A Perspective on the CoreGRID Grid Component Model

Frangoise Baude

INRIA, I3S-CNRS, University of Nice Sophia-Antipolis,
2004 route des Lucioles, Sophia Antipolis, France
Francoise.Baude@inria. fr

The Grid Component Model is a software component model designed partly in the con-
text of the CoreGRID European Network of Excellence, as an extension of the Frac-
tal model, to target the programming of large-scale distributed infrastructures such
as computing grids [3]]. These distributed memory infrastructures, characterized by
high latency, heterogeneity and sharing of resources, suggest the efficient use of sev-
eral CPUs at once to obtain high performances. To address these characteristics, GCM
features

— primitive components that can be deployed on different locations of the grid, through
the notion of Virtual Nodes and their associated XML-based deployment
descriptors,

— composite and distributed components exporting server and client interfaces of their
inner components

— collective interfaces (multicast, gathercast, MxN)

— and, as in Fractal, an open control part giving GCM components full introspection
and reconfiguration capabilities.

Moreover, the control part itself can be designed as a composition of distributed GCM
components [4]], allowing for full expressiveness and more importantly, full adaptability
of the control part even at runtime. A GCM membrane (control part) can for instance
implement an autonomic adaptation of the parallelism degree of the composite parallel
component it controls (a.k.a. behavioral skeleton [1]]) i.e. configure the number of inner
components working in parallel to achieve a given task.

The GCM specification (API, Architecture Description Language for initially de-
scribing a GCM application, and GCMA/GCMD deployment descriptors) has been ap-
proved as an ETSI standard by the technical body in charge of grids and clouds.

A reference implementation of GCM relying upon the open source ProActive paral-
lel suite (proactive. inria. fr)relies on Virtual Nodes concrete instantiation, and
the use of Active Objects to implement distributed components. Server and client inter-
faces method invocations thus rely on asynchronous method invocations with futures.
Moreover, futures are first-class which is key to propagate interface calls, in particular
within composite components. Strategies to update future values have also been deeply
experimented with, and the way components interact through requests has been formal-
ized and proved correct (using the Isabelle theorem prover) [5]. Behavioural specifica-
tions of GCM interfaces enable hierarchical and thus scalable model cheking of whole
GCM applications [2]].

GCM has been successful in building applications acting as high-level middlewares.
MPI-like applications can be executed on top of on any combination of heterogeneous
computing resources from different administrative domains i.e. acquired from different

M. Alexander et al. (Eds.): Euro-Par 2011 Workshops, Part I, LNCS 7155, pp. 115116l 2012.
(© Springer-Verlag Berlin Heidelberg 2012


proactive.inria.fr

116 F. Baude

clusters, grids and even clouds, thanks to a GCM-based substrate [6]. Such substrate
handles the efficient and seamless inter domain routing of application-level messages
exchanged between processes of the non-embarrassinly parallel application. The ob-
tained performances are competitive in regard to existing implementations of MPI on
grids. Handling the routing of application-level messages across domains can be useful
in other situations, as when building federations of Enterprise Service Busses [6]].

GCM has been given an SCA (Service Component Architecture) personality, mean-
ing one can design a GCM application as an SCA one, including the use of SCA intents.
Moreover, GCM primitive components can be implemented as BPEL documents (ac-
cording to the SCA-BPEL specification). The links to orchestration engines through
specific GCM controllers allow partner links dynamic adaptation and opens the way for
distributed orchestration. SCA/GCM components can be equiped with a GCM mem-
brane specially designed as a MAPE-compliant framework for flexible SOA applica-
tions. This means the SOA application can flexibly be recomposed and redeployed if
needed, according to some SLAS, in an autonomic way [[7].

GCM is also being used to program peer-to-peer applications. More specifically, it is
used to build up a cloud-based system for storing and brokering semantically described
(RDF) events, relying upon a structured CAN-based overlay architecture. Peers and
associated proxies of this system named Event cloud are programmed so to fulfill the
Event Level Agreements dictated by the services that are publishing or subscribing to
events.

As a conclusion, GCM is becoming a mature technology for programming large-
scale distributed and parallel applications on grids, clouds and any combination of them.

References

1. Aldinucci, M., Campa, S., Danelutto, M., Vanneschi, M., Kilpatrick, P., Dazzi, P., Laforenza,
D., Tonellotto, N.: Behavioral skeletons in GCM: automatic management of Grid components.
In: 16th Euromicro Conference on Parallel, Distributed and Network-Based Processing (2008)

2. Barros, T., Boulifa, R., Cansado, A., Henrio, L., Madelaine, E.: Behavioural Models for
Distributed Fractal Components. Annals of Telecommunications 64(1) (2009)

3. Baude, F., Caromel, D., Dalmasso, C., Danelutto, M., Getov, V., Henrio, L., Pérez, C.: GCM:
A Grid Extension to Fractal for Autonomous Distributed Components. Annals of Telecommu-
nications 64(1), 5-24 (2009)

4. Baude, F., Henrio, L., Naoumenko, P.: Structural reconfiguration: an autonomic strategy for
GCM components. In: 5th International Conference on Autonomic and Autonomous Systems
(ICAS 2009), pp. 123-128. IEEE Xplore (2009)

5. Henrio, L., Khan, M.: Asynchronous Components with Futures: Semantics and Proofs in
Isabelle/HOL. In: FESCA 2010. ENTCS (2010)

6. Mathias, E., Baude, F.: A Component-Based Middleware for Hybrid Grid/Cloud Computing
Platforms. In: Concurrency and Computation: Practice and Experience (to appear, 2012)

7. Ruz, C., Baude, F,, Sauvan, B.: Flexible Adaptation Loop for Component-based SOA applica-
tions. In: 7th International Conference on Autonomic and Autonomous Systems (ICAS 2011).
IEEE Explorer (2011) Best paper awarded



	A Perspective on the CoreGRID Grid Component Model
	References





