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Abstract. OP2 is an “active” library framework for the solution of un-
structured mesh applications. It aims to decouple the scientific specifi-
cation of an application from its parallel implementation to achieve code
longevity and near-optimal performance by re-targeting the back-end to
different multi-core/many-core hardware. This paper presents the de-
sign of the OP2 code generation and compiler framework which, given
an application written using the OP2 API, generates efficient code for
state-of-the-art hardware (e.g. GPUs and multi-core CPUs). Through
a representative unstructured mesh application we demonstrate the ca-
pabilities of the compiler framework to utilize the same OP2 hardware
specific run-time support functionalities. Performance results show that
the impact due to this sharing of basic functionalities is negligible.

1 Introduction

OP2 is an “active” library framework for the solution of unstructured mesh
applications. It utilizes code generation to exploit parallelism on heterogeneous
multi-core/many-core architectures. The “active” library approach uses program
transformation tools, so that a single application code written using the OP2
API is transformed into the appropriate form that can be linked against a tar-
get parallel implementation (e.g. OpenMP, CUDA, OpenCL, AVX, MPI, etc.)
enabling execution on different back-end hardware platforms.

Such an abstraction enables application developers to focus on solving prob-
lems at a higher level and not worry about architecture specific optimisations.
This splits the problem space into (1) a higher application level where scientists
and engineers concentrate on solving domain specific problems and write code
that remains unchanged for different underlying hardware and (2) a lower im-
plementation level, that focuses on how a computation can be executed most
efficiently on a given platform by carefully analysing the data access patterns.
This paves the way for easily integrating support for any future novel hardware
architecture.
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To facilitate the development of unstructured mesh applications at a higher
hardware agnostic level, OP2 provides both a C/C++ and a Fortran APL
Currently an application written using this API can be transformed into code
that can be executed on a single multi-core and/or multi-threaded CPU node
(using OpenMP) or a single GPU (using NVIDIA CUDA). In this paper we in-
troduce the design of the code transformation/compiler framework, which sup-
ports OP2’s multi-language/multi-platform development capability. We show
how, hardware specific optimisations can be utilised independently of the appli-
cation development language and present key issues we encountered and their
performance effects during the execution of a representative CFD application
written using the OP2 API.

More specifically we make the following contributions:

1. We present the design of the OP2 compiler framework, which translates an
application written using the OP2 API in to back-end hardware implemen-
tations. Key design features of this framework are illustrated with a stepwise
analysis of this process and the resulting optimisation opportunities, during
code transformation.

2. A representative CFD application written using the OP2 C/C++ API is re-
developed using the OP2 Fortran API and the contrasting performance of
these two applications are explored on two modern GPU platforms (NVIDIA
GTX460 and Fermi M2050).

3. Both C/C++ and the Fortran based applications uses the same hardware
specific back-end irrespective of the application language; we show that the
impact due to this sharing of basic functionalities is negligible.

The paper is organised as following: Section 2] describes relevant related work.
Section [ gives an overview of the OP2 functions. Section Ml describes the com-
piler architecture, and its implementation. In Section [ we provide results of
experiments on C/C++ and Fortran programs for CUDA. Finally, Section
concludes with plans for future research.

2 Related Work

OP2 is the second iteration of OPlus (Oxford Parallel Library for Unstructured
Solvers) [3]. OPlus provided an abstraction framework for performing unstruc-
tured mesh based computations across a distributed-memory cluster. It is cur-
rently used as the underlying parallelisation library for Hydra a production-grade
CFD application used in turbomachinery design at Rolls-Royce plc. OP2 builds
upon the features provided by its predecessor but develops an “active” library
approach with code generation to exploit parallelism on heterogeneous multi-
core/many-core architectures.

Although OPlus pre-dates it, OPlus and OP2 can be viewed as an instan-
tiation of the AEcute (access-execute descriptor) [9] programming model that
separates the specification of a computational kernel with its parallel iteration
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space, from a declarative specification of how each iteration accesses its data.
The decoupled Access/Execute specification in turn creates the opportunity to
apply powerful optimisations targeting the underlying hardware. A number of
related research projects have implemented similar programming frameworks.
The most comparable of these is LISZT [4l5] from Stanford University.

LISZT is a domain specific language specifically targeted to support unstruc-
tured mesh application development. The aim, as with OP2, is to exploit in-
formation about the structure of data and the nature of the algorithms in the
code and to apply aggressive and platform specific optimisations. Preliminary
performance figures from the LISZT framework have been presented in [5]. The
authors report the performance of Joe, a fluid flow unstructured mesh applica-
tion using a mesh of 750K cells, on a Tesla C2050 (implemented using CUDA)
against an Intel Core 2 Quad, 2.66GHz processor. Results show a speed-up of
about 30X in single precision arithmetic and 28 x in double precision relative to
a single CPU thread.

3 0OP2

Unstructured meshes are used over a wide range of computational science appli-
cations. They are applied in the solution of partial differential equations (PDEs)
in computational fluid dynamics (CFD), computational electro-magnetics
(CEM), structural mechanics and general finite element methods. Usually, in
three dimensions, millions of elements are often required for the desired solution
accuracy, leading to significant computational costs.

Unlike structured meshes, they use connectivity information to specify the
mesh topology. In OP2 an unstructured mesh problem specification involves
breaking down the algorithm into four distinct parts: (1) sets, (2) data on sets,
(3) connectivity (or mapping) between the sets and (4) operations over sets.
These lead to an API through which any mesh or graph can be completely and
abstractly defined. Depending on the application, a set can consist of nodes,
edges, triangular faces, quadrilateral faces, or other elements. Associated with
these sets are data (e.g. node coordinates, edge weights) and mappings be-
tween sets which define how elements of one set connect with the elements of
another set.

Fig. 0l illustrates a simple quadrilateral mesh that we will use as an example
to describe the OP2 API. The mesh can be defined by two sets, nodes (vertices)
and cells (quadrilaterals). There are 16 nodes and 9 cells, which can be defined
using the OP2 API as shown in Fig.[2l In our previous work [8] we detailed the
OP2 API for code development in C/C++. Here we introduce the Fortran API.

The connectivity is declared through the mappings between the sets. The
integer array cell map can be used to represent the four nodes that make up
each cell, as shown in Fig. 2l

Each element of set cells is mapped to four different elements in set nodes.
The op map declaration defines this mapping where mcell has a dimension of
4 and thus its index 0,1,2,3 maps to nodes 0,1,5,4, and so on. When declaring
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Fig. 1. A mesh example used through the paper

integer (4) :: numNodes = 16

integer (4) :: numCells = 9

type(op set) :: nodes, cells

integer (4) , dimension(36) :: cell map = (/ 0,1,5,4, 1,2,6,5, 2,3,7,6, &

& 4,5,9,8,5,6,10,9,6,7,11,10, &
& 8,9,13,12,9,10,14,13,10,11,15,14 /)

type(op map) :: cellsToNodes

call op decl set ( numNodes, nodes )
call op decl set ( numCells, cells )

call op decl map ( cells, nodes, 4, cell map, cellsToNodes )

Fig. 2. Example of declaration of op set and op map variables

a mapping we pass the source and destination sets (cells and nodes), the
dimension of each map entry, which for mcell it is 4, and the mapping data
array (cell map).

Once the sets are defined, data can be associated to them. In Fig. Bl we show
some data arrays that contain double precision data associated with the cells and
the nodes respectively. Note that here a single double precision value per set ele-
ment is declared. A vector of a number of values per set element could also be de-
clared (e.g. a vector with three doubles per node to store the X,Y,Z coordinates).

All numerically intensive computations in the application can be described as
operations over sets. This corresponds to loops over a given set, accessing data
through the mappings (i.e. one level of indirection), performing some calculations,
then writing back (possibly through the mappings) to the data arrays. If the loop
involves indirection we refer to it as an indirect loop; if not, it is called a direct loop.
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real (8), dimension(9) :: cell data = (/ 0.128, 0.345, 0.224, 0.118, &
& 0.246, 0.324, 0.112, 0.928, 0.237 /)
real (8), dimension(16) :: nodes data = (/ 5.3, 6.8, 7.8, 5.4, &
& 2.6, 3.6, 7.5, 6.2, 1.8, 3.9, 2.5, 6.6, 1.3, 2.8, 3.9, 8.8 /)
type(op dat) :: dataCells, dataCellsUpdated, dataNodes

call op decl dat ( cells, 1, cell data, dataCells )
call op decl dat ( nodes, 1, nodes data, dataNodes )

Fig. 3. Example of data array declaration and OP2 variables

The OP2 API provides a parallel loop function which allows the user to declare
the computation over sets. Consider the sequential loop in Fig. [l operating over
each mesh cell. Each cell updates its data value using the data values held on the
four nodes connected to that cell. An application developer declares this loop us-
ing, together with the “elemental” kernel function, as shown in Fig.[ll OP2 handles
the architecture specific code generation. The elemental kernel function takes six
arguments in this case and the parallel loop declaration requires the access method
of each to be declared (OP WRITE, OP READ, etc). OP ID indicates that the
data is to be accessed without any indirection (i.e. directly). dnodes on the other
hand is accessed through the mcell mapping using the given index.

OP2’s general decomposition of unstructured mesh algorithms imposes no re-
strictions on the actual algorithms, it just separates the components of a code.
However, OP2 makes an important restriction that the order in which elements
are processed must not affect the final result, to within the limits of finite pre-
cision floating-point arithmetic. This constraint allows the program to choose
its own order to obtain maximum parallelism. Moreover the sets and mappings
between sets must be static and only one level of indirection is allowed.

The OP2 API targets explicit relaxation methods such as Jacobi iteration;
pseudo-time-stepping methods; multi-grid methods which use explicit smoothers;
Krylov subspace methods with explicit preconditioning. However, algorithms
based on order dependent relaxation methods, such as Gauss-Seidel or ILU (in-
complete LU decomposition), lie beyond the capabilities of the API.

subroutine seqLoop ( numCells, cell map, cellDataUpdated, cellData, &
& nodeData )

integer (4) :: numCells
integer (4), dimension(:) :: cell map
real (8), dimension(:) :: cellDataUpdated , cellData, nodeData

integer (4) :: i
do i = 1, numCells
cellDataUpdated(i) = cellData(i) + nodeData( cell map(4xi) ) + &
nodeData( cell map (4%xi +1) ) + nodeData( cell map(4*i +2) ) + &
nodeData( cell map (4%xi +3) )
end do
end subroutine seqLoop

Fig. 4. Example of sequential loops
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subroutine kernel ( cellUpdated, cell , nodel, node2, node3, node4 )
real (8), dimension(1l) :: cellUpdated, cell, nodel, node2, node3, node4

cellUpdated (1) = cell (1) + nodel(1l) + node2(1) + node3 (1) + node4(1)
end subroutine kernel

kernel, cells , &
dataCellsUpdated, —1, OP ID, OP WRITE,
dataCells, —1, OP ID, OP READ,

call op par loop (
&
&
& dataNodes, 1, cellsToNodes, OP READ,
&
&
&

dataNodes, 2, cellsToNodes, OP READ,
dataNodes, 3, cellsToNodes, OP READ,
4,

dataNodes, cellsToNodes , OP READ )

Fig. 5. Example of op par loop corresponding to the sequential loops showed above

4 OP2 Code Generation and Compiler Framework

The OP2 compiler is based on the ROSE framework [I0], which is a frame-
work for building source-to-source translators. ROSE supports front ends for
C/C++ and Fortran 77-2003; it generates an Abstract Syntax Tree (AST) of
the input program, which we use to analyse, optimise and transform the input
OP2 programs. Our compiler infrastructure, illustrated in Figurdfl performs the
following set of tasks:

1. Type and consistency checks. For instance, the compiler checks that the basic
type of an op dat is the same as a corresponding formal parameter in a user
kernel declaration.

2. Host subroutine generation. This subroutine partitions the iteration set and
colours the partitions and their elements to avoid race conditions over indi-
rectly accessed data. Then, for all partitions with the same colour, it applies
a back-end specific subroutine (next item)

3. Backend-specific subroutine generation. In CUDA, this subroutine is a ker-
nel, while in OpenMP it is a vanilla subroutine invoked in parallel by the
threads. Its main task is to call the user kernel to perform the required com-
putations over a single partition. As partitions are internally coloured, to
avoid race conditions and hence the need for locks, this subroutine iterates
over such colours, serially invoking the user kernel on all elements with same
colours.

4. Transformation of the user kernel. In the case of CUDA some additional
labels are needed to inform the back-end compiler which subroutines in-
tend to run on the device. Also, Fortran CUDA [1] requires that all device
subroutines be included in the same Fortran module.

Currently, the compiler produces a CUDA implementation of C/C++ and For-
tran OP2 programs, while we are developing OpenCL and AVX/SSE back-ends.
Further back-ends will include optimised code generation for new heterogeneous
architectures, like AMD’s APU [2].
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Fig. 6. Architecture of the OP2 ROSE-based compiler. Shaded grey blocks represent
the main OP2 functionalities, where darker squared blocks are features currently under
development.

Optimisations are the cardinal points of this development: as shown in Fig. [6]
a set of program transformations, like loop fusion and fission, will be independent
of the input language. This independence is easily obtained because ROSE maps
input programs of different input languages to an orthogonal AST representa-
tion, called Sage III. The ASTs for C and Fortran programs are mainly based
on the same AST node types, except for some minor differences which we treat
as special cases. However, the need of defining optimisations at this level might
require a further abstraction over the AST, to easily manipulate the program
without dealing with low-level compiler details.

Other transformations and configurations are instead dependent on the target
architecture, and they define the design choices that our compiler targets. For
instance, the compiler can select optimal thread numbers in a different way for
NVIDIA and AMD GPUs.

In the same figure we also show a further cardinal point in the design of OP2.
If we consider different generated back-end programs, originated from different
input languages and targeting different architectures, we can see that some of
them share a same C-based run-time support. The run-time includes basic OP2
declaration routines (e.g. op decl set), as well as the colouring and partitioning
logics. In other words, a same colouring and partitioning algorithm is used by
different back-ends. For instance, both Fortran and C++ generated programs
targeting CUDA and OpenMP make use of the same implementation of colouring
and partitioning algorithms.
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This choice comes at a performance cost for Fortran generated programs. In
fact, they need to interoperate with C run-time support functions, and to trans-
form the resulting variables from Fortran to C notation. The compiler generates
code to minimise the number of variables which have to be transformed, but in
some cases, either due to algorithmic reasons, or to lower level compiler bugs,
we are forced to re-execute part of the transformation at each invocation of a
op par loop . The extent of this cost is targeted in Section

5 Performance

The example application used in this paper, Airfoil, is a non-linear 2D inviscid
Airfoil code that uses an unstructured grid [7]. It is a much simpler application
than the Hydra [6] CFD application used at Rolls-Royce plc. for the simulation of
turbomachinery, but is representative of a production grade unstructured mesh
application. The mesh used in our experiments is of size 1200x 600, consisting
in over 720K nodes, 720K cells and about 1.5 million edges. The code consists
of five parallel loops: save soln, adt calc, res calc, bres calc, update. The
most compute intensive loop res calc has about 100 floating-point operations
performed per mesh edge and is called 2000 times during total execution of the
application. save soln and update are direct loops while the other three are
indirect loops.

In this section we show the performance measurements on two GPUs of the
Airfoil application, implemented in Fortran and C++, based on double precision
floating point numbers. The used GPUs are: a popular consumer graphics card
(Nvidia GeForce GTX460) and a high performance computing card (NVIDIA
Fermi M2050). For space reasons, we only show results related to the execu-
tion on GPUs, while we will target in future work specific optimisations and
performance measurements for multicore processors.

Target of these performance measurements is to understand which is the cost
of the use of a common run-time support, implemented in C, for both Fortran
and C/C++ OP2 generated programs. From the Fortran side this involves: (i) to
define a proper interface between C functions and Fortran code, to allow interop-
erability of function calls; (ii) to translate variables generated in the C functions
to Fortran variables. Both points are implemented by using the Fortran 2003
standard binding support, supported by the ISO C BINDING Fortran module.
At run-time, we employ the ¢ f pointer function to convert variables from C to
Fortran.

Another main difference between C/C++ and Fortran lies in the different
implementation of the CUDA kernels, which are language dependent. Practi-
cally, while the C implementation makes extensive use of pointers to the GPU
shared memory to address specific sub-portion of op dat variables, the Fortran
implementation lacks of a support for such kinds of pointers, and it is forced to
re-compute the offset for shared memory variables.
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Fig. 7. Performance of C++ (left) and Fortran (right) Airfoil on a M2050
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Fig. 8. Performance of C++ (left) and Fortran (right) Airfoil on a GTX460

Unlike the previous interoperability issue, this latter one represents the critical
point in the difference between the Fortran and C implementation of OP2 on
GPUs. For this reason, our performance measurements specifically target the
execution time in the kernel code.

Fig. [d shows the performance measurements on the M2050 GPU, by varying
the number of set elements in each block (partition size), and the number of
threads in a CUDA block (block size). If the partition size is equal to the block
size, then each thread is assigned a single set element to which it applies the
kernel. If the partition size is a multiple of the block size, then each thread
applies the kernel on multiple set elements. Finally, if the block size is a multiple
of the partition size, then a section of the threads in a block is not used, leaving
executing threads more resources.

Similar results, even if with a lower performance, are shown in Fig. Bl for the
execution of the C++ and Fortran program on the GTX 460 GPU.
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6 Conclusion

In this paper we have described the source-to-source compiler framework for OP2
applications, targeting unstructured mesh CFD applications. The compiler cur-
rently supports different input languages (namely C/C++ and Fortran), and it
generates back-end architecture implementation for multicores, using OpenMP,
and GPUs, using CUDA. We have shown the specific design choices in the com-
piler architecture, which are the basis over which we will provide language and
back-end independent optimisations, as well as back-end dependent optimal con-
figurations. In addition, the generated code for Fortran and C/C++ makes use
of the same set of core run-time OP2 functions, implementing main application
logics, like mesh colouring and partitioning.

We have presented performance results of the execution of a CFD application
on two GPUs, showing a almost identical performance for Fortran and C/C++
CUDA implementations.

References

1. Pgi cuda fortran (2011), http://www.pgroup.com/resources/cudafortran.htm/

2. The amd fusion family of apus (2011),
http://sites.amd.com/us/fusion/apu/Pages/fusion.aspx

3. Burgess, D.A., Crumpton, P.I.; Giles, M.B.: A parallel framework for unstructured
grid solvers. In: Proc. of the 2nd European Computational Fluid Dynamics Conf.,
pp. 391-396. John Wiley and Sons, Germany (1994)

4. Chafi, H., DeVito, Z., Moors, A., Rompf, T., Sujeeth, A.K., Hanrahan, P., Odersky,
M., Olukotun, K.: Language virtualization for heterogeneous parallel computing.
In: Proc. of the OOPSLA 2010 Applications, pp. 835-847. ACM, USA (2010)

5. DeVito, Z., Joubert, N., Medina, M., Barrientos, M., Oakley, S., Alonso, J., Darve,
E., Ham, F., Hanrahan, P.: Liszt: Programming mesh based pdes on heterogeneous
parallel platforms (October 2010), http://psaap.stanford.edu

6. Giles, M.B.: Hydra (1998-2002),
http://people.maths.ox.ac.uk/gilesm/hydra.html

7. Giles, M.B., Ghate, D., Duta, M.C.: Using automatic differentiation for adjoint
CFD code development. Computational Fluid Dynamics J. 16(4), 434-443 (2008)

8. Giles, M.B., Mudalige, G.R., Sharif, Z., Markall, G., Kelly, P.H.J.: Performance
analysis of the op2 framework on many-core architectures. SIGMETRICS Perform.
Eval. Rev. 38, 9-15 (2011)

9. Howes, L.W., Lokhmotov, A., Donaldson, A.F., Kelly, P.H.J.: Deriving Efficient
Data Movement from Decoupled Access/Execute Specifications. In: Seznec, A.,
Emer, J., O’Boyle, M., Martonosi, M., Ungerer, T. (eds.) HIPEAC 2009. LNCS,
vol. 5409, pp. 168-182. Springer, Heidelberg (2009)

10. Schordan, M., Quinlan, D.: A Source-To-Source Architecture for User-Defined Op-
timizations. In: Boszorményi, L., Schojer, P. (eds.) JMLC 2003. LNCS, vol. 2789,
pp. 214-223. Springer, Heidelberg (2003)


http://www.pgroup.com/resources/cudafortran.htm/
http://sites.amd.com/us/fusion/apu/Pages/fusion.aspx
http://psaap.stanford.edu
http://people.maths.ox.ac.uk/gilesm/hydra.html

	Design and Performance of the OP2 Library 
for Unstructured Mesh Applications
	Introduction
	Related Work
	OP2
	OP2 Code Generation and Compiler Framework
	Performance
	Conclusion
	References





