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Abstract. In this paper we propose a dynamic load balancing strategy
to enhance the performance of parallel association rule mining algorithms
in the context of a Grid computing environment. This strategy is built
upon a distributed model which necessitates small overheads in the com-
munication costs for load updates and for both data and work transfers.
It also supports the heterogeneity of the system and it is fault tolerant.
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1 Introduction

The fast development of data acquisition and storage technologies led to an expo-
nential growth in worldwide data. In order to decrease the gap between data and
useful information, a group of architectures and utilities, some of them are new
and others exist since a long time, are grouped under the term data mining. As-
sociation rule mining is one of the most important data mining techniques [8], [3].
The most important challenge for this technique is quickly and correctly find-
ing interesting correlation relationships between items in large databases. The
algorithms of this technique are computationally and input/output intensive,
due to the fact that they have to mine voluminous databases. High performance
parallel and distributed computing can relieve current association rule mining
algorithms from the sequential bottleneck, providing scalability to massive data
sets and improving response time.

Grid computing [9] is recently regarded as one of the most promising plat-
form for data and computation-intensive applications like data mining. In such
computing environments, heterogeneity is inevitable due to their distributed
nature.

Almost all current parallel association rule mining algorithms assume the
homogeneity and use static load balancing strategies. Thus applying them to
Grid systems will degrade their performance. The load imbalance that occurs
during execution time is caused by the dynamic nature of these algorithms and
also by the heterogeneity of such distributed systems. Because of that we have
to develop new methodologies to handle this problem, which is the focus of our
research.

In this paper, we develop and evaluate a run time load balancing strategy
for mining association rule algorithms under a grid computing environment.
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The rest of the paper is organized as follows: Section 2 introduces association
rule mining technique and related work. Section 3 describes the load balancing
problem. Section 4 presents the system model of a Grid. In section 5, we pro-
pose the dynamic load balancing strategy. Experimental results obtained from
implementing this strategy are shown in section 6. Finally, the paper concludes
with section 7.

2 Related Work

Association rules mining (ARM) finds interesting correlation relationships among
a large set of data items. A typical example of this technique is market basket
analysis. This process analyses customer buying habits by finding associations
between different items that customers place in their ”shopping baskets”. Such
information may be used to plan marketing or advertising strategies, as well as
catalog design [8]. Each basket represents a different transaction in the transac-
tional database, associated to this transaction the items bought by a customer.
Given a transactional database D, an association rule has the form A => B,
where A and B are two itemsets, and AN B = (). The rule’s support is the joint
probability of a transaction containing both A and B at the same time, and is
given as o(AUB). The confidence of the rule is the conditional probability that a
transaction contains B given that it contains A and is given as (AU B)/o(A).
A rule is frequent if its support is greater than or equal to a pre-determined
minimum support and strong if the confidence is more than or equal to a user
specified minimum confidence.

Many sequential algorithms for solving the frequent set counting problem have
been proposed in the literature. We can define two main methods for determining
frequent itemsets supports: with candidate itemsets generation [3| [IT] and with-
out candidate itemsets generation [I4].The Apriori algorithm [3] was the first
effective algorithm proposed in the literature. This algorithm uses a generate-
and-test approach which depends on generating candidate itemsets and testing
if they are frequent. It uses an iterative approach known as a level-wise search,
where k—itemsets are used to explore (k 4+ 1)—itemsets. During the initial pass
over the database the support of all 1—itemsets is counted. Frequent 1—itemsets
are used to generate all possible candidate 2—itemsets. Then the database is
scanned again to obtain the number of occurrences of these candidates, and
the frequent 2-itemsets are selected for the next iteration.The DCI algorithm
proposed by Orlando and others [I1] is also based on candidate itemsets genera-
tion. It adopts a hybrid approach to compute itemsets supports, by exploiting a
counting-based method (with a horizontal database layout) during its first itera-
tions and an intersection-based technique (with a vertical database layout) when
the pruned dataset can fit into the main memory.The FP-growth algorithm [I4]
allows frequent itemsets discovery without candidate itemsets generation. First
it builds from the transactional database a compact data structure called the
FP-tree then extracts frequent itemsets directly from the FP-tree. Sequential al-
gorithms suffer from a high computational complexity which derives from the size
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of its search space and the high demands of data access. Parallelism is expected
to relieve these algorithms from the sequential bottleneck, providing the ability
to scale the massive datasets, and improving the response time. However, paral-
lelizing these algorithms is not trivial and is facing many challenges including the
workload balancing problem. Many parallel algorithms for solving the frequent
set counting problem have been proposed. Most of them use Apriori algorithm
[3] as fundamental algorithm, because of its success on the sequential setting.
The reader could refer to the survey of Zaki on association rules mining algo-
rithms and relative parallelization schemas [18]. Agrawal et al. proposed a broad
taxonomy of parallelization strategies that can be adopted for Apriori in [2].

There also exist many grid data mining projects, like Discovery Net, GridMiner,
DMGA [12] which provide mechanisms for integration and deployment of classical
algorithms on grid. Also the DisDaMin project that deals with data mining issues
(as association rules, clustering, etc.) using distributed computing [7].

3 Load Balancing: Problem Definition

Work load balancing is the assignment of work to processors in a way that
maximizes application performance [6]. The process of load balancing can be
generalized into four basic steps: (1) Monitoring processor load and state; (2)
Exchanging workload and state information between processors; (3) Decision
making; and (4) Data migration. The decision phase is triggered when the load
imbalance is detected to calculate optimal data redistribution. In the fourth
and last phase, data migrates from overloaded processors to underloaded ones.
According to different policies used in the previously mentioned phases, Casavant
and kuhl [5] classify work-load balancing schemes into three major classes: (1)
Static versus dynamic load balancing; (2) Centralized versus distributed load
balancing ; (3) Application-level versus system-level load balancing.

Static load balancing can be used in applications with constant workloads, as
a pre-processor to the computation. Other applications require dynamic load bal-
ancers that adjust the decomposition as the computation proceeds [6l [I5]. This
is due to their nature which is characterized by workloads that are unpredictable
and change during execution. Data mining is one of these applications.

Parallel association rule mining algorithms have a dynamic nature because of
their dependency on the degree of correlation between itemsets in the transac-
tional database which cannot be predictable before execution.

Although intensive works have been done in load balancing, the different na-
ture of a Grid computing environment from the traditional distributed system,
prevent existing static load balancing schemes from benefiting large-scale appli-
cations. An excellent survey from Y. Li et al. [10], displays the existing solutions
and the new efforts in dynamic load balancing that aim to address the new chal-
lenges in Grid. The work done so far to cope with one or more challenges brought
by Grid: heterogeneity, resource sharing, high latency and dynamic system state,
can be identified by three categories as mentioned in [16]: (1) Repartition meth-
ods focus on calculating data distribution in a heterogeneous way, but don’t pay
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much attention to the data movement in Grid; (2) Divisible load theory based
schemes well model both the computation and communication, but loose validity
in case of adaptive application; (3) Prediction based schemes need further inves-
tigation in case of long-term applications. C. Yang et al. Proposed a heuristic
data distribution scheme for data mining applications on grid environments [16].
They induced load balancing through a heuristic data partition technique that
aims to reduce the total execution time of the program. K. Yu et al. proposed
a weighted distributed parallel Apriori algorithm [I7] in which the transaction
identifier of itemsets is stored in a table to compute their occurrence. The algo-
rithm takes the factor of itemset counts into consideration in order to balance
workloads among processors and reduce processor idle time.

4 The Grid Model

In our study we model a Grid as a collection of T sites with different com-
putational facilities and storage subsystem. Let G = (S1, S, ..., S7) denotes
a set of sites, where each site S; is defined as a vector with three parame-
ters S; = (M;, Coord(S;), L;), where M; is the total number of clusters in S;,
Coord(S;) is the workload manager, named the coordinator of S;, which is re-
sponsible of detecting the workload imbalance and the transfer of the appropri-
ate amount of work from an overloaded cluster to another lightly loaded cluster
within the same site (intra-site) or if it is necessary to another remote site (inter-
sites). This transfer takes into account the transmission speed between clusters
which is denoted (;;;: (if the transmission is from cluster cl;; to cluster cl;j; ).
And L; is the computational load of S;. Each cluster is characterized by a vec-
tor of four parameters cl;; = (N;;, Coord(cli;), Lij, w;j), where N;; is the total
number of nodes in cl;; , Coord(cl;;) is the coordinator node of ¢l;; which en-
sures a dynamic smart distribution of candidates to its own nodes, L;; is the
computational load of cluster cl;; and w;; is its processing time which is the
mean of processing times of cluster’s nodes. Figure 1 shows the Grid system
model. To avoid keeping global state information in a large-scale system (where
this information would be very huge), the proposed load balancing model is
distributed in both intra-site and inter-sites. Each site in the Grid has a work-
load manager, called the coordinator, which accommodates submitted transac-
tional database partitions and the list of candidates of the previous iteration of
the association rules mining algorithm. Each coordinator aims at tracking the
global workload status by periodically exchanging a ”state vector” with other
coordinators in the system. Depending on the workload state of each node, the
frequency of candidate itemsets may be calculated in its local node or will be
transferred to another lightly loaded node within the same site. If the coordi-
nator cannot fix the workload imbalance locally, it selects part of transactions
to be sent to a remote site through the network. The destination of migrated
work is chosen according to the following hierarchy : First The coordinator of the
cluster Coord(cl;;) selects the available node within the same cluster; If the work-
load imbalance still persists then Coord(cl;;) searches for an available node in
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Fig. 1. The system model of a Grid

another cluster but within the same site; Finally, in extreme cases, work will be
send to a remote site. The coordinator of the site Coord(S;) will look for the
nearest site available to receive this workload (i.e. least communication cost). If
the coordinator node does not give response within a fixed period of time, an
election policy is invoked to choose another coordinator node.

5 The Dynamic Load Balancing Strategy

Our proposed load balancing strategy depends on three issues: (i) Database
architecture (partitioned or not); (ii) Candidates set (duplicated or partitioned);
(iii) network communication parameter (bandwidth).

Our strategy could be adopted by algorithms which depend on candidate
itmesets generation to solve the frequent set counting problem. It combines be-
tween static and dynamic load balancing and this by interfering before execution
(i.e. static) and during execution (i.e. dynamic).

To respond to the heterogeneity of the computing system we are using (Grid)
the database is not just partitioned into equal partitions in a random manner.
Rather than that, the transactional database is partitioned according to the
characteristics of different sites, where the size of each partition is determined
according to the site processing capacity (i.e., different architecture, operating
system, CPU speed, etc.). It’s the responsibility of the coordinator of the site
Coord(S;) to allocate to its site the appropriate database portion according to
the site processing capacity parameters stored in its information system.

Our load balancing strategy acts on three levels: (1) level one is the migra-
tion of work between nodes of the same cluster. If the skew in workload still
persists the coordinator of the cluster Coord(cl;;) moves to the next level; (2)
level two depends on the migration of work between clusters within the same
site; (3) and finally if work migration of the previous two levels is not suffi-
cient then the coordinator of the overloaded cluster Coord(cl;;) asks from the
coordinator of the site Coord(S;) to move to the third level which searches for the
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possibility of migrating work between sites. Communication between the coor-
dinators of different sites is done in a unidirectional ring topology via a token
passing mechanism. This choice was made based on the study conducted by H.
Renard [13] which states that the ring topology is the most effective for iterative
algorithms under distributed environments.

The following workload balancing process is invoked when needed. It is the
responsibility of distributed coordinators to detect that need dynamically accord-
ing to the charge status of their relative nodes (i.e. equilibrated or overloaded).
Where the charge status of a node is determined by the number of candidates
waiting for treatment:

1. From the intra-site level, coordinators of each cluster update their global workload
vector by acquiring workload information from their local nodes. From the Grid
level, coordinators of different sites periodically calculate their average workload in
order to detect their workload state (overloaded or under-loaded). If an imbalance
is detected, coordinators proceed to the following steps.

2. The coordinator of the overloaded cluster makes a plan for candidates migration
intra-site (between nodes of the same site). If the imbalance still persists, it creates
another plan for transactions migration inter-sites (between clusters of the Grid).

3. The concerned coordinator (the coordinator of the overloaded cluster or the coor-
dinator of the overloaded site) sends migration plan to all processing nodes and
instructs them to reallocate the work load.

5.1 The Dynamic Load Balancing Algorithms

Computing node (nd;;i)

Loop :

-- Receives a group of candidates from the coordinator of the
cluster

—-- Calculates their supports

-- Sends local supports to cluster’s coordinator which performs the
global supports reduction

Cluster coordinator (coord(cl;;))

Loop :

-- Distributes candidate itemsets between nodes according to their
capacities. Candidates are distributed by their (k-1) commun
prefix

—— Performs the global reduction of supports to obtain global
frequencies

-- Constructs frequent itemsets (Lj; step)

-- Constructs candidates itemsets of the following iteration C&k+n
step

-- Every n steps :

o Save the local state : chyj,
o Update if necessary CRk+U step
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Site coordinator (Coord(S;))
Loop :
-- Updates the global state vector of the site Average(chi))
—- Finds the Max overloaded cluster and the max underloaded cluster
o Clijmam = ;-naz (Chi]') > Avg(chi)
o Clijmm = ;nzn (Chi]') < Avg(chi)
-- Finds the Max z. (with the same prefix) on Clijmaax
1. Chijmin + Te-Wijmin < Avg(ch;)
// To find the best number of candidates to migrate in order
to not overload the destination cluster
AND
2. Tc.-Wijmax — (xowijmin + len(xc)~<ijma:cjmin) > Seuilme
// Seuilm. : le seuil qui va dclencher la migration
-- If z. exists Then informs the overloaded clijmas and the
underloaded clijmin and updates (ch;)
-- Asks from the overloaded cluster to send the family of candidates
having the same prefix

Where T is the total number of sites; M; is the total number of clusters of
the site S; ; N;; is the total number of nodes of the cluster cl;; ; Coord(cl;;)
is the coordinator node of cl;; ; coord(S;) is the coordinator of S; ; (;;; is the
transmission speed between clusters cl;; and cl;;: ; wiji, is the cycle time of nd;y, ;
ch; is the charge of S; ; ch;; is the charge of cl;; ; w;; is the average (w;jx); sewilme
is the significant time limit to trigger candidate itemsets migration between
clusters; seuil,,; is the significant time limit to trigger task migration between
sites and z. is the number of candidates to migrate from one cluster to another.

6 Performance Evaluation

In order to evaluate the performance of our workload balancing strategy we par-
allelized the sequential Apriori which is the fundamental algorithm for frequent
set counting algorithms with candidate itemsets generation. It is important to
mention that our load balancing could be applied to the entire class of association
rule mining algorithms that depends on candidate itemsets generation.

The performance evaluations presented in this section were conducted on
Grid’5000 [4], a dedicated reconfigurable and controllable experimental platform
featuring 13 clusters, each with 58 to 342 PCs, interconnected through Renater
(the French Educational and Research wide area Network). It gathers roughly
5000 CPU cores featuring four architectures (Itanium, Xeon, G5 and Opteron)
distributed into 13 clusters over 9 cities in France. We used heterogeneous clus-
ters in order to generate the maximum workload imbalance. We conducted sev-
eral experiments, by varying the number of sites, clusters and computational
nodes. Due to space limitation, we will present in what follows only the results
obtained by using two sites, each site containing two clusters and with 20 com-
putational nodes distributed as follows: 4 nodes/clusterl, 3 nodes/cluster2, 6
nodes/cluster3 and 7 nodes/cluster4d. We allocated clusters with different sizes
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to show the effectiveness of our approach in dealing with the heterogeneity of
the system. The datasets used in tests are synthetic, and are generated using
the IBM-generator [I]. Table 1 shows the datasets characteristics.

Table 1. Transactional databases characteristics

Characteristics
Database
Ttems Avg. Trans. Transactions Database
Number Length Number Size
DB100T13M 4000 25 1300000 100 Mb
DB300T39M 6000 30 3900000 300 Mb
DB600T78M 8000 35 7800000 600 Mb

The first iteration of association rule mining algorithm is a phase of initiation
for workload balancing (i.e. creating state vectors and processing time estimates,
etc). For the first dataset (DB100T13M) the algorithm performed 11 iterations
in order to generate all possible frequent itemsets. Candidate itemsets migration
(intra-site) is initiated two times during the second iteration, and once during
the third and fourth iterations. Figure 2 illustrates the speedup obtained as a
function of the number of processors used in execution. We can clearly see that
for the different datasets we achieved better speed up with the load balancing
approach. The drop in speedup for relatively higher support values is due to the
fact that when the support threshold increases the number of candidate itemsets
generated decreases (i.e. less computation to be performed). In this case it would
be better to decrease the number of nodes incorporated in execution so that the
communication cost will not be higher than the computation cost. In fact, there
is not a fixed optimal number of processors that could be used for execution.
The number of processors used should be proportional to the size of data sets to
be mined. The easiest way to determine that optimal number is via experiments.

Performance’s Comparisons: Table 2 illustrates the differences between: Our
Dynamic Load Balancing Approach (DLBA), the Weighted Distributed Parallel
Apriori algorithm (WDPA) proposed in [I7] and Heuristic Data Distribution
Scheme (HDDS) introduced in [I6]. Both WDPA and HDDS are based on a
centralized (master/slave) load balancing approach where there is one master
responsible of data distribution and n computing slaves. This would cause a
scalability problem. Our approach is totally distributed in order to respond to
the high level of distribution in grid systems. For input size 1000 transactions
and by using 9 processors, the speed up obtained by the WDPA algorithm is

Table 2. Approaches comparison

Approach Approach used to .. Speed Up
Name Balance Load Characteristics (using 9 procs)
WDPA One Master/P Slaves Centralized 7.5
HDDS One Master/P Slaves Centralized 5.5

DLBA Hierarchy of coordinators Distributed 8.95
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equal to 7.5, the speed up obtained by executing the HDDS algorithm is equal
to 5.5, while the speed up of our dynamic load balancing approach (DLBA) is
equal to 8.95.

DB100T13M DB300T39M
T T T T T T T T I
25| Speedup Apriori —&— ] 25 Speedup Apriori —e— N
% 20 |- Speedup LB Apriori —«— B % 2| Speedup LB Apriori —x— |
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95 |- Speedup Apriori —e— B
o, Speedup LB Apriori —«—
g 20 :
=
g
2 15 |- N
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Fig. 2. Comparing the speedup of parallel Apriori with and without load balancing

7 Conclusion

Data mining algorithms have a dynamic nature during execution time which
causes load-imbalance between the different processing nodes. Such algorithms
require dynamic load balancers that adjust the decomposition as the computa-
tion proceeds. Numerous static load balancing strategies have been developed
where dynamic load balancing still an open and challenging research area. In
this article we developed a dynamic load balancing strategy for association rule
mining algorithms, with candidate itemsets generation, under a Grid computing
environment. Experimentations showed that our strategy succeeded in achiev-
ing better use of the Grid architecture assuming load balancing and this for
large sized datasets. In the future, we plan to study the effect of the database
type (dense and sparse) on our strategy. We also aim to adopt our strategy to
association rule mining algorithms without candidate itemsets generation.
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