ for i = 1, 2, . . . ,m, there are at most

(3θ + 2µ)h y′is left as unpacked for each y′h
′

i with i ≤ m′. Therefore, we only have that the number
of elements left as unpacked in L1 is at most

m′(3θ + 2µ)h+ (|m−m′|+ 2)h′

≤ (3θ + 2µ)(1 + 2θ)mh+ (2θm+ 2)(1 + 3θ)h (by inequality (67) and (48)).

The number of bins for packing those left items is at most (3θ+2µ)(1+2θ)mh+(2θm+2)(1+3θ)h.
Since 1 is the maximal cost of one bin, the cost for packing the left items at most

(3θ + 2µ)(1 + 2θ)mh+ (2θm+ 2)(1 + 3θ)h

≤ 2(3θ + 2µ)mh+ 2(2θm+ 2)h (by inequality (39))

≤ (10θ + 4µ)mh+ 4h.

Claim 20.2. For every solution of cost y with (c, η, k)-related bins for list L1, there is a solution
of cost at most y + (µ+ 2θ)mh+ 2h for list L0.
Proof: Assume that L1 has a bin packing solution. It can be converted into a solution for L0

with a small number of additional bins.
We use the lots for y′h

′

i to store the elements in Aiyi. We have at most (µ + 2θ)h elements left
for each Aiyi. Totally, we have at most m(µ+ 2θ)h+ 2h items left. The bins for packing those left
items is at most m(µ+ 2θ)h+ 2h, which cost at most m(µ+ 2θ)h+ 2h since 1 is the maximal cost
of one bin.

The optimal number bins Optc,η,k(L0) for packing L0 is at least mhδ, which have cost at least
mhδη. Therefore, we have

Optc,η,k(L0) ≥ mhδη (68)

For an approximation App(L1) for packing L1, let

App(L0) = App(L1) + (µ+ 2θ)mh+ 2h (69)

be an approximation for packing L0 by Claim 20.2. We have that

Optc,η,k(L0) (70)

≤ App(L0) (71)

= App(L1) +m(µ+ 2θ)h+ 2h (by equation (69)) (72)

≤ (1 + ǫ)Optc,η,k(L1) +m(µ+ 2θ)h+ 2h (73)
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≤ ((1 + ǫ)(Optc,η,k(L0) + (10θ + 4µm)mh+ 4h) +m(µ+ 2θ)h+ 2h (74)

(by Claim 20.1) (75)

≤ (1 + ǫ)(Optc,η,k(L0) +Optc,η,k(L0)(
5µmh+ 12θmh+ 6h

mhδη
)) (by inequality (68)) (76)

= (1 + ǫ)Optc,η,k(L0) +Optc,η,k(L0)(
5µ

δη
+

12θ

δη
+

6

mδη
) (77)

≤ (1 + ǫ)Optc,η,k(L0) +Optc,η,k(L0)(
5µ

δη
+

12θ

δη
+

ǫ

3
) (by equation (10)) (78)

≤ (1 + ǫ)(Optc,η,k(L0) +Optc,η,k(L0)(
5µ

δη
+

ǫ

3
+

ǫ

3
)) (by inequality (39)) (79)

≤ (1 + ǫ)(Optc,η,k(L0) +Optc,η,k(L0)(
ǫ

3
+

ǫ

3
+

ǫ

3
)) (by equation (8)) (80)

≤ (1 + ǫ)(1 + ǫ)Optc,η,k(L0) (81)

≤ (1 + 3ǫ)Optc,η,k(L0). (82)

The list L∗ has at most θn≥δ more items than L0. Therefore

Optc,η,k(L∗) = Optc,η,k(L0) + θn≥δ (83)

≤ Optc,η,k(L0) +
θ

1− θ
n′
≥δ (84)

≤ Optc,η,k(L0)(1 +
θn′

≥δ

(1 − θ)Optc,η,k(L0)
) (85)

≤ Optc,η,k(L0)(1 +
θn′

≥δ

(1 − θ)mhδη
) (by inequality (68)) (86)

≤ Optc,η,k(L0)(1 +
θ

(1 − θ)hδη
·
n′
≥δ

m
) (87)

≤ Optc,η,k(L0)(1 +
θ

(1 − θ)hδη
· 2h) (by inequality (17)) (88)

≤ Optc,η,k(L0)(1 +
2θ

(1 − θ)δη
) (89)

≤ Optc,η,k(L0)(1 +
4θ

δη
) (90)

≤ Optc,η,k(L0)(1 + ǫ) (by inequality (39)). (91)

Let

App(L∗) = (1 + ǫ)App(L0). (92)

Therefore, we have App(L∗) ≥ Optc,η,k(L∗) by inequality (12) and inequality (91). On the other
hand, we have App(L∗) = (1+ǫ)App(L0) ≤ (1+ǫ)(1+3ǫ)Optc,η,k(L0) ≤ (1+ǫ)(1+3ǫ)Optc,η,k(L∗) ≤
(1 + 5ǫ)Optc,η,k(L∗).

Algorithm Packing-Conversion(n′
≥δ , App(L1))

Input: an integer n′
≥δ is an approximation to |S≥δ| with (1 − θ)|S≥δ| ≤ n′

≥δ ≤ (1 + θ)|S≥δ|,
and an approximate solution App(L1) for the bin packing with items in L1 = {y′h′

1 , . . . , y′h
′

m } ∪ S′ in
(c, η, k)-related bins with cost at most (1 + ǫ)Optc,η,k(L1), where L1 = {y′h′

1 , . . . , y′h
′

m } ∪ S′ is a list
of items such that Rank(y′i, S≥δ)∩ [ih− µh, ih+ µh] 6= ∅ for i = 1, 2, . . . ,m, and S′ is a list of items
of size less than δ.

Output: an approximation for Optc,η,k(L∗), where L∗ is defined by equation (41).
Steps:
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Convert the approximation of App(L1) to App(L0) as equation (69) in the proof.
Convert the approximation of App(L0) to App(L∗) as equation (92).
Output App(L∗)

End of Algorithm

Lemma 21. Let ξ be a small constant in (0, 1). Assume that S≥ϕ is a list of items of size at least
ϕ, S<ϕ is a list of items of size less than ϕ, and S′

<ϕ is another list of items of size less than ϕ.
If

∑

ai∈S<ϕ
ai +

∑

ai∈S≥ϕ
ai ≤ (1 + ξ)(

∑

ai∈S′
<ϕ

ai +
∑

ai∈S≥ϕ
ai) and

∑

ai∈S′
<ϕ

ai +
∑

ai∈S≥ϕ
ai ≤

(1+ ξ)(
∑

ai∈S<ϕ
ai+

∑

ai∈S≥ϕ
ai), then Opt(S<ϕ∪S≥ϕ) ≤ 1+ξ

1−ϕ ·Opt(S′
<ϕ∪S≥ϕ)+1 and Opt(S′

<ϕ∪
S≥ϕ) ≤ 1+ξ

1−ϕ ·Opt(S<ϕ ∪ S≥ϕ) + 1.

Proof: Let L = S<ϕ∪S≥ϕ and L′ = S′
<ϕ∪S≥ϕ. Without loss of generality, let Opt(L) ≤ Opt(L′).

We just need to prove that Opt(L′) ≤ 1+ξ
1−ϕ ·Opt(L).

For a bin packing P for L, we convert it into another bin packing for L′ by increasing small
number of bins. At most one bin in P wastes more than ϕ space by replacing the items in S<ϕ with
those in S′

<ϕ. If no additional bin is used for packing L′, we have Opt(L′) ≤ Opt(L).
If some new bins are needed, the total number of bins is at most

(
∑

ai∈S′
<ϕ

ai +
∑

ai∈S≥ϕ
ai)

1− ϕ
+ 1 ≤

(1 + ξ)(
∑

ai∈S<ϕ
ai +

∑

ai∈S≥ϕ
ai)

1− ϕ
+ 1

≤ 1 + ξ

1− ϕ
· Opt(L) + 1.

Therefore, we have Opt(L′) ≤ 1+ξ
1−ϕ ·Opt(L).

The following Lemma 22 is only for the classical bin packing problem that all bins are of the
same size 1.

Algorithm Packing-Small-Items(X, s1, S
′′)

Input: X = (x1, . . . , xq) for the q types T = 〈T1, . . . , Tq〉 for the (1 + β)-approximation for

packing a list S′′ = {y′h′

1 , . . . , y′h
′

m }, and s1 =
∑

ai∈S′ ai is the sum of sizes in list S′ of items of size
less than δ.

Output: an approximation for Opt(S′′ ∪ S′).
Steps:

1. Let s′1 := s1.

2. Repeat

3. Let i := 1.

4. For each type Ti = (b1,ia1, . . . , bm,iam) (which satisfies
∑m

j=1 bj,iai ≤ 1)

5. Let ti :=
∑m

j=1 bj,iam and hi := max(1− δ − ti, 0)

6. (hi is the available space in a bin of type Ti for packing items of size < δ).

7. Let s′1 := max(s′1 − xihi, 0) (fill each bin of type Ti with size hi of (fractional) items).

8. Let i := i+ 1.

9. Until s′1 = 0 or i > q.

10. If s′1 > 0

11. Then find the least number k such that k(1− δ) ≥ s′1
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12. and fill the (fractional) items left in s′1 into those k bins.

End of Algorithm

Lemma 22. Let β be a constant in (0, 1) with β ≤ 1
2 , θ be a constant in [0, 1) with θ ≤ β, and δ

be a constant with δ ≤ β
4 . Let m and h′ be integers. Let S′ be a list of items of size less than δ.

Assume that S′′ = {y′h′

1 , . . . , y′h
′

m } with y′i ≥ δ for i = 1, . . . ,m and S′′ is large enough to satisfy

h′m ≥ 2

βδ
. (93)

Then Packing-Small-Items(.) is an O(q) time algorithm that given a solution (x1, . . . , xq) for bin
packing with items in S′′ with the total number of bins at most (1+β)Opt(S′′), and s1 =

∑

ai∈S′ ai,
where xi is the number of bins of type Ti, and q is the number of types to pack y′1, . . . , y

′
m with

q ≤ mO( 1
δ
) (see Lemma 14), it gives an approximation app for packing S′′ ∪ S′ with Opt(S′′ ∪ S′) ≤

app ≤ (1 + 2β)Opt(S′′ ∪ S′).

Proof: The bin packing problem is the same as the regular bin packing problem that all bins are
of the same size 1. The problem is to minimize the total number bins to pack all items. We consider
the approximation to pack the small items after packing large items.

Assume that an optimal solution of a bin packing problem has two types of bins. Each first type
bin contains at least one item of size δ, and each second type bin only contains items of size less than
δ. Let V1 be the set of first type bins, and V2 be the set of all second type bins. Let U be an (1+β)-
approximation for the items in S′′. We have |U | ≤ (1 + β)|V1|. Let slarge =

∑

ai∈S′′ ai =
∑q

i=1 h
′
iy

′
i

and ssmall =
∑

ai∈S′ ai = s1.
Fill items of size less than δ into those bins in U so that each bin has less than δ left. Put all of

the items less than δ into some extra bins, and at most one of them has more than δ space left. We
use a fractional way to pack small items. Since each bin with small items has at least δ space left,
and each small item is of size at most δ, the fractional packing of small items can be converted into
a non-fractional packing. A similar argument is also shown in Lemma 21.

Case 1. If U can contain all items, we have that |U | ≤ (1 + β)|V1| ≤ (1 + β)|V1 ∪ V2|.
Case 2. There is a bin beyond those in U is used. Let U ′ be all bins without more than δ space

left. We have

|U ′| ≤ slarge + ssmall

1− δ
(94)

≤ (1 +
δ

1− δ
)(slarge + ssmall) (95)

≤ (1 + 2δ)(slarge + ssmall) (96)

≤ (1 + β/2)(slarge + ssmall). (97)

On the other hand, |V1 ∪ V2| ≥ slarge + ssmall. Therefore, the approximate solution |U ′|+ 1 has

|U ′|+ 1 ≤ (1 + β/2)|V1 ∪ V2|+ 1 (by inequality (97)) (98)

= (1 + β/2)Opt(S′′ ∪ S′) + 1 (99)

≤ (1 + 1.5β)Opt(S′′ ∪ S′) (by inequality (93)) (100)

≤ (1 + 2β)Opt(S′′ ∪ S′). (101)

Packing the items in S′′ needs at least δmh′ bins. Therefore, the transition from inequality (99) to
inequality (100) is by the condition in inequality (93).

Algorithm Packing-With-Many-Large-Items(α, β, n, s1, n
′
≥δ, S)
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Input: a parameter β ∈ (0, 1), n′
≥δ is an approximation to |S≥δ|, and s1 is an approximation for

∑

ai∈S<δ
ai with (1 − ξ)(

∑

ai∈S ai) ≤ s1 +
∑

ai∈S≥δ
ai ≤ (1 + ξ)(

∑

ai∈S ai), S is the list of input

items a1, . . . , an for bin packing, and n is the number of items in S.
Output: an approximation for Opt(S).
Steps:

1. Select an integer constant d1 such that g1(
1
2 )

d1
1−δ < α.

2. Select a list L1 of 2c1d1
n

n′
≥ϕ

m2 logm random elements in the input list S,

where constant c1 is defined in Lemma 19, and constant d1 is defined in line 8.

3. Let L2 be the list of items of size at least δ in L1.

4. Let (y′1, . . . , y
′
m):=Select-Crucial-Items(m,α, µ, L2) (see Lemma 19).

5. Let X = (x1, . . . , xq) :=Pack-Large-Items(1, 1, 1, B) with B = {y′h′

1 , . . . , y′h
′

m }

(see Lemma 14), where h′ =
⌊

n′
≥ϕ

m

⌋

.

6. Let App1:=Packing-Small-Items(X, s1, B) (see Lemma 22).

7. Let App2 :=Packing-Conversion(n′
≥δ, App1)(see Lemma 20) for packing all items in S.

8. Output 1+ξ
1−δ ·App2.

End of Algorithm

Lemma 23. Assume that S is a list of items for bin packing problem. Let β be a constant in (0, 1)
with β ≤ 1

2 , θ be a constant in [0, 1) with θ ≤ β, δ be a constant with δ ≤ β
4 , ξ be a constant with

ξ ≤ β
4 , and constant ǫ = 6β. The constants µ, ǫ1, and m are given according to equations (8) to (10).

Assume that n′
≥δ is an approximation of |S≥δ| satisfying the inequalities (38), (39), (40), and (93).

Assume that s1 is an approximation for
∑

ai∈S<δ
ai with (1 − ξ)(

∑

ai∈S ai) ≤ s1 +
∑

ai∈S≥δ
ai ≤

(1 + ξ)(
∑

ai∈S ai). Then Packing-With-Many-Large-Items(.) is an O( n
∑

n

i=1
ai

+ O( 1β )
O( 1

β
)) time

algorithm that gives an approximation app for packing S with Opt(S) ≤ app ≤ (1+16β)Opt(S) with
the failure probability at most α.

Proof: The bin packing problem is the same as the regular bin packing problem that all bins are
of the same size 1. The problem is to minimize the total number bins to pack all items. We consider
the approximation to pack the small items after packing large items.

We sample some random items of size at least ϕ from the input list S. When an item from the
input list S is randomly selected, an item of size at least ϕ has an equal probability, which is defined
by the pϕ below:

pϕ =
|{i : ai ≥ ϕ and ai ∈ {a1, . . . , an}}|

n
=

n≥ϕ

n
. (102)

By inequality (38) and equation (102), we have

pϕ
n

n′
≥ϕ

≥ 1

1 + θ
. (103)
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By Theorem 4, with probability at most g1(
1
2 )

pϕ
2c1d1n

n′
≥ϕ

m2 logm

≤ g1(
1
2 )

2c1d1
1+δ

m2 logm < α (see line 8 in
Approximate-Bin-Packing(.)), we cannot obtain at least

(1 − 1

2
)pϕ(

2c1d1n

n′
≥ϕ

m2 logm) ≥ pϕ
n

n′
≥ϕ

(c1d1m
2 logm) (104)

≥ 1

1 + θ
· c1d1m2 logm (by inequality (103)) (105)

≥ c1m
2 logm (106)

random elements of size at least ϕ by sampling 2c1d1
n

n′
≥ϕ

m2 logm elements.

By Lemma 19, with probability at most α, we cannot obtain the list y1 ≤ . . . ≤ ym from the

input list such that Rank(yi, S≥ϕ) ∩ [ih − µh, ih + µh] 6= ∅ for all i ∈ {1, . . . ,m} in O(m
2(logm)2)

µ2 )

time using c1m
2 logm
µ2 random elements from the input.

Therefore, we have probability at most α+ α+ α ≤ 1
4 , the following (a) or (b) is false:

(a). Statements 1, 2, and 3 of Lemma 9 are true.
(b). Rank(yi, S≥ϕ) ∩ [ih− µh, ih+ µh] 6= ∅ for all i ∈ {1, . . . ,m}.
Assume that both statements (a) and (b) are true in the rest of the proof. This makes the

analysis of algorithm become deterministic.
Imagine that S′

1 is a list of items of size less than δ and has s1 =
∑

ai∈S′
1
ai. By Lemma22, line 6

gives App1 to be an (1 + 2β)-approximation for packing S′′ ∪ S′
1.

By Lemma 20, App2 is an (1 + 5× 2β)-approximation for packing S≥δ ∪ S′
1.

By Lemma 21, 1+ξ
1−δ · App2 is an 1+ξ

1−δ · (1 + 10β)-approximation for packing S≥δ ∪ S<δ = S. We
note that

1 + ξ

1− δ
· (1 + 10β) ≤ (1 +

ξ + δ

1− δ
) · (1 + 10β)

≤ (1 + 2(ξ + δ)) · (1 + 10β)

≤ (1 + β) · (1 + 10β)

≤ (1 + β ++10β + 10β2)

≤ (1 + β ++10β + 5β) (note that β ≤ 1
2 )

≤ 1 + 16β.

Thus, 1+ξ
1−δ · App2 is an (1 + 16β)-approximation for packing S≥δ ∪ S<δ = S.

The function is executed under the condition that n′
≥ϕ = Ω(

∑n
i=1 ai). Statement 2 takes

O( n
n′
≥δ

) = O( n
∑

n

i=1
ai
) time. The computational time at statement 5 is ( 1β )

O( 1
β
) which follows

from Lemma 14. The other statements only takes O(1) time.

The following Lemma 24 is only for the classical bin packing problem that all bins are of the
same size 1.

Algorithm Packing-With-Few-Large-Items(ξ, x, s1)
Input: a small parameter ξ ∈ [0, 1), an integer x with x ≤ ξ

∑n
i=1 ai and x ≥ |S≥δ|, and a real s1

with (1 − ξ)(
∑

ai∈S ai) ≤ s1 +
∑

ai∈S≥δ
ai ≤ (1 + ξ)(

∑

ai∈S ai). (s1 is an approximate sum of sizes

of small items of size at most δ).
Output: an approximation for Opt(S).
Steps:

1. Find the least number k such that k(1 − δ) ≥ s1

(the k bins are for packing items of size less than δ).

2. Output 1+ξ
1−δ · (k + x+ 1) for packing S (x bins are for packing items of size ≥ δ)
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End of Algorithm

Lemma 24. Assume that S is a list of items for bin packing problem. Let δ be a constant in (0, 1).
Assume that we have the following inputs available:

• x is an approximation for |S≥δ| with x ≤ ξ
∑n

i=1 ai and x ≥ |S≥δ| for some small ξ ∈ (0, 1).

• s1 is an approximation for
∑

ai∈S<δ
ai with (1 − ξ)(

∑

ai∈S ai) ≤ s1 +
∑

ai∈S≥δ
ai ≤ (1 +

ξ)(
∑

ai∈S ai).

and the parameters satisfy the following conditions

δ ≤ 1

4
, (107)

ξ ≤ 1

4
, and (108)

2 < δ

n
∑

i=1

ai. (109)

Then Packing-With-Few-Large-Items(.) is an O(1) time algorithm that gives an approximation app
for packing S with Opt(S) ≤ app ≤ (1 + 8(δ + ξ))Opt(S).

Proof: The bin packing problem is the same as the regular bin packing problem that all bins are
of the same size 1. The problem is to minimize the total number bins to pack all items.

Imagine S′
<δ is a list of elements of size less than δ and

∑

ai∈S′ ai = s1. Let S
′ = S′

<δ ∪S≥δ. Let

s0 =
∑n

i=1 ai to be the sum of sizes of input items. By line 1 in Packing-With-Few-Large-Items(.),
we have

k + x ≤ s1
1− δ

+ 1 + x (110)

≤ s0(1 + ξ)

1− δ
+ ξs0 + 1 (111)

≤ (
1 + ξ

1 − δ
+ ξ)s0 + 1. (112)

Furthermore, assume that the inequalities (107) to (109) holds. We have

(
1 + ξ

1− δ
+ ξ) ≤ (1 +

ξ + δ

1− δ
+ ξ)

≤ (1 + 2(ξ + δ) + ξ)

= (1 + 2δ + 3ξ)

Therefore, we have

k + x+ 1 ≤ (1 + 2δ + 3ξ)Opt(S) + 1

≤ (1 + 3δ + 3ξ)Opt(S) (by inequality (109)).

By Lemma 21, we have the 1+ξ
1−δ (1 + 3δ + 3ξ)-approximation for packing S. We note that

1 + ξ

1− δ
(1 + 3δ + 3ξ) ≤ (1 +

ξ + δ

1− δ
)(1 + 3δ + 3ξ)

≤ (1 + 2(ξ + δ))(1 + 3δ + 3ξ)

≤ 1 + 2(ξ + δ) + (3δ + 3ξ) + 2(ξ + δ)(3δ + 3ξ)

≤ 1 + 2(ξ + δ) + 3(δ + ξ) + 3(δ + ξ)

≤ 1 + 8(ξ + δ).
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6.3. Full Sublinear Time Approximation Scheme for Bin Packing

Now we present a sublinear time approximation scheme for the bin packing problem. The brief idea
of our sublinear time algorithm is given in Section 2.1. After setting up some parameters, it divides
the interval (0, 1] for item sizes into O(log n) intervals (0, 1] = I1∪ . . .∪Ik, called a (ϕ, δ, γ)-partition
as described in section 3. Applying the algorithm described in section 3, we get an approximation
about the distribution of the items in the intervals I1, . . . , Ik. If the total size

∑n
i=1 ai is too small, for

example O(1), the linear time algorithm described in section 5 is used to output an approximation
for the bin packing problem. Otherwise, we give a sublinear time approximation for the bin packing
problem. In order to pack large items, we derive the approximate crucial items, which are the
approximate ih-th elements among the large items of size at least ϕ for i = 1, . . . ,m, where h and
m are defined in equations (16), and ((10)), respectively. The algorithm described in section 5 is
used to pack large items. The small items are filled into bins which have space left after packing
large items, and some additional fresh bins. With the approximate sum of sizes of small items, we
can calculate the approximate number of fresh bins to be needed to pack them. If the total sum of
the sizes of large items is too small to affect the total approximation ratio, we just directly pack the
small items according to approximate sum of the sizes of those small objects.

Algorithm Approximate-Bin-Packing(τ, n, S)
Input: a positive real number τ , an integer n, and a list S of n items a1, . . . , an in (0, 1].
Output: an approximation app with Opt(S) ≤ app ≤ (1 + τ)Opt(S) + 1.
Steps:

1. Let β := τ
30 and ǫ := 6β.

2. Let δ := ǫ
4 and θ := ǫδ

36 .

3. Let µ, ǫ1 and m are selected by equations (8), (9), and (10), respectively.

4. Let c := η := k := 1 (classical bin packing).

5. Let α := 1/12.

6. Let ϕ := δ.

7. Let γ := δ3.

8. Select an integer constant d1 such that g1(
1
2 )

d1
1−δ < α.

9. Derive a (ϕ, δ, γ)-partition P = I1 ∪ . . . ∪ Ik for (0, 1].

10. Let (s, s1, n
′
≥ϕ):=Approximate-Interval(ϕ, δ, γ, θ, α, P, n, S) (see Lemma 9).

11. If s < max(( 4mθδ2 ), (
4
δ2 · (1+θ)m

θ ), (16δ2 · (1+θ)
βδ ))

12. then

13. Output Linear-Time-Packing(n, S) (see Lemma 16) and terminate the algorithm.

14. If n′
≥ϕ ≥ δ2

4 s

15. then

16. Output Packing-With-Many-Large-Items(α, β, n, s1, n
′
≥δ, S) (see Lemma 23).

17. else

18. If n′
≥ϕ > 0
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19. then let x :=
n′
≥ϕ

1−θ and ξ := max(δ2, θ + δ3)

20. else let x := 6δs and ξ := max(12δ, θ+ δ3).

21. Output Packing-With-Few-Large-Items(ξ, x, s1) (see Lemma 24).

End of Algorithm

Proof: [Theorem 10] Calling function Approximate-Interval(.) in line 10 in the algorithm
Approximate-Bin-Packing(.), we obtain s for an approximate sum

∑n
i=1 ai of items in list S, s1

for an approximate sum of items in list S<ϕ, an approximate number n′
≥ϕ of items of size at least ϕ

(see Lemma 9). With probability at most α, at least one of statements 1, 2, 3, 4, and 5 of Lemma 9
of Lemma 9 is false. Therefore, we have probability at most α, the following statement (a) is false:

(a). Statements 1, 2, 3, 4, and 5 of Lemma 9 are true.
Assume that statement (a) is true in the rest of the proof. By statement 1 of Lemma 9, we have

that if n′
≥ϕ > 0, then

(1− θ)n≥ϕ ≤ n′
≥ϕ ≤ (1 + θ)n≥ϕ. (113)

Let s0 =
∑n

i=1 ai. By line 10 in Approximate-Bin-Packing(.) and Lemma 9, s is an approximation
of s0 =

∑n
i=1 ai, s1 is an approximation of

∑n
i=1,ai<ϕ ai, and n′

≥ϕ is an approximation of the number
n≥ϕ of items of size at least ϕ. A (ϕ, δ, γ)-partition for (0, 1] divides the interval (0, 1] into intervals
I1 = [π1, π0], I2 = (π2, π1], I3 = (π3, π2], . . . , Ik = (0, πk−1] as in Definition 7.

Claim 10.1. If the condition in line 11 of Approximate-Bin-Packing(.) is true, the algorithm
outputs an approximation app(S) for the bin packing problem S with Opt(S) ≤ app(S) ≤ (1 +
τ)Opt(S) + 1.
Proof: We note that if the condition in line 11 is true, then s = O(1) since β, θ,m, and δ are
all constants. By statement 3 of Lemma 9, we have s0 = O(1). In this case, we use the linear time
deterministic algorithm by Lemma 16, which warrants the desired ratio of approximation.

In the rest of the proof, we assume that the condition in line 11 is false. We have the inequality:

s ≥ max((
4m

θδ2
), (

4

δ2
· (1 + θ)m

θ
), (

16

δ2
· (1 + θ)

βδ
)). (114)

By inequality (114), we have the inequality

s ≥ 8

δ2
· 1

βδ
≥ 8

δ3
. (115)

Therefore,

δ ≤ δ4s

8
. (116)

By statement 3 of Lemma 9, we have s ≤ (1 + θ)(
∑n

i=1 ai) = (1 + θ)s0. By inequality (115) and
the fact δ ≤ 1 (by the setting in line 2), we have

s0 ≥ s

1 + θ
≥ s

2
≥ 4

δ3
≥ 4. (117)

By inequality (117) and statement 4 of Lemma 9, we have

1

4
(1− θ)(1 − δ)ϕ(

n
∑

i=1

ai) ≤ s ≤ (1 + θ)s0. (118)

Claim 10.2. If the condition at line 14 of the algorithm Approximate-Bin-Packing(.) is true,
then with failure probability at most α, the algorithm outputs an approximation app(S) for the bin
packing problem with Opt(S) ≤ app(S) ≤ (1 + τ)Opt(S) + 1.

28



Proof: Assume that the condition at line 14 of the algorithm Approximate-Bin-Packing(.) is true.
This is the case that the number of large items is large. The condition of line 11 in Approximate-
Bin-Packing(.) is false. Since condition of line 14 in Approximate-Bin-Packing(.) is true, we have

h′m ≥
⌊

n′
≥ϕ

m

⌋

m (119)

≥ (
n′
≥ϕ

m
− 1)m (120)

= n′
≥ϕ −m (121)

≥ δ2

4
s−m (122)

≥ δ2

4
s− s

64
(by inequality (114)) (123)

≥ δ2

8
s (124)

≥ 2

βδ
, (by inequality (114)) (125)

where h′ is defined is statement 5 of Packing-With-Many-Large-Items(.). Note that the transition
from inequality (121) to inequality (122) is due to condition of line 14 in Approximate-Bin-Packing(.)
is true, and the transition from inequality (122) to inequality (125) is due to inequality (114), Thus,
the inequality (93) condition in Lemma 20 is true.

Inequality (38) is satisfied because of inequality (113). Inequality (39) is satisfied because of the
setting in lines 1 to 4 of Approximate-Bin-Packing(.). We have the inequality

θ
⌊n≥ϕ

m

⌋

≥ θ

⌊

n′
≥ϕ

(1 + θ)m

⌋

(126)

≥ θ

⌊

δ2s

4(1 + θ)m

⌋

(127)

≥ θ

⌊

δ2 · ( 4
δ2 · (1+θ)m

θ )

4(1 + θ)m

⌋

(128)

≥ θ

⌊

(1 + θ)

θ

⌋

(129)

≥ θ

⌊

1

θ
+ 1

⌋

(130)

≥ θ · 1
θ
= 1. (131)

The transition from inequality (126) to inequality (127) is because the condition of statement 14
of Approximate-Bin-Packing(.)) is true. The transition from inequality (127) to inequality (128) is
because of inequality (114). Thus, inequality (40) is satisfied.

By Lemma 23, the algorithm gives an approximation app(S) such that Opt(S) ≤ app(S) ≤
(1+16β)Opt(S) ≤ (1+τ)Opt(S) (by the setting of β in statement 1 of Approximate-Bin-Packing(.))
with the failure probability at most α.

Claim 10.3. If the condition at line 14 of the algorithm Approximate-Bin-Packing(.) is false,
then the algorithm outputs an approximation app(S) for the bin packing problem with Opt(S) ≤
app(S) ≤ (1 + τ)Opt(S) + 1.
Proof: In the case that the condition at line 14 does not hold, we have that

n′
≥ϕ <

δ2

4
s (132)
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≤ δ2

4
(1 + δ)s0 (by inequality (118)) (133)

≤ δ2

2
s0. (134)

Line 21 in the algorithm Approximate-Bin-Packing(.) will be executed. By inequality (117),
inequality (109) is true. Inequalities (107) and (108) follow from lines 1 and 2 in the Algorithm
Approximate-Bin-Packing(.).

By statements 1 and 2 of Lemma 9, we have

s1 =
∑

Ĉ(Ij ,S)>0 and j>1

Ĉ(Ij , S)πj (135)

≥
∑

Ĉ(Ij ,S)>0 and j>1

(1 − θ)C(Ij , S)πj (by statement 1 of Lemma 9) (136)

≥ (1− θ)
∑

ai∈Ij with Ĉ(Ij ,S)>0 and j>1

ai (137)

≥ (1− θ)
∑

ai∈Ij and j>1

ai −
∑

ai∈Ij with Ĉ(Ij ,S)=0 and j>1

ai (138)

≥ (1− θ)
∑

ai∈S<ϕ

ai − (
δ3

2

∑

ai∈S<ϕ

ai +
γ

n
). (by statement 2 of Lemma 9) (139)

(140)

We have

s1 +
∑

ai∈S≥ϕ

ai ≥ (1− θ)(
∑

ai∈S<ϕ

ai)− (
δ3

2

∑

ai∈S<ϕ

ai +
γ

n
) +

∑

ai∈S≥ϕ

ai (141)

≥ (1− θ)(
∑

ai∈S

ai)− (
δ3

2

∑

ai∈S<ϕ

ai +
γ

n
) (142)

≥ (1− θ)(
∑

ai∈S

ai)− (
δ3

2

∑

ai∈S

ai +
γ

n
) (note S<ϕ ⊆ S) (143)

≥ (1− θ − δ3

2
)(
∑

ai∈S

ai)−
γ

n
(144)

≥ (1− θ − δ3)(
∑

ai∈S

ai). (by inequality (117)) (145)

By statements 1 and 2 of Lemma 9, we have

s1 =
∑

Ĉ(Ij ,S)>0 and j>1

Ĉ(Ij , S)πj (146)

≤
∑

Ĉ(Ij ,S)>0 and j>1

(1 + θ)C(Ij , S)πj (by statement 1 of Lemma 9) (147)

≤ 1 + θ

1− ϕ

∑

ai∈Ij with Ĉ(Ij ,S)>0 and j>1

ai (148)

≤ 1 + θ

1− ϕ

∑

ai∈S<ϕ

ai. (149)
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By statement 1 of Lemma 9, we have

s1 +
∑

ai∈S≥ϕ

ai ≤ 1 + θ

1− ϕ

∑

ai∈S

ai (150)

≤ (1 + θ)(1 + 2ϕ)
∑

ai∈S

ai (151)

≤ (1 + θ + 4ϕ)
∑

ai∈S

ai. (152)

Therefore,

(1 − (θ + δ3))(
∑

ai∈S

ai) ≤ s1 +
∑

ai∈S≥ϕ

ai ≤ (1 + (θ + 4ϕ))(
∑

ai∈S

ai). (153)

Since the condition at line 14 in Approximate-Bin-Packing(.) is false, we discuss two cases

• Case n′
≥ϕ > 0.

We have the inequalities

∑

ai≥ϕ

ai ≤ n≥ϕ (154)

≤ (1 + θ)n′
≥ϕ (by inequality (113)) (155)

≤ 2n′
≥ϕ (156)

≤ δ2s0. (by inequality (134) ) (157)

By statement 1 of Lemma 9, we have

n′
≥ϕ

1− θ
≥ |S≥δ|. (158)

We also have

n′
≥ϕ

1− θ
≤ δ2

4(1− θ)
s (line 14 in Approximate-Bin-Packing(.) is false) (159)

≤ δ2

2
s (160)

≤ δ2

2
(1 + δ)s0 (by inequality (118)) (161)

≤ δ2s0. (162)

In this case, x =
n′
≥ϕ

1−θ by inequality (158) and inequalities (159) to (162), and ξ = max(δ2, θ+

δ3) by inequality (153). They satisfy the conditions of Lemma 24, which implies that the
approximation ratio is (1+8(δ+ ξ)) ≤ (1+ τ) by the assignments in lines 1 and 2 in algorithm
Approximate-Bin-Packing(.).

• Case n′
≥ϕ = 0.

By statement 2 of Lemma 9, we have

δ|S≥ϕ| ≤
∑

ai≥ϕ

ai

=
∑

ai∈I1

ai
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≤ δ3

2
s0 +

γ

n
(apply statement 2 of Lemma 9 with Ĉ(I1, S) = n′

≥ϕ = 0)

≤ δ3

2
s0 + δ

≤ δ3

2
s0 +

δ4s

8
(by inequality (116))

≤ δ3

2
s0 +

δ4(1 + δ)s0
8

(by inequality (118))

≤ δ3

2
s0 +

δ4s0
4

≤ 3δ3

4
s0

≤ 3δ3

4

8s

δ
(by inequality (118))

≤ 6δ2s.

Therefore,

|S≥ϕ| ≤ 6δs (163)

≤ 6δ(1 + δ)s0 (164)

≤ 12δs0. (165)

In this case, let x = 6δs by inequality (163), and let ξ = max(12δ, θ + δ3, 1 + θ + 4ϕ) by
inequality (153) and inequalities (163) to (165). They satisfy the conditions of Lemma 24, which
implies the approximation ratio is (1 + 8(δ + ξ)) ≤ (1 + τ) by the assignments in lines 1 and 2 in
algorithm Approximate-Bin-Packing(.). This completes the proof of Claim 10.3.

Claim 10.4. The algorithm runs in O(n(log n)(log logn)
∑

i=1
ai

+ ( 1τ )
O( 1

τ
)) time.

Proof: We give the computational time about the algorithm. Lines 1 to 8 take O(1) time.
Line 9 takes O(log n) time. By Lemma 9, Line 10 takes O(( n

∑

n

i=1
ai

)(log n) log logn)) time. Line

13 takes O(n) time by calling Linear-Time-Packing(S) by Lemma 16. This only happens when
∑n

i=1 ai = O(1).

By Lemma 23, statement 16 of Approximate-Bin-Packing(.) takes O( n
∑

n

i=1
ai

+ O( 1β )
O( 1

β
)) =

O( n
∑

n

i=1
ai

+O( 1τ )
O( 1

τ
)) time.

Line 21 takes O(1) time by Lemma 24. Therefore, in the worst case, the algorithm takes

O(n(log n)(log logn)
∑

i=1
ai

+ ( 1τ )
O( 1

τ
)) time.

Claim 10.5. The failure probability of the algorithm is at most 1
4 .

Proof: Two statements 10 and 16 in the algorithm may fail due to randomization. Each of them
has probability at most α to fail by Lemma 9 (for statement (a)), and Claim 10.2. Therefore, the
failure probability of the entire algorithm is at most 2α ≤ 1

4 .

The theorem follows from the above claims. This completes the proof of Theorem 10

The following Theorem 25 gives a dense sublinear time hierarchy approximation scheme for bin
packing problem.

Theorem 25. For each ǫ ∈ (0, 1), and b ∈ (0, 1], there is a randomize (1 + ǫ)-approximation for
all

∑

(nb)-bin packing problems in time O(n1−b(logn) log log n) time, but there is no o(n1−b) time
(1 + ǫ)-approximation algorithm

∑

(nb)-bin packing problem.

32



Proof: It follows from Theorem 10 and Theorem 11.

6.4. NP Hardness

In this section, we show that
∑

(nb) and S(δ) are both NP-hard. We reduce the 3-partition problem,
which is defined below, to them.

Definition 26. The 3-partition problem is to decide whether a given multiset of integers in the
range (B4 ,

B
2 ) can be partitioned into triples that all have the same sum B, where B is an integer.

More precisely, given a multiset S of n = 3t positive integers, can S be partitioned into m subsets
S1, S2, . . . , St such that the sum of the numbers in each subset is equal?

It is well known that 3-partition problem is NP-complete [14]. It is used in proving the following
NP-hard problems (Theorem 27 and Theorem 28)

Theorem 27. For each constant b ∈ (0, 1), the bin packing problem in
∑

(nb) is NP-hard.

Proof: We construct a reduction from 3-partition problem to the
∑

(nb)-bin packing problem
via some padding. Assume that b1, . . . , bn is a list of 3-partition problem with all items in (B4 ,

B
2 ).

The bin packing problem for
∑

(nb) is constructed below:
It has a new list of elements: a1, . . . , an, an+1, . . . , am such that

∑m
i=1 ai = mb, where ai =

bi
B

for i = 1, . . . , n, and each aj with j > n is 1, 1 − 1
5 or in (0, 1

5 ]. Furthermore, there are at most

five items of size 1 − 1
5 . Let m =

⌈

n
2
b

⌉

. Therefore, we have mb ≥ n2. This makes us the sufficient

flexibility to select those items ai with i > n. Let s =
∑n

i=1 ai. Select a number n1 such that
mb − 5 ≤ (n1 − n) + s < mb − 4. In other words, we have mb + n − s − 5 ≤ n1 < mb + n− s − 4.
Thus, for all large n, we also have n1 < mb + n − s − 4 ≤ mb + n ≤ 2mb < m

2 since b < 1. Let
ai = 1 for all i = n + 1, . . . , n1. Therefore,

∑n1

i=1 ai ∈ [mb − 5,mb − 4). Then we select ai with
i = 1, . . . ,m so that

∑m
i=1 ai = mb. We select the next five items an′+1, . . . , an′+5 of size 1− 1

5 . Thus,
∑n1

i=1 ai ∈ [mb−1,mb). Let r = mb−∑n1

i=1 ai. We have r ∈ (0, 1]. The rest items an′+6, an′+7, . . . , am
are partitioned into five groups G1, G2, G3, G4, and G5 that size difference between any two of them
is at most one. Each item in Gi is assigned

r
5|Gi|

∈ (0, 15 ]. Thus, 1)
∑

ai∈Gj
ai =

r
5 ; 2)

∑m
i=n′+6 ai = r;

and 3)
∑m

i=1 ai = mb.
There is an optimal bin packing solution such that the five items of size 1 − 1

5 are in five bins
with all items in the range (0, 1

5 ]. There is a solution for the 3-partition problem if and only if the
bin packing problem can be solved with n

3 + (n1 − n) + 5 bins. Any packing with n
3 + (n1 − n) + 5

bins for a1, a2, . . . , am has to be the case that each item aj with j > n′+5 is in a bin containing one
item of size 1 − 1

5 since it is impossible for ai (i ≤ n) to share a bin with aj (n′ + 1 ≤ j ≤ n′ + 5).

Combining Theorem 27 and Theorem 25, we see a sublinear time hierarchy of approximation
scheme for a class of NP-hard problems, which are derived from bin packing problem. We show that
the S(δ)-bin packing problem is NP-hard if δ is at least 1

4 .

Theorem 28. For each δ at most 1
4 , the S(δ)-bin packing problem is NP-hard.

Proof: We reduce the 3-partition problem to S(δ)-bin packing problem. Assume that S =
{a1, . . . , a3m} is an input of 3-partition. We design that a S(δ)-bin packing problem as below: the
bin size is 1 and the items are a1

B , . . . , a3m

B . The size of each item is at least 1
4 since each ai >

B
4 . It

is easy to see that there is a solution for the 3-partition problem if and only if those items for the
bin packing problem can be packed into m bins.
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7. Constant Time Approximation Scheme

In this section, we show that there is a constant time approximation for the S(δ)-bin packing problem
with (c, η, k)-related bins for any positive constant δ.

Lemma 29. Assume that c, η, and k are constants. Assume there is a t(m,n, µ) time and z(m,n, µ)
queries algorithm A such that given a list S of items of size at least δ, it returnsm items y′1, y

′
2, . . . , y

′
m

from the list with Rank(y′i, S)∩ [ih−µh, ih+µh] 6= ∅ for i = 1, 2, . . . ,m. Then there is an z(m,n, µ)

queries and t(m,n, µ) + ( 1
ǫδ )

O( 1
δ
) time approximation scheme B for the S(δ)-bin packing problem

with (c, η, k)-related bins. Furthermore, if A fails with probability at most α, then B also fails with
probability α.

Proof: Assume that c, η, and k are positive constants. Let ǫ be an arbitrary positive constant.
The constants µ, ǫ1, and m are given according to equations (8) to (10). We let the number of
elements n be large enough such that 2q

nδη < ǫ
3 , where q is defined at Lemma 14.

Assume that a′1 ≤ a′2 ≤ . . . ≤ a′n≥δ
is the increasing order of all input elements at least δ. Let

L0 = a′1 ≤ a′2 ≤ . . . ≤ a′n. We partition them into y0A1y1A2y2 . . . AmymR such that each Ai has
exactly h elements and R has less than h elements.

Using algorithm A, we make approximation y′i to yi such that the rank of y′i has at most µh
distance with that of yi. Assume that Rank(y′i, S) ∩ [ih− µh, ih+ µh] 6= ∅ for i = 1, 2, . . . ,m from
algorithm A.

By Lemma 14, we have approximation scheme for {y′h1 , . . . , y′hm} with computational time

( 1
ǫδ )

O( 1
δ
), which follows from Lemma 14 and the selection of m and µ. The approximation scheme

for S(δ)-bin packing problem follows from Lemma 20. The total time is t(m,n, µ) + ( 1
ǫδ )

O( 1
δ
) for

running A and time involved in the algorithm of Lemma 14.

Lemma 29 is applied in both deterministic and randomized algorithms in this paper. We note
that algorithm A in Lemma 29 is deterministic if α = 0.

For the bin packing problem with item of size at least a positive constant, our Theorem 30
generalizes a result in [3].

Theorem 30. Assume that c, η, and k are constants. There is an O( 1
δ2ǫ4 ) queries and ( 1

ǫδ )
O( 1

δ
) time

randomized approximation scheme algorithm for the S(δ)-bin packing problem with (c, η, k)-related
bins.

Proof: Let S be the list of input items of size at least δ. It follows from Lemma 19, and

Lemma 29. By Lemma 19, we have a t(m,n, µ) = O(m
2(logm)2)

µ2 ) time algorithm such that using

z(m,n, µ) = O(m
2 logm
µ2 ) random elements from A, it generates elements y′1 ≤ . . . ≤ y′m from the

input list such that Pr[Rank(y′i, S) ∩ [ih− µh, ih+ µh] = ∅ for at least one i ∈ {1, . . . ,m}] ≤ α. We
assume that the m items y′1, y

′
2, . . . , y

′
m satisfy Rank(y′i, S)∩ [ih−µh, ih+µh] 6= ∅ for i = 1, 2, . . . ,m.

The approximation scheme follows from Lemma 29.

Corollary 31 ([3]). There is an O( 1
δ2ǫ4 ) queries and ( 1

ǫδ )
O( 1

δ
) time approximation scheme algo-

rithm for the S(δ)-bin packing problem.

We have Theorem 32 that shows an example of NP-hard problem that has a constant time
approximation scheme.

Theorem 32. There is an NP-hard problem that has a constant time approximation scheme.

Proof: It follows from Theorem 28 and Corollary 31.
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8. Streaming Approximation Scheme

In this section, we show a constant time and constant space streaming algorithm for the bin packing
problem. For the streaming model of the bin packing problem, we output a plan to pack the items
that have come from the input list, and the number of bins to approximate the optimal number of
bins. Our algorithm only holds a constant number of items. Therefore, it has a constant updating
time and constant space complexity.

Lemma 33. There is an O(u) updating time algorithm to select u random elements from a stream
of input elements.

Proof: We set up u positions to put the u elements. There is a counter n to count the total
number of elements arrived. For each new arrived element an, the j-th position uses probability 1

n
to replace the old element at the j-th position with the new element. For each element ai, with
probability 1

j
j

j+1 . . .
n−1
n = 1

n , it is kept at each of the u positions after processing n elements.

Therefore, we keep u-random elements from the input list.

A brief description of our streaming algorithm for the bin packing problem is given in section 2.1.
Using the method of Lemma 33, we maintain a list X of O(1) random items of large sizes from the
input list. The list is updated after receiving every new element. The sizes of each small item is
added into a variable s1. Using the method in section 6.1, we find the approximate crucial items
from the list X of random large items, which are the approximate ih-th elements among the large
items of size at least δ for i = 1, . . . ,m, where h and m are defined in equations (16), and ((10)),
respectively. The algorithm described in section 5 is used to pack large items. The small items are
filled into bins which have space left after packing large items, and some additional fresh bins. With
the sum s1 of sizes of small items, we can calculate the approximate number of fresh bins to be
needed to pack them.

Algorithm Streaming-Bin-Packing
Input: a positive constant ǫ, and a streaming of items of size at least δ.
Output: an (1 + ǫ)-approximation.
Steps:

1. Let β := γ
30 and ǫ := 6β.

2. Let δ := ǫ
4 and θ := 0.

3. Let µ, ǫ1 and m are selected by equations (8), (9), and (10), respectively.

4. Let c := η := k := 1 (classical bin packing).

5. Let α := 1/8.

6. Let u := c1m
2 logm
µ2 , where c1 is defined in Lemma 19.

7. Let v := 2m
βδ +m.

8. Let X [1...u] be an array of u elements.

9. Let X [i] := 0 for i = 1, . . . , u.

10. Let Y [1...v] be an array of v elements.

11. Let Y [i] := 0 for i = 1, . . . , v.

12. Let n := 0.

13. Let n≥δ := 0.
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14. Let s1 := 0.

15. For each new element ai

16. Let n := n+ 1.

17. If ai < δ

18. then

19. Let s1 := s1 + ai.

20. else

21. Let n≥δ := n≥δ + 1.

If n≥δ < v then let Y [n≥δ] := ai.

22. For i = 1 to u, let each X [i] take the new elements with probability 1
n≥δ

.

23. If n≥δ > v

24. then

25. Output Packing-With-Many-Large-Items(α, β, n, s1, n≥δ, S) (see Lemma 23).

26. else

27. Let (b1, . . . , bt) =Linear-Time-Packing(n≥ϕ, Y ) (see Lemma 16) (each bin bi repre-
sents a packing of items in Y ).

28. For each bi with left space ui > δ,

29. move ui − δ (fractional)item size into bi from s1, and let s1 = s1 − (ui − δ).

30. Allocate s1 into fresh bins such that each bin except the last one wastes δ space.

End of Algorithm

Theorem 34. Streaming-Bin-Packing is a single pass randomized streaming approximation scheme
for the bin packing problem such that it has O(1) updating time and O(1) space, and computes an

approximate packing solution Apx(n) with Sopt(n) ≤ App(n) ≤ (1 + ǫ)Sopt(n) + 1 in (1ǫ )
O( 1

ǫ
) time,

where Sopt(n) is the optimal solution for the first n items in the input stream, and App(n) is an
approximate solution for the first n items in the input stream.

Proof: Let ǫ be an arbitrary positive constant. Let δ = ǫ
1+ǫ . By Lemma 33, we assume that u

random elements have been selected from the input elements with size at least δ > 0. We just add
all elements with size less than δ into a sum s1.

If the condition of line 23 in the algorithm Streaming-Bin-Packing is true, then the inequality (93)
in Lemma 23 can be satisfied since h′ =

⌊n≥δ

m

⌋

. Furthermore, as θ = 0, the conditions of Lemma 23
are satisfied. The approximation ratio follows from Lemma 23.

Assume the condition of line 23 is not true in the rest of the proof. Let U be the set of bins for
an (1+ ǫ)-approximate solution to items of size at least δ by Lemma 16. It takes only O(m) bins to
pack those large items since n≥ϕ is less than v which is O(m). Therefore, we only need t = O(m)
bins for packing the items in Y . The final part of the algorithm fills all small items accumulated in
s1 into those bins in U so that each bin has less than δ left. Put all of the items less than δ into
some extra bins, and at most one of them has more than δ space left. Filling the small items of size
less than δ is to let each bin except the last one waste no more than δ space. This is a fractional way
to pack small items. Since the item size is at most δ, and each bin with (fractional) small items has
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at least δ space left. The fractional bin packing for adding small items can bring an non-fractional
(regular) bin packing. A similar argument is also shown in Lemma 21.

Assume that an optimal solution of a bin packing problem has two types of bins. Each of the
first type bin contains at least one item of size δ, and each of the second type bin only contains
items of size less than δ. Let V1 be the set of first type bins, and V2 be the set of all second type
bins. We have that |U | ≤ (1 + ǫ)|V1|.

Case 1. If U can contain all items, we have that |U | ≤ (1 + ǫ)|V1| ≤ (1 + ǫ)|V1 ∪ V2|.
Case 2. There is a bin beyond those in U is used. Let U ′ be all bins without more than δ space

left. We have that |U ′| ≤ |V1∪V2|
(1−δ) ≤ (1 + ǫ)|V1 ∪ V2|. Therefore, the approximate solution is at most

(1 + ǫ)|V1 ∪ V2|+ 1.

9. Sliding Window Streaming for S(δ)-Bin Packing

A sliding window stream model for bin packing problem is to pack the most recent n items. Select
an integer constant λ that is determined by the approximation ratio and δ, the least size of input
items. The idea is to start a new session to collect some random items from the input stream after
every n

λ items.
Assume that am+1, . . . , am+n are the last n input items in the input stream. We maintain a list

of sets S1, . . . , Sλ such that if Si is a set of random items in {am+ji , . . . , am+n} ([m + ji,m + n] is
called the range of Si), then the next S(i+1)(mod λ) is a set of random items in {am+ji+

n
λ
, . . . , am+n}.

On the other hand, when the range of a set Si reaches [m+ 1,m+ n]), Si is reset to be empty and
starts to collect the random elements from the scratch. We also set a pointer to the set Si that has
the largest range.

After receiving every n
λ items in the input stream, the set Si with the largest range will be passed

to the next Si+1(mod λ) if Si’s range reaches size n. The is called rotation, which makes the pointer
to the set with the largest range according to the loop S1 → S2 →, . . . , Sλ−1 → Sλ → S1. In the
following algorithm we assume that n = 0 (mod λ). Otherwise, we replace n by n′ =

⌈

n
λ

⌉

λ.
It is easy to see that n ≤ n′ ≤ n+ λ. The bin packing problem for the last n items has a small

ratio difference with that for the last n′ items if the constant λ is selected large enough.

Algorithm Sliding-Window-Bin-Packing(c, η, k, γ, δ, n)
Input: bin types constants c, η, and k, a positive constant γ, a streaming of items of size at least

δ, and a sliding window size n.
Output: an (1 + γ)-approximation
Steps:

1. Let ǫ := γ
30 .

2. Let θ := 0.

3. Let µ, ǫ1 and m are selected by equations (8), (9), and (10), respectively.

4. Let λ :=
⌈

100
γδ

⌉

.

5. Let t := n
λ .

6. Create t empty sets S1, . . . , Sk to hold random elements and make them non-active.

7. Let u := c1m
2 logm
µ2 be the number of random elements in each Si according to Lemma 19.

8. Let hj be the range size of Sj .

9. Start S1 to be active to collect random elements.
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10. Let S1 hold u copies of the first element a1 in the stream.

11. For each new element ai from the input stream (i = 2, 3, . . .)

12. For each active Sj and each of the u items ar ∈ Sj ,

13. replace ar by ai with probability 1
hj

and let hi := hi + 1.

14. Let Sj be the set with the largest range hj.

15. Let (y1, . . . , ym):=Select-Crucial-Items(m,u, Sj) (see Lemma 19).

16. Let (x1, . . . , xq) :=Pack-Large-Items(c, η, k, B) with B = {y′h1 , . . . , y′hm} (See Lemma 14).

17. Let y be the cost for the packing with solution (x1, . . . , xq).

18. Output app :=Packing-Conversion(n, y) (see Lemma 20).

19. If i = 0(mod t)

20. then

21. if i < n

22. then make S(j+1) (mod t) be active, and let h(j+1)(mod t) = 0.

23. if i ≥ n

24. then let Sj hold u copies of ai and let hj = 1 (reset Sj).

End of Algorithm

We have Theorem 36 that shows an example of NP-hard problem that has a constant time and
constant space sliding window streaming approximation scheme.

Theorem 35. Assume that c, η, and k are constants. Let δ be an arbitrary constant. Then Sliding-
Window-Bin-Packing(.) is a single pass sliding window streaming randomized approximation algo-
rithm for the S(δ)-bin packing problem with (c, η, k)-related bins that has O(1) updating time and
O(1) space, and computes an approximate packing solution App(.) with Soptc,η,k(n) ≤ App(n) ≤
(1 + γ)Soptc,η,k(n) in ( 1γ )

O( 1
γ
) time, where Soptc,η,k(n) is the optimal solution for the last n items

in the input stream, and App(n) is an approximate solution for the most recent n items in the input
stream.

Proof: Multiple sessions of groups are generated to maintain the progress of incoming elements.
The purpose of the choice of λ at line 4 in Sliding-Window-Bin-Packing(.) is to let it satisfy that
n
λ ≤ γnδ/100 since n items needs at least mδ bins and n

λ items needs at most n
λ bins. This control

is implemented in lines 19 to 23 in the algorithm Sliding-Window-Bin-Packing(.).
Assume that the n integers in [1, n] represent the last n items from the input stream. Each of the

λ groups takes care of the list items in the range [i · nλ + j, n] for i = 0, . . . , λ−1, where j is an integer

that moves in the loop 0 → 1 → 2 → 3 → . . . → n
λ − 1 → 0. We keep λ groups of u = c1m

2 logm
µ2

random elements each according to Lemma 33, where µ is defined as the proof in Lemma 29 and
Lemma 19. After every n

λ items, we start picking a new session of elements and drop the oldest
session.

When a set Sj holds u random elements from the last h elements for h ∈ [n−t, n+t], where t = n
λ .

The approximation derived from Sj has a small difference with the optimal solution for the last n
elements. Let Soptc,η,k(n) be the optimal solution for packing the last n items with (c, η, k)-related
bins. We have that Soptc,η,k(h) − t ≤ Soptc,η,k(n) ≤ Soptc,η,k(h) + t. By Lemmas 14, 19, and 20,
the algorithm outputs an (1+γ/2)-approximation for Soptc,η,k(h). By the setting of t, we have that
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(1− γ/2)Soptc,η,k(h) ≤ Soptc,η,k(n) ≤ (1+ γ/2)Soptc,η,k(h). Therefore, an (1+ γ/2) approximation
to Soptc,η,k(h) is a (1 + γ) to Soptc,η,k(n).

Theorem 36. There is an NP-hard problem that has a constant time and space sliding windows
approximation scheme.

Proof: It follows from Theorem 28 and Theorem 35.

9.1. Constant Time Approximation Scheme for Random Sizes

In this section, we identify more cases of the bin packing problem with constant time approximation.
One interesting case is that all items are random numbers in (0, 1].

Definition 37. Let δ1, δ2 and ǫ1 are positive parameters. For a list a1, . . . , an of input of bin packing
problem, it has the (δ1, δ2, ǫ1)-property if the list a1, . . . , an satisfies

⌈

δ2
c− δ2

|{i : ai ≤ δ2 and ai ∈ {a1, . . . , an}}|
⌉

≤ ǫ1ηδ1|{i : ai ≥ δ1 and ai ∈ {a1, . . . , an}}|.

Theorem 38. Let δ1, δ2 and ǫ are positive constants with δ2 ≥ δ1. Then there is a constant

( 1
ǫδ1

)O( 1
δ1

) time algorithm such that if the bin packing problem with (c, η, k)-related bins and
(δ1, δ2, ǫ/3)-property, it gives an (1 + ǫ)-approximation.

Proof: Let t1 be the cost of an optimal solution to pack those items of size at least δ1 and t2 be
the cost of an optimal solution to pack those items of size at most δ2. Let t be the cost of an optimal
solution to pack all items in the list. Clearly, we have t ≥ t1.

The number of bins is at least b1 = δ1|{i : ai ≥ δ1 and ai ∈ {a1, . . . , an}}| for packing those
items of size at least δ1. The cost for packing those items of size at least δ1 is at least ηb1 since the
least cost is η among all bins. Thus, ηb1 ≤ t1. The number of bins for packing those items of size

at most δ2 is at most b2 =
⌈

δ2
c−δ2

|{i : ai ≤ δ2 and ai ∈ {a1, . . . , an}}|
⌉

since at most one bin wastes

space more than δ2. The cost for packing those items of size δ2 is at most b2 since 1 is the upper
bound of the largest cost bin.

With ( 1
ǫδ1

)
O( 1

δ1
)
time, we derive an (1 + ǫ

3 )-approximation b′1 for the items of size at least δ1 by
Theorem 30. We have b1 ≤ b′1 since b′1 is an approximation to the optimal solution and b1 is a lower
bound of the optimal solution for packing items of size at least δ1. The cost for the bins for packing
those items of size at most δ2 is at most b2 ≤ ǫ

3ηb1 ≤ ǫ
3ηb

′
1 because of the (δ1, δ2, ǫ/3)-property. We

output the approximation with cost b′1 +
ǫ
3ηb

′
1. We have

b′1 +
ǫ

3
ηb′1 ≤ (1 +

ǫ

3
)t1 +

ǫ

3
(1 +

ǫ

3
)t1 (note η ≤ 1)

≤ (1 + ǫ)t1

≤ (1 + ǫ)t.

Therefore, we derive an (1 + ǫ)-approximation for packing the input list with (c, η, k)-related bins.

Theorem 39. Assume that c, η, and k are constants. Assume that a and b with a < b ≤ c are two

constants in [0, 1]. Let ǫ be a constant in (0, 1]. Then there is a randomized constant (1ǫ )
O( 1

(a+ǫ)
)

time approximation scheme for the bin packing problem with (c, η, k)-related bins that each element
is a random element from [a, b].
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Proof: Let ǫ2 be a constant in (0, 1
4 ) and will be determined later. Let ǫ1 = ǫ

3 . Let δ1 = δ2 =
a+ ǫ2(b− a). We prove that a list with random elements from [a, b] satisfies (δ1, δ2, ǫ1)-property for
all large n with high probability. Assume that a1, . . . , an is a list of random elements in [a, b].

We note that with probability 0, a random element ai from [a, b] is equal to a. For each random
element ai ∈ [a, b], with probability p1 = 1 − ǫ2, we have ai ≥ δ1. By Theorem 4, with probability
at most P1 = g1(

1
4 )

p1n, n1 = |{i : ai ≥ δ1}| is less than (p1 − 1
4 )n elements. We note (p1 − 1

4 )n ≥ n
4

since p1 ≥ 1
2 .

For each random element ai ∈ [a, b], with probability p2 = ǫ2, we have ai < δ2. By Theorem 5,
with probability at most P2 = g2(1)

p2n, we have n2 = |{i : ai < δ2}| is more than (1+1)p2n = 2ǫ2n.
Assume that n1 ≥ n

4 and n2 ≤ 2ǫ2n.
Since ǫ2 is a constant in (0, 1

4 ), we have δ2 ≤ a+ 1
4 (b− a). Thus, we have

δ2
c− δ2

≤ δ2
b− δ2

≤ b

b− δ2

≤ b

b− (a+ 1
4 (b− a))

≤ 4b

3(b− a)
.

Assume that n is large enough such that ( 1
b−a )ǫ2n ≥ 1. We have that

⌈

δ2
c− δ2

n2

⌉

≤ δ2
c− δ2

n2 + 1

≤ 4b

3(b− a)
n2 + 1

≤ 4b

3(b− a)
· 2ǫ2n+ 1

≤ 16b

3(b− a)
ǫ2n

≤ ǫ1ηδ1
n

4
≤ ǫ1ηδ1n1,

where ǫ2 is selected to be 3ǫ1ηδ1(b−a)
64b , which is less than 1

4 . Therefore, with probability at most

P1 + P2, the (δ1, δ2, ǫ1)-property is not satisfied. Theorem 39 follows from Theorem 38.

Theorem 40. Assume that a < b are two constants in [0, 1]. Then there is a randomized constant

(1ǫ )
O( 1

a+ǫ
) time approximate scheme for the bin packing problem that each element is a random

element from [a, b].

Proof: It follows from Theorem 39.

10. Conclusions

This paper shows a dense hierarchy of approximation schemes for the bin packing problem which has
a long history of research. Pursing sublinear time algorithm brings a better understanding about
the technology of randomization, and also gives some new insights about the problems that may
already have linear time solution. Our sublinear time algorithms are based on an adaptive random
sampling method for the bin packing problem developed in this paper. The hierarchy approach,
which is often used in the complexity theory, may give a new way for algorithm analysis as it gives
more information than the worst case analysis from the classification.
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