The Chemical Machine: An Interpreter
for the Higher Order Chemical Language

Vilmos Rajcsanyi and Zsolt Németh

MTA SZTAKI Computer and Automation Research Institute,
P.O. Box 63, H-1518 - Hungary
zsnemeth@sztaki.hu

Abstract. The notion of chemical computing has evolved for more than two
decades. From the seminal idea several models, calculi and languages have been
developed and there are various proposals for applying chemical models in dis-
tributed problem solving where some sort of autonomy, self-evolving nature and
adaptation is sought. While there are some experimental chemical implementa-
tions, most of these proposals remained at the paper-and-pencil stage. This paper
presents a general purpose interpreter for the Higher Order Chemical Language.
The design follows that of logic/functional languages and bridges the gap be-
tween the highly abstract chemical model and the physical machine by an ab-
stract interpreter engine. As a novel approach the engine is based on a modified
hierarchical production system and turns away from imperative languages.

1 Introduction

The advent of large scale distributed systems (such as grids, service oriented archi-
tectures) introduced a group of problems that are hard to solve by humans or by any
machinery in an exact way due to the very large number of entities, their heteroge-
neous nature, partial lack of information of their state, unpredictable, error prone be-
havior and many other factors. Approximately the same time appeared the notion of
autonomic computing [[17] where entities are supposed to monitor and control them-
selves according to some strategies: self-configuration, self-optimization, self-healing
and self-protection. Since then a large number of reflective, self-* properties of comput-
ing entities have been proposed and realized. This new notion of computing naturally
attracted non-conventional approaches; in fact the seminal paper [17] also took inspira-
tion from the nervous system [[13]]. There is a large group of models that mimic various
biological, chemical, physical, ethological processes and phenomenons or simply take
them as metaphors.

In the chemical programming paradigm, instead of computing steps (instructions)
and their strict order, a program is conceived as a chemical solution where data and pro-
cedures are molecules floating around and computation is a series of reactions between
these molecules. Note, that in this case chemistry is just an inspiration or an abstract
metaphor as opposed to chemical models (artificial chemistries) where computation
closely simulates some chemical processes [[12]. This vision of chemical computing is
formalized in the y-calculus [3] as (without the chemical guise) a declarative functional
computational model where terms are commutative and associative.
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The chemical model and the y-family (the calculus and the related languages) has
already been investigated in various distributed scenarios, like self-organizing systems
[8] where a self-healing, self-optimizing and self-protecting mail system is studied.
Grids are obviously a good target for applying the chemical model in some well-known
problems like coordinating a ray-tracing example on desktop grids [7]], enacting work-
flows on-the-fly with strong emphasis on dynamicity both in the environment and in the
workflow structure [11]] and modeling self-developing secure virtual organisations [2]].
Recently service oriented techniques and clouds also attracted great attention and pro-
posals like chemical based service orchestration [6]], dynamic service composition [5]],
dynamic service composition with partial instantiations and re-using instantiations [[18]]
and others. Note, that the chemical model in all these cases is not applied for problem
solving (in terms of solving any computational tasks) but coordinates the execution so
that it may exhibit some of the features of the chemical metaphor like timely response
to events, adaptation, self-evolution, intrinsic concurrency, independency, maximum
parallelism and many others.

Albeit application of the chemical metaphor in grids and service oriented systems
is well studied and various concepts are elaborated, appropriate interpreter and devel-
opment tools for executing programs expressed in the chemical metaphor are largely
missing. Most of these models require framework that is (i) able to execute the code ex-
pressed in a chemical language and (ii) provides interfaces to the embedding system so
that some processes can be controlled by the chemical program meanwhile monitored
data can be gathered. The work introduced in this paper is focused on (i) and aimed
at creating an interpreter that supports the entire Higher Order Chemical Language
(HOCL), a language that is based on and extends the ~y-calculus. While the chemical
model is quite different from any other widespread computing models and languages,
careful study revealed similarities in other paradigms and the combination of techniques
related to declarative languages and those of production systems allowed a realization
of the interpreter in a short development cycle. At deciding the implementation means
attention was paid to (ii) so that the interpreter can be interfaced with various tools and
environments in the future. The work is focusing on the design and realization of the
interpreter. Establishing autonomic or adaptive behaviour in the chemical framework is
on one hand presented in papers [Z][L1] [S][SI[18]], etc., on the other hand related to the
application of the interpreter and not presented here.

2 The Chemical Computational Model

Most algorithms are expressed sequentially even if they describe inherently parallel
activities. Gamma (General Abstract Model for Multiset Manipulation) [4] aimed at
relaxing the artificial sequentializing of algorithms. It is a multiset rewriting system
where the program is represented by a set of declarative rules that are atomic, fire in-
dependently and potentially simultaneously, according to local and actual conditions.
There is no concept of any centralized control, ordering, serialization rather, the com-
putation is carried out in a non-deterministic, self-evolving way. It has been shown
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in [4]] that some fundamental problems of computer science (sorting, prime testing,
string processing, graph algorithms, etc.) can be expressed in Gamma in a concise and
elegant way.

The ~y-calculus is a formal definition of the chemical paradigm. The fundamental
data structure is the multiset M. y-terms (molecules) are: variables x, y-abstractions
~v{x).M, multisets (M7, M>) and solutions (M) . Juxtaposition of «-terms is com-
mutative (M7, My = Mo, M;) and associative (M7, (Ma, M3) = (My, M), Ms).
Commutativity and associativity are the properties that realize the *Brownian-motion’,
i.e., the free distribution and unspecified reaction order among molecules . The -
abstractions are the reactive molecules that can take other molecules or solutions and
replace them. Due to the commutative and associative rules, the order of parameters
is indifferent; molecules, solutions participating in the reaction are extracted by pat-
tern matching — any of the matching ones may react. The semantics of a y-reduction is
(v{z).M),(N) —~ Mz := N] i.e., the two reacting terms on the left hand side are
replaced by the body of the ~y-abstraction where each free occurrence of variable x is
replaced by parameter N if N is inert . Reactions may depend on certain conditions
expressed as C' in y(z)|C|.M that can be reduced only if C' evaluates to true before
the reaction . Reactions can capture multiple molecules in a single atomic step. The
universal symbol w matches any pattern. Reactions are governed by: (i) law of locality
, 1.e. if a reaction can occur, it will occur in the same way irrespectively to the environ-
ment; and (ii) membrane law , i.e. reactions can occur in nested solutions or in other
words, solutions may contain sub-solutions separated by a membrane. The ~y-calculus
is a higher order model, where abstractions — just like any other molecules — can be
passed as parameters or yielded as a result of a reduction [8]][13]].

The Higher Order Chemical Language (HOCL) [3] is a language based on the
Gamma principles more precisely, the ~y-calculus extended with expressions, types,
pairs, empty solutions and names. HOCL uses the self-explanatory replace... by... if...
construct to express rules. replace P by M if C formally corresponds to v(P)|C|.M
with a major difference: while «-abstractions are destroyed by the reactions, HOCL
rules are n-shot and remain in the solution nevertheless, single-shot -style rules can
also be added. replace... by... if... is followed by in (...) that specifies the solution
the active molecule floats in. Notable features (extensions) of HOCL are: types,= that
can be added to patterns for matching; pairs in form of A; : As where A; and A,
are atoms; and naming that allows to identify and hence, match rules, e.g. let inc =
replace x by « + 1in (1, 2, 3, inc) specifies an active molecule called inc which cap-
tures an integer and replaces it with its successor, floating in a solution together with in-
tegers 1, 2, 3. Some possible reduction steps can be (note, the model is non-deterministic,
there are different possible execution paths):

(1,2,3,inc) — (2,2,3,inc) — (3,2,3,inc) — (3,2,4,inc) — (3,3,4,inc)

3 The Concept of the Chemical Interpreter

In case of declarative languages, the semantics of the execution model and that of the
underlying physical architecture is quite different therefore, they are usually executed
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via an abstract, hypothetic engine placed inbetween. The program is first transformed
(compiled) into the language of the abstract engine that successively interprets the input
and executes it. From the programmer’s point of view the abstract engine is a machine
that is able to execute the high-level language natively, it hides all the details of the real
physical machine whereas, the abstract engine and its language is closer to the physical
machine and can be executed in a simpler way (the semantic gap is narrower.) The most
known such engine is the Warren’s Abstract Machine (WAM) for executing Prolog [[1]]
or SECD and Lispkit [15] for executing functional languages but there are many such
examples like some implementations of (early) Pascal [19] or less known and more
specific languages like Palingol [[10].

The design of our chemical engine is also based on this principle. Thus, in our ap-
proach HOCL is first transformed into the code of the abstract engine and then this
intermadiate code is interpreted. It is easy to see that HOCL execution resembles that
of (i) functional languages with the exception of commutative and associative proper-
ties and (ii) production systems with the exception of hierarchical knowledge base and
concurrent execution; yet not equivalent to any of these. To shorten the development cy-
cle we carefully examined the similarities and differences in the computational models
and opted to realize the HOCL abstract engine based on the notion of a production sys-
tem. A production system consists of facts (knowledge) and rules (behaviour) applied
to facts. If the facts fulfill conditions assigned to a certain rule, the rule is activated.
From many activated rules one is selected by conflict resolution and fired. Firing a rule
means executing its action part that updates the facts and leads to firing further rules.
This so called production cycle is repeated over again.

Some of the key requirements of an efficient and simple realization of interpret-
ing HOCL. (i) Efficient pattern matching. Production systems often apply the RETE-
algorithm [[14] in such a way, a highly efficient pattern matching, the most important
cornerstone of the realization is available ready-made. This is the main inspiration of
realizing the HOCL interpreter on the foundation of a production system. (ii) Nested so-
lutions (hierarchical knowledge base). Most production systems assume a global knowl-
edge base and do not allow the structured or hierarchical facts. This aspect needs a
careful elaboration in the HOCL abstract engine as it is different in production sys-
tems. (iii) Concurrency. The concept of locality (molecules react with their “neighbor”
molecules) is simulated by a random choice of potential molecules. Yet, the dynamics
of the chemical system is quite different from that of a production system and the ran-
dom conflict resolution needs further refinement. (iv) Level of parallelism. The y-model
is inherently concurrent and this behavior should be modeled with multiple concurrent
execution threads yet, their level (granularity) can be different. To keep the granular-
ity at a reasonable level yet, to enable concurrent behavior, we assigned an execution
thread to each solution thus, solutions can evolve independently whereas concurrency
within a solution (race condition among molecules) is represented by random choice of
reacting molecules.

The conceptual representation of various elements of a HOCL program will be intro-
duced by Dijkstra’s Dutch flag [4]], as an example. The aim of the Dutch flag problem is
to order three colors, white, red and blue in a randomized array so that they are arranged
according to the stripes of the Dutch national flag: red, white and blue.
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let red = replace (i, red), (j, white) by (i, white), (j,red) if i > jin

let white = replace (i, white), (3, blue) by (i, blue), (j, white) if i > j in
let blue = replace (i, red), (j, blue) by (i, blue), (j, red) if i > j in

((1, blue), (2, whitey, (3, white), (4, redy, (5, blue), (6, white), red, white, blue)

We introduce a simplified, easy-to-read pseudo code for representing and explaining
the code of the production system. While they show all the necessary information many
irrelevant details are eliminated. A production system represents its knowledge in facts
like (1) or (1 2 3). Some facts can have named slots like ((x 1) (y 2) (z 3)). A rule has
a left hand side (LHS) pattern that must be matched to enable the rule followed by =
and a right hand side (RHS) action that is triggered if the rule fires.

Molecules. As one may expect, a passive molecule is simply transformed into a fact
like 1 —» (molecule (value 1)) orred — (molecule (color red)).A
straightforward (and naive) approach would be to represent active molecules as produc-
tion rules. This way however, makes it very hard to realize the higher order property
of the HOCL model where active molecules can be captured transformed, canceled or
added just like any other molecule. Therefore, active molecules are represented by a
rule and a fact. Thus, molecule red is transformed into a fact (rule red) and arule
with pattern shown as (some parts to be refined later):

(defrule red
(rule red)
;match <i, red> and <j, white> if i>j
=
;swap <i, red> and <j, white>

This rule can fire if fact (rule red) is present in the same solution. All modifications
to the active molecules (added, withdrawn, transferred) are performed on this fact that
enables the rule. For instance, moving the active red molecule from one solution to
another is simply moving the (rule red) fact.

Solutions are two faced entities: they are data if inert and are separate running pro-
cesses (and thus, unable to be matched) if active. Solutions can hold passive molecules,
active molecules, other solutions or pairs and can be nested in arbitrary depth. Unfor-
tunately, production systems usually do not allow nesting the facts hence, there is no
straightforward representation. We opted for a Prolog-like representation of compound
terms [1] where not actual terms but references to terms that are stored. Therefore,
molecules are augmented with identifiers so that references can be put to them. For in-
stance, (1, blue) is represented as two facts (molecule (value 1) (in idy))
and (molecule (color blue) (in idg) ) and then the solution itself is a fact
(solution idg) (just the idea is shown here, there is more information related to
solutions and molecules). This representation seemingly calls for a complicated recur-
sive pattern-matching but it can be solved very efficiently in a flat manner as (following
the above example):
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(defrule red
(rule red)
(solution x)
(molecule (value i) (in x))
(molecule (color red) (in x))
(solution vy)
(molecule (value j) (in y))
(molecule (color white) (in vy))
(test 1 > 3J)

;swap <i, red> and <j, white>

where the matching variables represent the constraint so that molecules belonging to
the given solution are selected. Similarly, multiply nested solutions are represented in
the same way. Pairs are a special case of solutions: they have exactly two molecules
inside and their order is relevant. With minor differences, all the principles introduced
for solutions are used for pairs, too.

Transfer between Solutions. Molecules can be moved between solutions for instance,
in replace (i, red), (j, white) by (i, white), (j, red) the two color molecules are ex-
changed between the two solutions. This is a very simple example but there are cases
where multiple molecules are moved, or every molecule (w) moved except some. Fur-
thermore, deleting a molecule can be traced back to the same situation where it is taken
from a solution but put nowhere. In order to handle all these cases efficiently and uni-
formly, we categorized the following cases as types

- replace a : (w,),b: (wp) by a: (),b: (wa,ws) — moving all molecules, e.g. from
solution tagged a to solution b

— replace a : (a,b,c,w,),b : (wp) by a : {(wa),b : {(a,b,c,wp) — moving certain
molecules, e.g. a, b, ¢ form solution a to solution b

— replace a : {(a,b,c,wy),b : {wp) by a : {a,b,c),b : (wa,wp) — moving all but
certain molecules, e.g. all molecules from solution a to b except a, b, ¢

They can be further classified if the source and target solutions are top-level or nested
ones or nil. Altogether 15 types of operations belong to this category. In fact, in reac-
tions most of the actions are putting molecules around therefore, this operation must
be very simple in the language (and efficient in the implementation). The intermediate
language therefore is extended with (relocate toMove, notToMove, from,
to), a special custom function. Thus, we can finalize the example as

(defrule red
(rule red)
(solution x)

(molecule (value i) (in x))
(molecule (color red) (in x))
(solution vy)

(molecule (value j) (in vy))
(molecule (color white) (in vy))
(test 1 > 3)

=
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(relocate (molecule (value i) (in x)) nil (solution x) (solution y))
(relocate (molecule (value j) (in y)) nil (solution y) (solution x))

Hence, the active molecule red has been rewritten into rule red of the intermediate
language. It is important to mention that — just like the HOCL reaction — firing a rule is
an atomic step. That is, in the above example molecules are transferred in a single step
and there are no intermediate inconsistent states.

4 Implementation

The principles of an HOCL interpreter based on a production system drafted above have
been implemented in jess [16]], a Java based production system. Here some additional,
implementation related details are explained only.

The Intermediate Language. HOCL programs are transformed (compiled) into an in-
termediate language that is based on the jess script language with (i) some restrictions
and (ii) an added function. Restriction means a fixed template of molecules and a strict
pattern in the head of rules. These principles were shown in Section [3] but in reality
molecules contain more information (technical details) than presented before; there is
an inherent need to keep them consistent. Therefore, there is a molecule template
that defines all the necessary slots and all other passive molecules are derived from that.
Restrictions are also present in the head of rules: capturing a molecule has a certain
pattern sequence that must be strictly followed. The added function is the relocate
introduced earlier. It is important to notice that this is the only one function that is not
part of the jess script language and a large area of possible cases are realized by this
single instruction. Due to the minimal changes introduced, the intermediate language
is very close to the jess script. One familiar with jess or other production systems can
easily read, understand and modify the intermediate language. Minimal changes also
ensure that the intermediate language is executed as efficiently as the native jess script.

The Interpreter. We kept the same principle: introduce as little changes as possible thus,
the HOCL interpreter is just a slightly modified jess engine. Furthermore, in case of the
interpreter all these changes are transparent to the user. Albeit invisible, some important
modifications and extensions must have been added to the basic execution mechanism
of jess mainly due to the required support of hierarchical knowledge base. These include
activities related to spawning a new RETE-engine (initiate a new solution) or opposedly,
stop a RETE-engine. In such cases transferring data to a new process and vice versa by
maintaining consistency, correctness and avoid synchronization problem is a complex
task. To achieve these goals efficiently, Java procedures operate on the internal data
structures of jess. Similarly, the realization of relocate is encoded in the interpreter as
a custom Java function. Furthermore, the random conflict resolution must have been
modified, see the explanation in Section 5] Measurements showed that these additional
functionalities in the jess engine do not add significant overhead or cause performance
degradation.
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User Interface, Program Control and External Interfaces. There is a simple user inter-
face developed that facilitates the execution, tracing and debugging of HOCL programs
(Figure[T). The main fields show the current reactions, the possible reactions in each so-
lution and the solution structure. The latter is augmented with some graphical aids to see
where reactions are possible and what are the inert solutions. Solutions and molecules
are clickable: new molecules can be added to solutions at run-time whereas breakpoints
can be added or withdrawn on active molecules. Tracing and debugging is supported
by various run modes: step-by-step, continuous run with variable speed and breakpoint.
For specific applications custom-made user interfaces can be made for instance, an
experimental tic-tac-toe game table was implemented (see Section [B)). This latter also
demonstrates how easily the interpreter can be interfaced with other programs that is
a fundamental requirement for coordinating tasks the chemical paradigm is aimed at.
In this case the game board is a separate process and steps made by the user are exter-
nal events imported into the chemical engine whereas steps made by the computer are
events that are exported and displayed graphically. In the same way, other sources of
events and control can be realized in different scenarios.

(s HOCL Interpreter :

File “iew Mode Run Settings Generate code Press step to continue. Loaded idp File: C:
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Reaction fired: white [
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Fig. 1. Graphical interface for the HOCL interpreter
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5 Experiences Learned

The interpreter was tested by a large set of toy examples to verify the correctness of
elementary constructs in the language. Also, it was tested by some nontrivial problems
listed in [4][18]. Here we present two experiences we learned beyond the simple correct-
ness tests.

An implementation of the foxes and rabbits problem (Lotka-Volterra equations [9]])
revealed that dynamicity in the chemical model is a crucial issue. This type of appli-
cations should oscillate (the number of foxes and rabbits change periodically) but our
initial attempts diverged. The problem was caused by the random conflict resolution
of the production system that did not really simulate the random mixture of molecules
and must have been replaced by a custom made one. While this sensitivity seemingly
affects a very little portion of computational problems, the chemical approach is as-
sociated with realizing self-* autonomic systems where evolution and dynamicity of
certain populations is of fundamental importance and such aspects must be carefully
researched and elaborated.

A player vs. machine tic-tac-toe game revealed the importance of the appropriate
transformation of HOCL into the intermediate language. A very simple implementa-
tion of this game was encoded in HOCL in a concise way and was executed by the
interpreter. Yet, as the size of the field grew, performance problems started to appear
and around the table size of 30*30 the game became unplayable due to large response
times. The root of the problem was in expressing the HOCL program in the interme-
diate language. While HOCL allows a very expressive and elegant problem statement,
pattern matching works more efficiently on numerous but simple rules. Therefore, a
complex HOCL statement must be transformed into the intermediate language so that
it is broken into simpler, more specific rules that facilitate pattern matching; tic-tac-toe
was successfully hand coded so that it became scalable. While the transformation of
HOCL into the intermediate language (compiler construction) can be described easily,
taking into consideration such performance issues requires more research work.

6 Conclusions

In this paper we presented the design and implementation principles of an HOCL
interpreter for executing programs written in a higher order chemical language. The
chemical computing model is an upcoming candidate for realizing autonomic prop-
erties in various distributed settings (such as grid and service based environments,
see [S)] [LLL] [18]).

The proposed execution of HOCL programs is an interpreter realized as an abstract
engine. The engine is based on a production system that lends its state-of-the-art pattern
matching mechanism but modified to support the hierarchical notion of knowledge base
of the chemical semantics and fulfill other technical challenges. The interpreter supports
the entire HOCL language and has a graphical user interface and a basic support for
tracing and debugging. The realization of the interpreter also makes possible to interface
it to other systems for observation and control.

Test experiments proved the correctness of the interpreter. They also revealed the
importance of efficient representation of the HOCL program at the intermediate level
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and that of the dynamic behavior. Both are strongly related to self-evolving properties of
autonomic systems and therefore, will play crucial role in real-life applications. These
aspects are targets of further research.
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