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Abstract. Justification logics are epistemic logics that include explicit
justifications for an agent’s knowledge. In the present paper, we introduce
a justification logic JALC over the description logic ALC. We provide a
deductive system and a semantics for our logic and we establish sound-
ness and completeness results. Moreover, we show that our logic satisfies
the so-called internalization property stating that it internalizes its own
notion of proof. We then sketch two applications of JALC: (i) the jus-
tification terms can be used to generate natural language explanations
why an ALC statement holds and (ii) the terms can be used to study
data privacy issues for description logic knowledge bases.
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1 Introduction

Description logics [7] are a variant of modal logic that is used in knowledge
representation to model the universe of discourse of an application domain and
to reason about it. In the present paper we study the basic logic ALC which is
the minimal description logic that is closed under boolean connectives. Our aim
is to extend ALC with so-called justification terms yielding a justification logic
over ALC.

Justification logics [4] are epistemic logics that feature explicit justifications
for an agent’s knowledge and they allow to reason with and about these justifi-
cations. The first logic of this kind, the logic of proofs LP, has been developed
by Artemov [2, 3] to solve the problem of a provability semantics for S4. Since
then many applications of justification logics have been studied. For instance,
these logics have been used to create a new approach to the logical omniscience
problem [6], to explore self-referential proofs [18], to study evidence tracking [5],
and to investigate the role of the announcement as a justification in public an-
nouncement logics [10, 11].

Instead of the simple statement A is known, denoted �A, justification logics
reason about justifications for knowledge by using the construct [t]A to formalize
t is a justification for A, where the evidence term t can be viewed as an infor-
mal justification or a formal mathematical proof depending on the application.



Evidence terms are built by means of operations that correspond to the axioms
of S4 as Fig. 1 shows.

S4 axioms LP axioms
�(φ→ ψ)→ (�φ→ �ψ) [t](φ→ ψ)→ ([s]φ→ [t · s]ψ) (application)
�φ→ φ [t]φ→ φ (reflexivity)
�φ→ ��φ [t]φ→ [!t][t]φ (inspection)

[t]φ ∨ [s]φ→ [t+ s]φ (sum)

Fig. 1. Axioms of S4 and LP

Internalization is a key property for any justification logic. It states that for
each derivation D of a theorem A of the logic in question, there is a step-by-step
construction that transforms D into a term tD such that [tD]A is also a theorem
of the logic. Therefore, the term tD describes why, according to the logic, A must
hold.

In this paper, we introduce a new logic JALC of justified ALC - that is we
extend ALC by justification terms - and study its main features. We start with
a brief introduction to the description logic ALC. In Section 3, we introduce the
language of JALC and present a deductive system for it. We then prove the so-
called Lifting lemma saying that JALC internalizes its own notion of proof. We
define a semantics for JALC and establish soundness and completeness of the
deductive system in Section 4. Then a section about applications follows where
we give a detailed example of internalization. We make use of this example to
illustrate how internalization can be applied to

1. the problem of generating natural language explanations and
2. the problem of data privacy for ALC knowledge bases.

In Section 6, we present related work. Finally we conclude the paper and mention
some further research directions.

2 The description logic ALC

In this section, we briefly recall the main definitions concerning ALC. We will
not only study subsumption but also introduce formulas for ALC, which will be
useful when we add justification terms. Also compactness of ALC will play an
important role later.

Definition 1 (Concept). We start with countably many concept names and
role names. The set of concepts is then defined inductively as follows:

1. Every concept name is a concept.
2. If C and D are concepts, R is a role name, then the following expressions

are concepts:
¬C, C uD, ∀R.C.



As usual, we define C tD := ¬(¬C u¬D), ∃R.C := ¬∀R.¬C, and > := At¬A
for some fixed concept name A.

Definition 2 (LA formula).

1. If C and D are concepts, then C v D is an (atomic) LA formula.
2. If φ and ψ are LA formulas, then the following expressions are LA formulas:

¬φ, φ ∧ ψ.

Definition 3 (ALC interpretation). An ALC interpretation is a pair I =
(∆I , ·I) where ∆I is a non-empty set called the domain of I and ·I maps each
concept name A to a subset AI ⊆ ∆I and each role name R to a binary relation
RI on ∆I . An interpretation is extended to non-atomic concepts as follows.

1. (¬C)I = ∆I \ CI

2. (C uD)I = CI ∩DI

3. (∀R.C)I = {d ∈ ∆I : ∀d′ ∈ ∆I(R
I(d, d′)→ CI(d′))}

Definition 4 (ALC satisfiability). We inductively define when an LA formula
is satisfied in an ALC interpretation I.

1. I |= C v D iff CI ⊆ DI

2. I |= ¬φ iff not I |= φ
3. I |= φ ∧ ψ iff I |= φ and I |= ψ

We say an LA formula φ is ALC valid (and write |=ALC φ) if for all interpreta-
tions I we have I |= φ. For a set of LA formulas Φ, we write |=ALC Φ if for all
φ ∈ Φ we have |=ALC φ

By the work of Schild [22], we know that ALC can be seen as a notational
variant of the multi-modal logic Kn. Thus we can transfer results from Kn to
ALC. In particular, we immediately get the following lemma about compactness
of ALC from compactness of Kn.

Lemma 1 (ALC compactness). ALC is compact: for any set Φ of LA formu-
las we have

|=ALC Φ if and only if for all finite subsets Φ′ ⊆ Φ we have |=ALC Φ
′.

3 Syntax of JALC

The aim of this section is to introduce the language of JALC, the logic of
justified ALC. Then we present a deductive system for JALC and show that it
satisfies internalization.

Definition 5 (Terms). We fix countable sets of constants Con and variables
Var, respectively. Terms t are now built according to the following grammar

t ::= x | c | t · t | t+ t | !t

where x is a variable and c is a constant. Tm denotes the set of terms.



Definition 6 (LJ Formula).

1. If C and D are concepts, then C v D is an (atomic) LJ formula.
2. If φ and ψ are LJ formulas and t is a term, then the following expressions

are LJ formulas:
¬φ, φ ∧ ψ, [t]φ.

We denote the set of LJ formulas by FmlJ . As usual, we define

φ ∨ ψ := ¬(¬φ ∧ ¬ψ) and φ→ ψ := ¬φ ∨ ψ.

Note that every LA formula also is an LJ formula.

Definition 7 (JALC deductive system). The axioms of JALC consist of
all FmlJ instances of the following schemes:

1. All valid LA formulas φ, i.e. for which |=ALC φ holds
2. [t](φ→ ψ)→ ([s]φ→ [t · s]ψ) (application)
3. [t]φ ∨ [s]φ→ [t+ s]φ (sum)
4. [t]φ→ φ (reflexivity)
5. [t]φ→ [!t][t]φ (introspection)

A constant specification CS is any subset

CS ⊆ {[c]φ : c is a constant and φ is an axiom of JALC}.

A constant specification CS is called axiomatically appropriate if for every axiom
φ of JALC, there is a constant c such [c]φ ∈ CS.

The deductive system JALC(CS) is the Hilbert system that consists of the
above axioms of JALC and the following rules of modus ponens and axiom
necessitation:

φ φ→ ψ
ψ

, [c]φ where [c]φ ∈ CS.

For a set of LJ formulas Φ we write Φ `CS φ to state that φ is derivable from
Φ in JALC(CS). When the constant specification CS is clear from the context
we will write only ` instead of `CS .

We say a set Φ of LJ formulas is CS consistent if there exists a formula φ such
that Φ 6`CS φ. The set Φ is called maximal CS consistent if it is CS consistent
but has no proper extension that is CS consistent.

The Lifting Lemma states the JALC internalizes its own notion of proof.
This is a standard property that any justification logic should have.

Lemma 2 (Lifting lemma). Let CS be an axiomatically appropriate constant
specification. If

[x1]φ1, . . . , [xn]φn, ψ1, . . . ψm `CS χ,

then there is a term t(x1, . . . , xn, y1, . . . , ym) such that

[x1]φ1, . . . , [xn]φn, [y1]ψ1, . . . , [ym]ψm `CS [t(x1, . . . , xn, y1, . . . , ym)]χ.



Proof. Let Φ be the set {[x1]φ1, . . . , [xn]φn, [y1]ψ1, . . . , [ym]ψm}. We proceed by
induction on the length of the derivation of χ and distinguish the following cases.

1. χ is an axiom of JALC. Since CS is axiomatically appropriate, there is a
constant c such that [c]χ ∈ CS. Thus ` [c]χ follows by axiom necessitation.

2. χ is [xi]φi for some i. We find [xi]φi ` [!xi][xi]φi by (introspection) and
modus ponens.

3. χ is ψi for some i. We immediately have [yi]ψi ` [yi]ψi.
4. χ follows from ψ → χ and ψ by modus ponens. By the induction hypothesis

there are terms t1(x1, . . . , xn, y1, . . . , ym) and t2(x1, . . . , xn, y1, . . . , ym) such
that

Φ ` [t1(x1, . . . , xn, y1, . . . , ym)](ψ → χ)

and

Φ ` [t2(x1, . . . , xn, y1, . . . , ym)]ψ.

Thus

Φ ` [t1(x1, . . . , xn, y1, . . . , ym) · t2(x1, . . . , xn, y1, . . . , ym)]χ

follows from (application) and applying modus ponens twice.
5. χ is the conclusion of axiom necessitation. Then χ has the form [c]χ′. Thus

we find ` [!c][c]χ′ by (introspection) and modus ponens. ut

4 Semantics of JALC

The semantics of JALC is based on so-called F-models [16] for justification
logics. These models consist of a Kripke frame and an evidence function spec-
ifying for each state which terms are admissible evidence for which formulas.
This evidence function has to satisfy certain closure conditions matching the
axioms of JALC. Finally, we assign to each state an ALC interpretation that
gives meaning to concept and role names.

Definition 8 (JALC model). A JALC model meeting a constant specification
CS is a tuple M = (W, /, E , I) where

1. W is a non-empty set (of states)
2. / is a binary relation on W that is transitive and reflexive
3. E is an evidence function E : W ×Tm→ P(FmlJ) that satisfies the following

closure conditions for any states w, v ∈W :

(a) if [c]φ ∈ CS, then φ ∈ E(w, c)
(b) if /(w, v), then E(w, t) ⊆ E(v, t)
(c) if (φ→ ψ) ∈ E(w, t) and φ ∈ E(w, s), then ψ ∈ E(w, t · s)
(d) E(w, s) ∪ E(w, t) ⊆ E(w, s+ t)
(e) if φ ∈ E(w, t), then [t]φ ∈ E(w, !t)

4. I associates with each w ∈W an ALC interpretation I(w) = (∆w, ·I(w)).



We use the standard notion of satisfiability for F-models. A formula [t]φ
holds at a state w if φ holds at all states reachable from w and the term t is
admissible evidence for φ at w.

Definition 9 (Satisfiability). We inductively define when a formula is satis-
fied in a model M = (W, /, E , I) at a world w ∈W .

1. M, w |= C v D iff CI(w) ⊆ DI(w)

2. M, w |= ¬φ iff not M, w |= φ
3. M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ
4. M, w |= [t]φ iff M, w′ |= φ for all w′ ∈W such that w /w′ and φ ∈ E(w, t).

We write |=CS φ and say that the formula φ is valid with respect to the
constant specification CS if for all modelsM = (W, /, E , I) that meet CS and all
w ∈W we have M, w |= φ.

As usual, soundness follows by a straightforward induction on the length of
JALC(CS) derivations.

Theorem 1 (Soundness). Let φ be an LJ formula and CS a constant specifi-
cation. We have

`CS φ implies |=CS φ.

In the remainder of this section, we will establish completeness of the deduc-
tive system JALC(CS). Our aim is to construct a canonical model. To do so,
we first need to show that certain ALC interpretations exist.

Definition 10. Let Φ be a set of LJ formulas. We set

GΦ := {φ ∈ Φ : φ is an LA formula}.

Lemma 3 (Existence of ALC interpretations). There exists a function IG
that maps any consistent set of formulas Φ to an ALC interpretation IG(Φ) such
that IG(Φ) |= GΦ.

Proof. We show that there exists an ALC interpretation I such that I |= GΦ. We
suppose GΦ is not ALC satisfiable and aim at a contradiction. By compactness
of ALC there exists a finite subset Φ′

G ⊆ ΦG that is not ALC satisfiable. That
means

∧
Φ′
G is not satisfiable which implies |=ALC ¬

∧
Φ′
G. Therefore, ¬

∧
Φ′
G is

an axiom of JALC and thus
` ¬

∧
Φ′
G. (1)

Since Φ′
G ⊆ ΦG, we also obtain

Φ `
∧
Φ′
G. (2)

From (1) and (2) we conclude Φ ` A for any formula A, which contradicts the
assumption that Φ is consistent.

Thus for any JALC consistent set of formulas Φ there exists an ALC in-
terpretation I with I |= GΦ. We let IG be a function that chooses for each
consistent Φ such an interpretation I. ut



Definition 11 (Canonical model). We define the canonical model M =
(W, /, E , I) meeting a constant specification CS as follows.

1. W is the set of all maximal CS consistent subsets of FmlJ
2. w / v if and only if for all t ∈ Tm, we have [t]A ∈ w implies A ∈ v
3. E(w, t) := {A ∈ FmlJ : [t]A ∈ w}
4. I := IG.

It is standard to show that the canonical model is indeed a JALC model,
meaning that / satisfies the frame conditions and E satisfies the closure condi-
tions of evidence functions. For details we refer to Fitting [16]. Thus we have the
following lemma.

Lemma 4. The canonical model meeting a constant specification CS is a JALC
model meeting CS.

Lemma 5 (Truth lemma). Let M be the canonical model meeting a constant
specification CS. For all LJ formulas φ and all states w in M, we have

φ ∈ w if and only if M, w |=CS φ.

Proof. Proof by induction on the structure of φ. If φ is atomic, then we have by
Lemma 3

φ ∈ w iff φ ∈ Gw iff IG(w) |= φ iff M,w |=CS φ.

The cases where φ is not atomic are standard and follow easily from the closure
conditions on the evidence function, again see [16]. ut

As usual, the Truth lemma implies completeness of the corresponding deduc-
tive system.

Theorem 2 (Completeness). Let φ be an LJ formula and CS be a constant
specification. We have

|=CS φ implies `CS φ.

5 Applications

Inference tracking. One distinguished feature of justification terms is that
they keep track of the inferences made in a logical derivation. Let us illustrate
this with the following example about a business information system storing
information about managers and their salaries.

Let Φ be a knowledge base containing the three statements:

1. If a person gets a high salary, then she handles key accounts only

high v ∀handles.keyAcc . (φ1)



2. Everyone who handles something gets a high or a low salary

∃handles.> v high t low . (φ2)

3. Person 1 handles something that is not a key account

P1 v ∃handles.¬keyAcc . (φ3)

From this knowledge base we can derive that Person 1 gets a low salary. That
is we have

φ1, φ2, φ3 ` P1 v low. (3)

However, this does not give us any information on how the derivation looks like.
We can change this situation by applying the Lifting lemma to (3) which results
in

[v]φ1, [w]φ2, [x]φ3 `CS [t]P1 v low.

Now the term t will provide explicit information about a derivation of P1 v low.
To apply the Lifting lemma we need an axiomatically appropriate constant

specification CS. We assume CS is such that for all concepts A,B,C and role
names R, the following are elements of CS:

[a](A v B → ∃R.A v ∃R.B),

[b](A v B → (C v A→ C v B)),

[c](A v B → ¬B v ¬A),

[d](A v B t C → (A v ¬B → A v C)),

[e]¬keyAcc v >.

We now find that from [v]φ1, [w]φ2, [x]φ3 the following statements are deriv-
able in JALC(CS):

[a · e]∃handles.¬keyAcc v ∃handles.>
[b · (a · e)](P1 v ∃handles.¬keyAcc→ P1 v ∃handles.>)

[(b · (a · e)) · x]P1 v ∃handles.>
[b · w](P1 v ∃handles.> → P1 v high t low)

[(b · w) · ((b · (a · e)) · x)](P1 v high t low)

[c · v]∃handles.¬keyAcc v ¬high
[(b · (c · v)) · x]P1 v ¬high

[(d · ((b · w) · ((b · (a · e)) · x))) · ((b · (c · v)) · x)]P1 v low

In the last line, the justification term

(d · ((b · w) · ((b · (a · e)) · x))) · ((b · (c · v)) · x) (4)

represents the logical steps that led to the conclusion P1 v low. We can now use
this justification term for two purposes: to give explanations and to study data
privacy.



Explanations. The justification terms can be employed to give a natural lan-
guage description of the reasoning steps performed in the proof. For instance,
since the term c justifies A v B → ¬B v ¬A, we can translate, for instance,
[c · v]ψ into

taking the contrapositive of the statement justified by v results in ψ.

Using v from our example, we get

taking the contrapositive of high v ∀handles.keyAcc
gives us ∃handles.¬keyAcc v ¬high.

Of course, for practical applications it is important to find the right level of
abstraction. In a long proof, we do not want to mention every single axiom and
every single application of an inference rule that is used. That means we do not
give an explanation for every single proof constant and every single application
occurring in a proof term. Instead, terms of a certain complexity should be
regarded as one unit representing one step in the proof. For example, because
the variable x justifies P1 v ∃handles.¬keyAcc and a, b, e are constants and
thus justify logical axioms, we can read

[(b · (a · e)) · x]P1 v ∃handles.>

in a more abstract way as

P1 v ∃handles.¬keyAcc implies

P1 v ∃handles.> by simple logical reasoning in ALC.

Data Privacy. Inference tracking is also important for applications in the area
of data privacy. In privacy aware applications only a part of a given knowledge
base is publicly accessible (say via views or via aggregation) and other parts (say
containing personally identifiable information) should be kept secret. A violation
of privacy occurs if it is possible for an agent to infer some secret information
from the public part of the knowledge base.

There are basically two possibilities to prevent such privacy violations: (i) to
refuse an answer to a query, that is make the public part of the knowledge base
smaller, or (ii) to lie about the answer, that is distort the knowledge base. In both
cases it is important to understand what led to the privacy breach. That means
to understand how it was possible a secret could be inferred from the public
knowledge. Again, if we model this situation in a justification logic, then we can
apply the Lifting lemma to obtain a term that tracks the inferences leading to
the leaked secret. This term is essentially a blueprint of a derivation of the secret.
Thus it contains information about which elements of the published part of the
knowledge base are responsible for the privacy violation and this information
can be used to alter the knowledge base such that it does no longer leak private
data.



Consider our example above about the knowledge base Φ. We assume that
P1 v low should be kept secret since it contains information that is related to
a specific person. As we have seen before, there is a violation of privacy since
we have Φ ` P1 v low and now the question is what part of Φ is responsible
for this. The justification term (4) constructed by the Lifting lemma contains
the variables v, w, x. This tells us that {φ1, φ2, φ3} is a subset of Φ from which
the secret can be inferred. Thus to prevent this privacy breach it is a good
strategy to restrict access to at least on these three elements. Of course, this
does not guarantee privacy since there may be other derivations of the secret that
start from a different subset of Φ. Still the justification term provides valuable
information for a heuristic to construct a privacy preserving knowledge base.

6 Related work

Modalized description logics. The study of multi-agent epistemic description
logics started with the investigations by Laux, Gräber, and Bürckert [19, 17]. In
those papers, like in JALC, the modal operators apply only to axioms, but not
to concepts. A similar approach for temporalizing (instead of modalizing) logics
had earlier been provided by Finger and Gabbay [15]. Baader and Laux [8]
present a description logic in which modal operators can be applied to both
axioms and concepts. Modalized description logics of this kind have then been
investigated in detail, see for example [20].

Explanations. For some reasoning services offered by an ontological informa-
tion system, users will not only be interested in the result but also in an expla-
nation of it. That is, users will need to understand how deductions were made
and what manipulations were done. There are many studies on how to gener-
ate explanations. We confine ourselves to mentioning two of them. McGuiness
and Pinheiro da Silva [21] give an overview about requirements for answer ex-
planation components of such a system. A very promising approach to provide
explanations is based on meta-inferencing [1]. While processing a query, the rea-
soning engine produces a proof tree for any given answer. This proof tree acts
then as input for a second inference run which returns answers that are explain-
ing the proof tree in natural language. In JALC we can employ the justification
terms as input to this second inference run.

Data privacy. Although knowledge base systems enter more and more applica-
tion domains, privacy issues in the context of description logics are not yet well
studied. Notable exceptions are the following: Calvanese et al. [12] address the
problem of privacy aware access to ontologies. They show how view based query
answering is able to conceal from the user information that are not logical con-
sequences of the associated authorization views. Grau and Horrocks [13] study
different notions of privacy for logic based information systems. They look at
privacy preserving query answering as reasoning problem and establish a con-
nection between such reasoning problems and probabilistic privacy guarantees
such as perfect privacy. Safe reasoning strategies for very expressive description



logics and for hierarchical ontologies are studied in [9, 24]. The approach used
there is based on the principles of locality and conservative extensions for de-
scription logics. A decision procedure for provable data privacy in the context of
ALC as well as a sufficient condition for ALC data privacy that can be checked
efficiently is presented in [23].

7 Conclusion

We extended the description logic ALC with justifications. This results in an
epistemic logic JALC over ALC where not only an agent’s knowledge can be ex-
pressed but one also has explicit justifications for that knowledge. We presented
a deductive system as well as a semantics for JALC and proved soundness and
completeness. Moreover, we showed that the justification terms of JALC reflect
its provability notion and allow thus to internalize proofs of JALC. We finally
explored two applications of this property: generating explanations and data
privacy.

It is worth noticing that our approach for adding justifications is very general
and does not rely on the particular choice of ALC. This is due to the fact
that there is no deep interaction between the justification logic part and the
description logic part of JALC (this is very similar to Finger and Gabbay’s [15]
way of temporalizing logics). Basically, we only needed the compactness property
of ALC to establish completeness. Thus we could add justifications also to other
description logics in the same way as presented here forALC and our applications
would still be possible.

Further work starts with investigating more deeply the basic properties of
JALC. We need decision procedures for it and their complexities have to be
determined. On a more practical level, we have to elaborate on the applications
of JALC. In particular, we would like to fully develop the justification terms as
explanations approach and we think it is also worthwhile to further investigate
justification terms in the context of data privacy.

There is also a second direction of future work: namely, to combine justifica-
tions and terminological reasoning by integrating justification terms in concept
descriptions. The definition of a concept then includes a clause of the form

if t is a term and C is a concept, then [t]C is a concept.

On the semantic side, the concept [t]C includes all individuals a for which t
justifies that a belongs to C. A similar approach was explored for pure modal
logic where concepts of the form �C were included into the language of descrip-
tion logic, see for instance [8]. Concepts of this modalized form turned out to be
important for several applications including procedural extension of description
logics [14]. We believe that considering justifications in concept descriptions also
is very promising.
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