
European Exascale Software Initiative:

Numerical Libraries, Solvers and Algorithms

Iain S. Duff1,2

1 RAL, Oxfordshire, UK
2 CERFACS, Toulouse, France

Abstract. Computers with sustained Petascale performance are now
available and it is expected that hardware will be developed with a peak
capability in the Exascale range by around 2018. However, the complex-
ity, hierarchical nature, and probable heterogeneity of these machines
pose great challenges for the development of software to exploit these
architectures.

This was recognized some years ago by the IESP (International Exas-
cale Software Project) initiative and the European response to this has
been a collaborative project called EESI (European Exascale Software
Initiative). This initiative began in 2010 and has submitted its final re-
port to the European Commission with a final conference in Barcelona
in October 2011. The main goals of EESI are to build a European vi-
sion and roadmap to address the international outstanding challenge of
performing scientific computing on the new generation of computers.

The main activity of the EESI is in eight working groups, four on
applications and four on supporting technologies. We first briefly review
these eight chapters before discussing in more detail the work of Working
Group 4.3 on Numerical Libraries, Solvers and Algorithms. Here we will
look at the principal areas, the challenges of Exascale and possible ways
to address these, and the resources that will be needed.

1 Introduction

Computers with sustained Petascale performance are now available and it is ex-
pected that hardware will be developed with a peak capability in the Exascale
range by around 2018. However, the complexity, hierarchical nature, and prob-
able heterogeneity of these machines pose great challenges for the development
of software to exploit these architectures.

It is widely recognized that the major bottleneck in the exploitation of Exaflop
computing lies more in the software than the hardware and also that insufficient
attention has been paid in the past to supporting efforts in software develop-
ment. The hardware costs for this forthcoming generation of high performance
computers are estimated to be in the order of $200 million with probably at least
$20 million a year in electricity costs to run them. It is against this background
that we present relatively modest costs for the software effort that will be nec-
essary if we are to capitalize on the thousand-fold increase in computing power
over today’s fastest machines.

M. Alexander et al. (Eds.): Euro-Par 2011 Workshops, Part I, LNCS 7155, pp. 295–304, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

296 I.S. Duff

Of course, we are working on the assumption that we need to exploit future
generation machines and recognize that Exaflop computing is on the horizon.
Clearly such power (1018 floating-point operations per second) is needed for
more accurate and complicated simulations. Applications include: multiphysics,
multiscale, inverse problems, and optimization.

This was recognized some years ago by the IESP (International Exascale Soft-
ware Project) initiative and the European response to this has been a collabora-
tive project called EESI (European Exascale Software Initiative). This initiative
began in 2010 and submitted its final report to the European Commission with
a final conference in Barcelona in October 2011.

We first give a brief review of the main structure of the EESI project in
Section 2 before discussing in more detail the work of Working Group 4.3 on
Numerical Libraries, Solvers and Algorithms in Section 3. After outlining the
topics covered by the Working Group, we then in separate subsections highlight
some major issues raised by our investigation. We conclude this short report in
Section 4 by highlighting the areas that we need to address to ensure European
competitiveness and by summarizing briefly the resources that will be needed.

This note is based on a talk given at the HPSS 2011 Workshop at EuroPar
2011 in Bordeaux. It is particularly noticeable for its lack of references. This
reflects somewhat the deliverable of the Working Group although the main report
includes references to several web sites. This main report will shortly be available
as deliverable D4.5, referenced through our EU contract number EESI 261513.

2 EESI: European Exascale Software Initiative

The European Exascale Software Initiative (EESI) is supported by the EU under
the Infrastructure thematic of Support and Collaborative Action (CSA). The 18
months project began on 1 June 2010. The final conference to present our findings
was in Barcelona from 11-12 October 2011.

The organizations that are involved in EESI can be grouped into three
categories, viz.

– The contractual partners are: ARTTIC, BSC, CINECA, EDF, EPSRC,
GENCI, JSC, and NCF.

– The associated partners are: CEA, CECAM, CERFACS, CMCC, CNRS,
CSC, EMBL-EBI, ENES, EPCC, INGV, INRIA, NAG, STFC, Ter@tec,
TOTAL, STRATOS, and Univ Edinburgh.

– There is also an active group of contributing partners: Univ Tennessee,
Tokyo Inst Tech, SNECMA, Airbus, ESF, IACAT, DEISA, LRZ, OeRC,
and PROSPECT.

The main goals of EESI are:

To build a European vision and roadmap to address the international outstanding
challenge of performing scientific computing on the new generation of computers
(multi-Petaflop now and Exaflop in 2020).

EESI: Numerical Libraries, Solvers and Algorithms 297

The more specific aims are to:

– Investigate how Europe is located, its strengths and weaknesses, in the overall
international HPC landscape and competition.

– Identify priority actions.
– Identify the sources of competitiveness for Europe induced by the develop-

ment of Peta/Exascale solutions and usages.
– Investigate and propose programmes in education and training for the next

generation of computational scientists.
– Identify and stimulate opportunities of worldwide collaboration.

We are working closely with the IESP (International Exascale Software Project)
led by Pete Beckman (Argonne and Chicago) and Jack Dongarra (Tennessee and
Manchester). The main funding for IESP is from the DOE Office of Science and
the NSF Office of Cyberinfrastructure. The IESP involves researchers from the
US, Europe (including Russia), China, and Japan and has held several workshops
beginning with one in Santa Fe in April 2009. The workshops have also been
attended by researchers from Australia, Saudi Arabia, South Korea, and Taiwan.

The goal of IESP is to “Improve the world’s simulation and modeling capabil-
ity by improving the coordination and development of the HPC software envi-
ronment”. The aim of the many workshops held internationally by the project is
to “Build an international plan for coordinating research for the next generation
open source software for scientific high-performance computing”.

The EESI project is split into five workpackages. WP 1 on administration,
WP 2 on international networking, and WP 5 on dissemination. The main part
of the project is based around eight working groups in workpackages 3 and 4;
four based on applications and four based on underlying technologies. We list
the Working Groups in Table 1.

Table 1. EESI Working Groups

WP3: Application Grand Challenges
WP Chair: Stéphane Requena (GENCI)

Chair Vice-chair
WG 3.1 Industrial and Engineering Applications Philippe Ricoux (TOTAL) Jean-Claude André (CERFACS)
WG 3.2 Weather, Climatology and Earth Sciences Giovanni Aloisio (ENES-CMCC) Massimo Cocco (INGV)
WG 3.3 Fundamental Sciences (Chemistry, Physics) Godehard Sutmann (CECAM) Jean-Philippe Nominé (CEA)
WG 3.4 Life Science and Health Modesto Orozco (BSC) Janet Thornton (EBI)

WP4: Enabling Technologies for Exaflop Computing
WP Chair: Bernd Mohr (Jülich)

Chair Vice-chair
WG 4.1 Hardware Roadmaps, Links with Vendors Herbert Huber (STRATOS-LRZ) Sanzio Bassini (CINECA)
WG 4.2 Software Eco-system Franck Cappello (INRIA-UIUC) Bernd Mohr (Jülich)
WG 4.3 Numerical Libraries, Software and Algorithms Iain Duff (STFC-RAL and CERFACS)Andreas Grothey (Edinburgh University)
WG 4.4 Scientific Software Engineering Mike Ashworth (STFC-DL) Andrew Jones (NAG)

Each Working Group consists of a Chair, a Vice-Chair, and from ten to fifteen
experts, chosen for both topical and geographical coverage. In the case of the
Working Group on Numerical Libraries, Software and Algorithms, the composi-
tion of the Team is shown in Table 2. The input from all these experts should be
acknowledged both in the production of the Working Group report but also in
providing the base material for my talk in Bordeaux and this subsequent short
report.

298 I.S. Duff

Table 2. Composition of Working Group 4.3

Iain Duff STFC/CERFACS UK Sparse Linear Algebra
Andreas Grothey University of Edinburgh UK Cont & Stoch Optimization
Patrick Amestoy ENSEEIHT-IRIT, Toulouse FR Sparse Direct Methods, Solvers
Peter Arbenz ETH Zürich CH Eigenvalues, HPC
Jack Dongarra Tennessee/Manchester UK/USHPC, Numerical LA
Salvatore Filippone Università di Roma IT Numerical Software
Mike Giles University of Oxford UK GPU, CFD/Finance
Luc Giraud INRIA Bordeaux FR Iterative & Hybrid Methods
Thorsten Koch Zuse-Institut Berlin DE Combinatorial Optimization
Bo K̊agström Ume̊a University SE HPC, Dense Linear Algebra
Karl Meerbergen K.U. Leuven BE Preconditioners, ExaScience Lab
Volker Mehrmann TU Berlin DE Linear Algebra, HP Applications
Gerard Meurant ex-CEA FR HPC, PDE solution
François Pellegrini Université de Bordeaux & INRIAFR Partitioning
Julius Žilinskas Vilnius University LT Global Opt, Meta-heuristics

3 Numerical Libraries, Solvers and Algorithms

The area addressed by Working Group 4.3 is very much an enabling technology
and so inherits the impact and societal benefits of the enabled applications.
Indeed we are very much motivated by the needs of applications and our work
is critical to the success of these applications even more so in the forthcoming
computing regime than at present.

3.1 Main Areas Covered in the WG 4.3 Report

We started our discussions on which topics to include by basing these on the
original Colella’s dwarves1 and extensions of these. The original seven dwarves
were: structured grids, unstructured grids, fast Fourier Transform, dense linear
algebra, sparse linear algebra, particles, and Monte Carlo, but it was soon ap-
parent that these only cover a limited range of the main areas that we felt we
should include. After some discussion, we chose the list:

– Dense linear algebra
– Graph and hypergraph partitioning
– Sparse direct methods
– Iterative methods for sparse matrices
– Eigenvalue problems, model reduction
– Optimization
– Control of complex systems
– Structured and unstructured grids

The above list has been ordered according to a software stack where entries fur-
ther down the stack use those above them in the stack. This hierarchical structure
is important when considering the mapping of our algorithms and libraries to
the hierarchically structured computers of the new emerging architectures. For
example in the stack:
1 D. Patterson (2005) Colella, Phillip. Defining software requirements for
scientific computing.
http://www.lanl.gov/orgs/hpc/salishan/salishan2005/david patterson.pdf

http://www.lanl.gov/orgs/hpc/salishan/salishan2005/davidpatterson.pdf
http://www.lanl.gov/orgs/hpc/salishan/salishan2005/davidpatterson.pdf

EESI: Numerical Libraries, Solvers and Algorithms 299

– BLAS
– Dense linear algebra
– Sparse solver
– Hybrid solver
– Optimization/Eigenvalues/Control

the BLAS are at the most basic level and are used extensively by dense linear
algebra codes that in turn can be used to factorize submatrices in sparse direct
solvers. In turn, the solution of the linear system might be effected by using the
sparse direct solver within a hybrid solver, for example to solve subproblems in a
domain decomposition approach. Finally the linear system may be solved within
the inner loop of optimization, eigensystem, or control software. Note that we
need not be preoccupied with achieving Exascale performance at every level. It
can often be sufficient, particularly lower in the stack to obtain Peta or even
Terascale performance. For example, if the BLAS executes on a multicore node
at a Terascale level, the execution of the software at the highest level could well
be at Exascale.

3.2 Algorithmic Issues

There were several algorithmic issues that were identified in more than one
subtopic and we discuss these in this subsection. We should point out that there
are a huge number of algorithms in our portfolio, and the most suitable one
will depend not only on the functionality and the target architecture. Clearly,
the problem will define the general approach but the structure and size of the
problem is also of crucial importance, for example is the problem sparse or in
some way structured and can we exploit this structure?

We already mentioned the software stack that gave rise to a hierarchy of li-
brary calls with consequent multiple possibilities for exploiting parallelism at
many levels. However, even with seemingly tightly defined algorithms or ker-
nels there is often scope for a hierarchically structured algorithm that might
match well to emerging computer architectures. An example is in my own field
of the direct solution of sparse equations. Here there might be an initial depen-
dency on graph partitioning algorithms and then the construction and use of a
computational tree where the units of computation are akin to a dense matrix
factorization which in turn uses possibly highly-tuned BLAS algorithms. Further
levels of parallelism can be obtained from the context of the sparse direct solver.
For example, it could be in the inner loop of an eigensystem solver or at each
step of an optimization algorithm. This algorithmic modularity also supports
the exploitation of heterogeneous systems.

There are several barriers to the efficient exploitation of parallel architectures.
One is synchronization where there can be significant inefficiencies if one thread is
held waiting for others to finish. This is epitomized by the fork-join construct and
much recent work has sought to remove this bottleneck and express algorithms
in terms of a task graph (normally a directed acyclic graph or dag). Several
powerful algorithms for both dense and sparse linear algebra use dags as their
basis for assigning work to processors and scheduling the computation.

300 I.S. Duff

Of course, as has long been recognized, even on older generations of machines,
the main bottleneck is not the floating-point execution time but rather the cost
of moving data to the arithmetic units that can be increasingly costly on modern
very non-NUMA architectures with many levels of memory and cache hierarchy.

One of the main algorithmic tricks to reduce this bottleneck is to block the
computation so that the ratio of data fetching to arithmetic is reduced. A simple
example of this is the Level 3 BLAS. We note that there can be extra costs
in doing this, for example data might have to be reordered or restructured or
repartitioned with concomitant costs.

This type of blocking or data rearrangement is often at the heart of so-called
communication avoiding algorithms which often rely on blocking to reduce the
amount of communication. An allied issue is that of communication hiding where
strong attempts are made to ensure that any data movement is masked by si-
multaneous arithmetic processing on other data. Care has to be taken both to
ensure algorithms remain stable and to avoid extra synchronization costs. We
note that, if data movement and communication can be reduced then less energy
may be needed to effect the computation, a potentially major issue when dealing
with such high performance computers. The concept of energy aware algorithms
has indeed become a big issue in high performance computation.

3.3 Software Issues

In the previous section, we discussed generic algorithmic issues which should be
addressed if we are to obtain good performance on Peta and Exascale machines.
We now discuss some software issues, most of which have existed for some time
but many have been brought into sharper focus by the development of high
performance computing.

Interoperability is always an important feature of software libraries and this
is even more true in the current regime. The Exascale setting intensifies the need
to draw on multiple areas of expertise and to have various toolkits interacting
with each other.

The Exascale target is a moving one so that any software needs to have a good
support structure so that it can continually be adapted to meet the demands of
new architectural features. Also, partly in order to attract users for the software
(and this is by no means guaranteed), it really is important to have and be seen
to have long term support over a period of several years or even decades.

Any code supported by the European Union should certainly be open source
to promote its widest dissemination within the research and educational commu-
nities. This will also contribute strongly to the future development and support
of the code and enhancement of it from third parties. The issue of licensing is
more fraught and has not really been grasped by the EU. A licence like LGPL
allows open dissemination but could hamper its use in applications although it
does open the possibility of commercializing the code (sometimes encouraged in
EU projects).

EESI: Numerical Libraries, Solvers and Algorithms 301

Above all, the interface and documentation of the codes are of prime im-
portance partly because the environment in which they will be used is getting
increasingly complex, not just from the hardware point of view but also in a
software context where codes may be used in effecting stochastic approaches or
in the solution of inverse problems.

3.4 Fault Tolerance

Fault tolerance is a major issue in Exascale computation as, even with a high
chip yield, a billion core machine will quite likely experience the failure of a core
at an intervals that potentially will cause problems in application and numer-
ical library codes. There are various estimates of the severity of this but it is
universally agreed to be a significant problem. One thing to note is the differ-
ence between MTBF (mean time between failures) that could be in the order
of hours or less and MTTI (mean time to interrupt) which is when the code
might have to take significant action. The order of this depends on hardware
support for handling the chip failures but could be in the order of a day and
thus will be less likely to require dramatic remedial action. Certainly our hope is
that the vendors will be able to give support for automatically recovering from
some faults although the detection of these can be as hard as the subsequent
corrective action.

At the level of MPI, there has been some discussion of handling fault tolerance
and we encourage further work on FT-MPI.

A standard way of guarding against such a failure is to use checkpointing so
that the computation can be restarted if a problem is detected. This is, however,
expensive and can be difficult to schedule without introducing extra synchroniza-
tion points. A faster means of checkpointing data, say to FLASH memories, may
help. On some computations, for example sparse direct factorization, checkpoint-
ing can be a problem but for sparse iterative methods it might be more easily
accommodated.

In addition to checkpointing or when checkpointing is not feasible, there are
other algorithmic tricks that can be done. Examples are to do a backward com-
putation from the point of failure (possible for the more simple algorithms) or to
perform additional computations that can also be very useful in detecting when
there is a problem. This is reminiscent of check sum computations when using
hand held computers and indeed some suggested approaches are very close to
these earlier methods.

3.5 Uncertainty Quantification

As we move to ever more complicated computation sometimes with inexact
data, the issue of uncertainty quantification looms high in the desires of ap-
plication scientists for support from algorithm and code designers. It is, how-
ever, very important to recognize that such issues span very many levels. For
example there can be problems or uncertainties with: input data, modelling of

302 I.S. Duff

physical phenomena, uncertainty in observed data, approximation of continu-
ous by discrete model, solution of resulting equations, and the effect of finite-
precision arithmetic.

Many of these are more in the domain of the application scientist although
we can and should provide tools for assisting them in this important quest. For
example: stochastic optimization and stochastic partial differential equations,
the use of mixed-precision arithmetic and refinement, and software for assessing
accuracy.

3.6 Programmability

While the core of our numerical algorithms might continue to be in standard
languages like C or Fortran probably using MPI for parallel constructs, it is
recognized that there are and perhaps need to be further developments to both
make the programming more efficient and robust and also to be able to exploit
more complicated parallel architectures. Certainly stronger support for multi-
level parallelism is needed, perhaps better combinations of MPI or OpenMP and
further developments of MPI to include improved collectives, including sparse
and non-blocking collectives and stronger support for fault tolerance.

Other developments of programming languages based on a partitioned global
address space (PGAS) parallel programming model are also available and may
become more widely used. Prime examples of these are UPC and co-array
Fortran.

3.7 Floating-Point Issues

It is all very well to develop algorithms that perform well on high performance
computers but there is little point in getting an answer quickly if it is wrong! It
is thus particularly important to ensure that any new algorithm is stable. This
can be an issue in block algorithms of the kind we mentioned in Section 3.2.

In that section, we also emphasized the problem of data movement and clearly
a lower precision floating-point number will require less storage than one at
higher precision. Thus if we can compute in lower precision but still get accept-
able results then the amount of data handled and potentially moved could be
less. This has led to the rediscovery and development of algorithms that perform
much of the computation in single precision but have some kind of corrective
action, perhaps in higher precision, to ensure that the final accuracy is not com-
promised. An example of this is the use of iterative refinement when computing
the solution of linear equations, where only the residual need be computed in
the higher precision. This results in mixed-precision arithmetic. On the other
end of the scale, some applications require very high accuracy in some parts of
the computation so the mixed arithmetic could also involve some computations
in extended precision.

A further issue in floating-point arithmetic is the problem of reproducibility,
particularly acute when computing in parallel. This problem is mainly caused
by the lack of associativity in floating-point arithmetic so that the sequence

EESI: Numerical Libraries, Solvers and Algorithms 303

of performing the arithmetic operations can influence the result. This sequence
could be changed in a parallel environment because of influences outside the
program itself and this indeterminacy mitigates against reproducibility. Getting
different results for different runs of the same computation can be disconcerting
for users even if, in a sense, both results are correct. Giving an estimate of the
backward or forward error in the computation may help but it can be useful if
the vendor could have a mode of running which would be far less efficient but
could give a better possibility of getting a reproducible result. This would also
be very useful for debugging purposes.

3.8 Training

Training is crucial in many ways both in order to develop and maintain the
skills necessary to develop the underlying mathematics and numerical algorithms
and software but also to train potential application scientists to recognize and
use the tools so developed. In addition to the mathematics, the former group
will need training in using programming models and basic tools, for example in
partitioning or the use of basic algebra kernels.

The report also noted the relationship to already existing European initiatives
involving training including DEISA, PRACE, and HPC-Europa.

4 Conclusions

The main conclusion of our Working Group was that the work of European sci-
entists is recognized at a high global level and there is much interaction between
individuals and teams in Europe and groups from outside Europe, particularly
with the USA. This is true in all the domains addressed by our study. How-
ever, there are four main reasons why we cannot be complacent with the cur-
rent situation and why more resources are required if Europe is to maintain its
competitive edge.

The first concerns the complexity of moving to the Exascale domain. Although
we do not know the detail of the hardware that will be available, we can be
certain that the level of parallelism will increase significantly, that machines will
be more complex and heterogeneous, and that the hierarchical structure of many
current Petascale systems will be even more pronounced. Thus, in common with
our colleagues in the US and Japan, we recognize that considerably more effort
and manpower will be required to even begin to address this complexity and so
additional resources will be necessary just to stay still as it were.

The second concern is that most of the high level research in Europe is done
by small groups some of which are only just of critical mass. Thus support is
needed to strengthen such groups to keep them at or above critical mass, both
for today’s challenges and those in the future.

The third concern that is also primarily a problem in Europe is that the
networking of the groups is not at a level to sustain European competence at
this next stage. Indeed many groups have closer contact with America than with

304 I.S. Duff

their peers in other European countries. Thus there is a great need for support
with networking.

The fourth concern is the lack of long-term funding to support the mainte-
nance of software libraries, including their porting to new hardware platforms.
This is extremely important because application developers will not commit to
using software libraries if they are not positive that they will remain supported.
In the US, the Department of Energy labs have played a major role in parallel
software development, and one of the keys to their success has been the fact that
they have the continuity of funding and users trust them to continue support-
ing the software packages they develop. In the European setting, this could be
addressed through a co-design centre that would also involve hardware vendors.
Their involvement would be particularly important in the development of kernels
optimized to the new architectures. This centre would also house experts with
extensive expertise in software engineering and parallel computing who could
assume the task of maintaining the software base. Thus the centre could ad-
dress the two main European weaknesses of fragmentation of research effort and
long-term support for software.

In our report, estimates of the number of person years for each topic are
presented, broken into subareas. From these, we have calculated that a total of
around 2000 person years of effort needs to be funded to keep existing groups
at a critical mass and to address the aforementioned Exascale challenges. Our
request is thus for general support for all the topics mentioned at a level of
a little over 10 million euros per year for the 2012-2030 timeframe. We would
envisage support through normal research mechanisms: targeted calls, support
for students, postdocs, and engineers, for networking and training. We are also
proposing a co-design centre at a cost of roughly 4 million euros a year for the
centre including an extensive visitor programme.

To put the request for funding into context note that the amount suggested
is small relative to the costs of Exascale hardware; perhaps $200 million with
around $20 million per year in electricity costs!

Acknowledgements. The talk at EuroPar and Sections 3 and 4 of this re-
port were largely prepared from the report of Working Group 4.3. Thus the
involvement of all the people listed in Table 2 is gratefully acknowledged.

	European Exascale Software Initiative:
Numerical Libraries, Solvers and Algorithms
	Introduction
	EESI: European Exascale Software Initiative
	Numerical Libraries, Solvers and Algorithms
	Main Areas Covered in the WG 4.3 Report
	Algorithmic Issues
	Software Issues
	Fault Tolerance
	Uncertainty Quantification
	Programmability
	Floating-Point Issues
	Training

	Conclusions

